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1 EXECUTIVE SUMMARY 

1.1 INTRODUCTION 

This deliverable describes the publications that resulted from Task 6.2, and how they fit into the 

work plan of the project. 

The objective of Task 6.2 is to analyze the distribution of noise from various sensors. Insights 

gained from this analysis are believed to be beneficial for other upstream applications that make 

use of the sensed data. 

There is so far one publication that is mainly attributable to Task 6.2. As it contains still 

unpublished material, at the time of delivery it can be found in the restricted section of the 

website only.  

1.2 PUBLICATIONS 

The following publication can be found on the webpage only: 

 T. Plötz, F. Saeedan and S. Roth. 

Towards Datasets of Noise from Image Sensors. 

Working paper, TU Darmstadt, 2015 

2 DESCRIPTION OF PUBLICATIONS 

2.1 OVERVIEW 

Harvest4D makes use of various input modalities. Especially images are of great importance since 

they constitute the input to 3D reconstruction techniques like Structure-from-Motion (see WP5), 

image registration (see WP4) or material acquisition (see WP7). However, when capturing images, 

these are inherently degraded by image noise and algorithms that process images are affected by 

this noise. For this reason, the working paper [Plötz, Saeedan, Roth 2015] aims at quantifying 

image noise.  

2.2 TOWARDS DATASETS OF NOISE FROM IMAGE SENSORS 

Many algorithms that handle images as input can benefit from a good model of image noise as it 

allows to incorporate a notion of confidence into an algorithmic framework. Ideally, we would like 

to have a database of measured image noise in order to model the statistical properties of the 



 

Deliverable 6.21 2/2  

 

noise distribution. However, measuring noise is a hard problem since it is difficult to separate 

noise from signal from just a single image.  

Therefore, this working paper presents an acquisition procedure that allows to capture pairs of 

images of the same scene where one of the images has little noise and one is affected by stronger 

noise. In the end, the difference between both images can be used to measure the amount of 

noise in the latter image, thus opening the possibility to faithfully model the underlying noise 

distribution. Moreover, the data could be used to benchmark denoising and noise estimation 

algorithms. An example of two images showing the same scene with different amounts of noise is 

shown in Figure 1.  

The paper validates the acquisition procedure in a rigorous mathematical framework. In practice, 

the theoretical model does not apply to the captured images to full extent since, for example, 

small changes in the scene and illumination result in a residual measurement error. The paper 

presents and evaluates a post-processing procedure of the captured images to correct the effect 

of these errors.  

 

             

Figure 1: A crop from two images from one scene of the captured dataset. Left: Image taken with low analog gain. 
Right: Image taken with high analog gain. 

3 REFERENCES 

 T. Plötz, F. Saeedan and S. Roth. Towards Datasets of Noise from Image Sensors. Working 

paper, TU Darmstadt, 2015 

 



Towards Datasets of Noise from Image Sensors

Tobias Plötz Faraz Saeedan Stefan Roth
Department of Computer Science, TU Darmstadt

Abstract

Noise can significantly degrade the quality of images,
hence a multitude of algorithms to estimate and remove
noise have been proposed. However, due to the lack of
realistic ground truth data, those algorithms are tradition-
ally evaluated on images corrupted by synthesized noise. In
this paper we propose means to capture a new dataset that
contains pairs of images showing the same scene. One im-
age depicts the scene with little noise, the other with large
amounts of noise. Subtracting both allows to study char-
acteristics of the residual image noise and can be used to
derive a benchmark for denoising and noise estimation al-
gorithms. We give a theoretical treatment of the acquisition
procedure, discuss some challenges encountered in prac-
tice, and show how to cope with them.

1. Introduction

Noise is inherent to every imaging system. Especially in
low-light scenarios, noise often severely degrades the image
quality. Although sensor technology has advanced signifi-
cantly in the recent past, a substantial and inherent amount
of noise is caused by the uncertainty of the arrival process
of photons. The trend of increasing the number of pixels
that are fit onto the sensor further worsens the effect of this
shot noise, since the amount of incident light at every pixel
decreases with a smaller sensor area being allocated to each
pixel. A number of other noise sources within the camera
itself further contribute to this challenge. Therefore, a large
variety of denoising algorithms have been developed to deal
with noise in digital images (e.g. [3, 4, 19]). Even though
images with real sensor noise can be easily captured, it is
much less straightforward to know what the true noise-free
image should be. In the absence of ground truth data it is
thus challenging to devise faithful noise models. Without
such data, denoising algorithms are typically evaluated by
synthetically adding noise to existing, mostly clean images
and trying to remove it again [19]. But this only yields an
approximation to the true denoising performance in real ap-
plications, which is limited by the accuracy of the under-
lying noise model that is used to synthesize noise. Similar

(a) Low ISO image (b) High ISO image

(c) Zoomed part of the low ISO image (left) and the high ISO image (right)

Figure 1. An image pair of a low and high ISO image from our
dataset. We show the JPGs for better display.

challenges exist in noise estimation algorithms [2, 9]. To
avoid this, it is thus highly desirable to have a dataset of
pairs of real noisy and noise-free images in order to assess
the quality of denoising and noise estimation algorithms in
a faithful manner.

To the best of our knowledge, there exists only one pub-
lic dataset for image noise so far [1]. One shortcoming of
this dataset is that crucial details about the acquisition pro-
cedure are not discussed. When attempting to replicate their
acquisition procedure, we encountered numerous practical
difficulties, which do not appear to have been addressed.
For this reason, we here aim to contribute a novel dataset
of image noise with a thorough mathematical treatment of
the acquisition protocol as well as significant detail on the
practical aspects of the acquisition. The core of our pro-
cedure builds on capturing a pair of noisy and noise-free
images by taking several images of the same scene with dif-
ferent analog gains (ISO values) and exposure times. The
per-pixel intensities in the captured images will follow dif-
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ferent noise distributions but, crucially, they share the same
true underlying image intensity. Intuitively, the amount of
per-pixel noise will increase with the gain and we study this
behavior in a rigorous mathematical framework. Overall,
the difference between an image captured with a low gain
setting and an image with a high gain setting will mainly
yield the noise that is present in the latter. Figure 1 shows
one of the captured image pairs in our dataset. For this ac-
quisition procedure to produce sensible images it is neces-
sary that the scene as well as the camera do not change in
between exposures. However, in practice we found different
sources of violations of this assumption, such as misalign-
ment and subtle lighting changes. We describe and discuss
a procedure for mitigating these effects.

2. Related Work
Since noise is abundant in any imaging system, different

models of sensor noise have been studied in the literature.
A thorough analysis of the different noise sources is pro-
vided by Healy et al. [11] for CCD image sensors and by El
Gamal et al. [5] for CMOS sensors. The main observation
is that there is inherent noise related to the stochastic arrival
process of photons hitting the sensor. This so-called shot
noise cannot be eliminated and since it follows a Poisson
distribution, its variance is proportional to the mean inten-
sity at a specific pixel and is hence not stationary across the
whole image.

Other noise sources originate from the electronics within
the sensor chip and can be measured in order to assess the
quality of the sensor. Consequently, this led to the devel-
opment of the standard 1288 of the European Machine Vi-
sion Association [6], which provides a standardized proto-
col for measuring the characteristics of the different noise
sources on a sensor. In this protocol the sensor is illumi-
nated with constant irradiation over the whole sensor area
and intensity measurements are aggregated spatially. This
is repeated for different irradiation levels to capture the
intensity-dependence of the noise. In contrast, [8] propose
a method similar to our capture protocol, where they take
multiple exposures of a static scene and then temporally ag-
gregate the measurements at every pixel site. Finally [18]
studies the dependence of image noise under varying ISO
sensitivities and temperatures.

In a practical application it is useful to assess the amount
of noise that degrades a certain input image. However, the
specific noise characteristics for the camera that took the
image might be unknown. Hence, there has been a substan-
tial amount of research in estimating the noise strength
from a single image. The main idea behind most methods
is to search for areas of constant intensity within the im-
age in order to assess the standard deviation of the noise for
that intensity. Then a model is fit to represent the noise-
level function, i.e. the function that relates image intensity

and noise strength. Foi et al. [9] use an approach based on
wavelet decomposition to estimate pairs of mean intensities
and noise standard deviations. A quadratic model is fitted
to these measurements to estimate the noise-level function.
They also take into account clipping effects due to under-
and overexposure. Because measurements of noise are of-
ten polluted by high frequency textures, [2] robustify this
approach by considering the effect of outlier measurements
during the model fitting.

While the above works aim to estimate the noise for
raw image data, Liu et al. [14] estimate the intensity-
dependent strength of noise for images that have already
been gone through the camera-internal image processing
pipeline. This pipeline can be modeled with a nonlinear
camera response function that maps raw input intensities
to final output intensities. In [14] a low dimensional basis
for processed noise-level functions is computed. The inten-
sity/standard deviation pairs are fitted against this basis to
get an estimate of the real noise level function of the image.

Although the image noise variance depends on the un-
derlying intensity, many denoising algorithms ignore this
fact and evaluate against artificially generated, stationary
noise, where usually i. i. d. Gaussian noise is used. In-
stead, other works aim to undo intensity-dependent noise
[7, 14, 15]. The main idea there is to model the noise dis-
tribution as a heteroscedastic Gaussian, whose variance is
intensity-dependent. This is valid since the Poissonian com-
ponents of the total noise can be well approximated by a
Gaussian. Other approaches first apply a variance stabi-
lizing transform [16] in order to then employ a denoising
method for stationary Gaussian noise. However, the trans-
form may make the noise distribution non-Gaussian.

At the time of writing and to the best of our knowledge,
there is no peer-reviewed benchmark for image noise.
Anaya and Barbu [1] provide the RENOIR dataset, which
has not been published to date. Their acquisition technique
is highly related to ours as they also take sets of images of a
static scene with different ISO values. However, they do not
provide much detail on how misalignments within a single
acquisition are corrected for, and they convert the raw inten-
sities to 8 bits, thus loosing dynamic resolution. Moreover,
some of the publicly available images seem to exhibit spa-
tial misalignments; it is thus unclear how reliable the dataset
is.

A related benchmark for low-level vision applications is
the Microsoft Research Demosaicing Dataset [13]. They
downscale high-resolution images to simulate a sensor
without a color filter array and use that as ground-truth for
the demosaicing task. However, this approach cannot di-
rectly be adapted to creating an image noise dataset, as ex-
tracting the noise from just a single image will always face
the problem of separating noise from signal. Hence, we
use two images – one with little noise one that is affected
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Algorithm 1 Capture protocol.

Require: K0, texp,0: Base ISO of camera and initial expo-
sure time

n← {1, 4, 16, 1}
for i = 1, . . . , |n| do

K ←K0 · n
texp ← texp,0/n
Ii ← take exposure

end for
return I1, . . . , I|n|

strongly with noise. Combining both images helps us to
separate signal from noise.

3. A Dataset of Image Noise
Capture protocol. For capturing the dataset, we use the
protocol that is outlined in Algorithm 1. The main idea is
to capture multiple exposures of the same scene, each with
a different combination of ISO value and exposure time.
These are chosen in a way as to ensure that the observed
intensities remain constant as much as possible, up to noise.
We use two different cameras: A Sony A7R with a full-
frame sensor and base ISO 100 and an Olympus OM-D E-
M10 with a Micro-Four-Thirds sensor and base ISO 200.
Both cameras are mirror-less, thus reducing vibrations due
to the flapping mirror compared to DSLRs. We mount the
camera on a sturdy tripod with a stabilizing weight attached.

Between the individual exposures, the aperture, white
balance, the focus and all other camera parameters except
for the ISO value and exposure time remain constant. The
capture protocol is executed via an Android app that issues
all necessary commands to the camera over a WiFi network.
In this way, human interaction during the capturing is min-
imized to limit the amount of camera shake and scene vari-
ation.

In the following we analyze our capture protocol from a
theoretical perspective, showing that in ideal circumstances
it produces identical intensities across the different expo-
sures, up to noise.

A model of image sensor noise. Sensor noise in digital
CMOS or CCD cameras can significantly degrade a cap-
tured image. Hence, models that describe the statistical
characteristics of the noise have been developed in the past
[11, 6]. We begin by reviewing the basic sources of im-
age noise and then study their dependence on the amplifier
gain and the exposure time, since these parameters will be
varied within the capturing protocol for our dataset. Fig-
ure 2 shows a schematic overview of the imaging process
per pixel along with the different noise sources that influ-

ence the final pixel output.
At each pixel site, the photoelectric effect causes inci-

dent light in the form of individual photons to be trans-
formed to electrons. The number of incoming photons Np

during the exposure time texp is a random quantity with a
Poisson distribution [12] with the mean being linearly de-
pendent on the exposure time:

Np ∼ P(µp) (1)
with µp = Fp · texp. (2)

Here, Fp describes the mean arrival rate of photons per time
interval. A basic property of the Poisson distribution is that
the variance is equal to the mean

σ2
p = µp = Fp · texp. (3)

The inherent uncertainty in the photon counting process is
called shot noise, and cannot be avoided by any technical
means. The number of electrons Ne that are generated dur-
ing the exposure time depends on the number of photons
and the quantum efficiency η of the sensor:

Ne = η ·Np. (4)

For the sake of simplicity, in this paper the quantum effi-
ciency describes the overall rate of transformed electrons
per incident photon, thus subsuming the actual quantum ef-
ficiency of the photo sensing element at the pixel, the fact
that not all incoming light hits the sensing element, and oth-
ers. Also, the quantum efficiency actually depends on the
wavelength of the incident light. We can neglect this pa-
rameter, as we regard the incoming spectrum to be static
between captures.

Consequently, the number of generated electrons can
also be described by a Poisson distribution with a mean that
linearly depends on texp:

Ne ∼ P(µe) (5)
with µe = η · µp = η · Fp · texp (6)

and σ2
e = µe. (7)

The photosensitive electronics also produce charge when
no light is falling onto the sensor. This effect is called dark
current [6] and is caused by random thermal fluctuations in
the semi-conductor material. The number of “dark” elec-
trons is Poisson distributed as well, and the mean similarly
depends on the exposure time:

Nd ∼ P(µd) (8)

with µd = Fd · texp (9)

and σ2
d = µd, (10)

where Fd is the generation rate of dark electrons per time
unit. Thus, the total amount of observed charges equals
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Figure 2. Schematic model of how different noise sources get aggregated in the imaging process. The parts within the blue box are
influenced by the exposure time, the parts in the green box are influenced by the system gain.

Ne + Nd. Depending on the sensor technology it is di-
rectly converted to a voltage at the pixel site (CMOS sensors
[5]) or carried to separate read-out electronics (CCD sen-
sors [11]), where it is converted to a voltage. The voltage is
then amplified with a gain factorK and an analog-to-digital
converter is used to subsequently quantize the voltage and
convert it to a digital signal. The electronic circuitry adds
noise that is independent of the received charge and the ex-
posure time [11]. In this exposition, we split this additional
noise in a component No1 that is induced before the am-
plification1 and a component No2 that is induced after the
amplification. These noise sources are usually regarded as
being Gaussian distributed [6] with mean zero2:

No1 ∼ N (0, σ2
o1) (11)

No2 ∼ N (0, σ2
o2). (12)

The quantization step can be regarded as another noise
source. Although being deterministic given a known accu-
mulated signal, quantization can be regarded as uniformly
distributed noise Nq if the signal itself is uncertain [6]:

Nq ∼ U(−0.5∆e, 0.5∆e), (13)

where ∆e is the amount of charge that is quantized to the
same digital output. The mean and variance of the quanti-
zation noise are therefore

µq = 0 (14)

and σ2
q =

1

12
∆e. (15)

With all these ingredients, we can write the total observed
signal as

NI = K · (Ne +Nd +No1) +No2 +Nq. (16)

1Regarding charge and voltage as convertible, we express No1 also as
a quantity measured in electrons.

2Any non-zero bias is assumed to be detected by the camera logic and
corrected for.

Only for pixels that are nearly under- or overexposed the
theoretical model is not accurate as it disregards clipping
effects. These pixels are, however, easily detectable and can
be excluded from further analysis. To validate our capture
protocol we now study how the mean and the variance of the
observed signal will behave when we increase the gain K
and at the same time decrease the exposure time texp by the
same factor. Due to the linearity of the expectation operator
the mean signal as a function of gain and exposure time is
given by

µI(K, texp) = K · (µe + µd + µo1) + µo2 + µq (17)

= K · texp (η · Fp + Fd) +K · µo1 + µo2 + µq

(18)

= K · texp (η · Fp + Fd) . (19)

Where the last equality follows from the fact that No1 , No2

and Nq have zero mean. It is also reasonable to assume
that all noise sources are independent and hence the total
variance of the signal as a function of gain and exposure
time is given by

σ2
I (K, texp)

= K2 ·
(
σ2
e + σ2

d + σ2
o1

)
+ σ2

o2 + σ2
q (20)

= K2 ·
(
µe + µd + σ2

o1

)
+ σ2

o2 + σ2
q (21)

= K2texp · (η · Fp + Fd) +K2 · σ2
o1 + σ2

o2 + σ2
q . (22)

Now we have the necessary framework to analyze the pro-
posed acquisition protocol. If we multiply the gain by some
constant n and simultaneously divide the exposure time by
n, from Eq. (19) it becomes apparent that the mean ob-
served intensity indeed stays the same:

µI(nK, texp/n) = nK ·
texp

n
(η · Fp + Fd) = µI(K, texp).

(23)

The main reason for this result is that all components of
the signal with non-zero mean depend proportionally on the
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gain and inversely proportional on the exposure time. For
the variance we get a different result

σ2
I (nK, texp/n) (24)

= n2K2texp/n · (η · Fp + Fd) + n2K2 · σ2
o1 + σ2

o2 + σ2
q

(25)

= nK2texp · (η · Fp + Fd) + n2K2 · σ2
o1 + σ2

o2 + σ2
q

(26)

= n · σ2
I (K, texp) +

(
n− 1

)(
nK2 · σ2

o1 − σ
2
o2 − σ

2
q

)
(27)

This result can be interpreted as follows: For pixels with
high irradiance the noise is dominated by shot-noise and
hence σ2

I (nK, texp/n) ≈ n · σ2
I (K, texp). The less the irra-

diance becomes, the higher the weight of the noise before
amplification σ2

iK will become and hence σ2
I (nK, texp/n) ≈

n2 · σ2
I (K, texp).

4. Residual Errors
The previous results show that our capture protocol is

valid and should produce a set of images whose intensity
is essentially constant in the mean and whose noise vari-
ance increases with increasing gain. However, capturing
images in practice does not adhere to this ideal theoretical
model. Figure 3b shows the difference image between an
image capturing the test target shown in Fig. 3a with the
lowest possible ISO value and an image capturing the test
target with a high ISO value. From our theoretical analysis
in the last section, we would expect the difference image to
show the zero mean noise added to the two images. How-
ever, the result is not zero-mean. We identified four sources
of errors that need to be corrected for in order to relate the
intensities of a certain pixel across the different captures:

1. Spatial misalignments during the whole capture pro-
cedure induced by small camera vibrations caused by
the mechanical shutter. These spatial errors are in the
fractions of a pixel.

2. Linear intensity changes due to the fact that scaling the
ISO value in the camera does not exactly scale the gain
in the same way. The same holds true for the exposure
time.

3. The lighting of the scene may change during the cap-
ture procedure.

4. In general scenes individual objects may move during
the capture procedure.

We now describe how we aim to correct for these er-
rors. In order to reduce the spatial misalignment already
during acquisition, we wait for roughly two seconds after
an exposure before taking the next image. Correcting the

(a) (b)

(c) (d)

Figure 3. (a) Test target. (b) Difference between high ISO and low
ISO image where green means a difference of zero. (c) Difference
image after spatial alignment and scale correction and (d) after
subsequent low-frequency correction.

residual spatial error is done by employing the method from
[10]. It searches for the 2D translation of one image such
that the phase correlation to another image is maximized.
Subpixel accurate registrations are achieved by upsampling
the discrete Fourier transform around the peak of the error
landscape. Using a correlation-based alignment has the ad-
ditional advantage that it is not affected by a linear scaling
of one of the input image, in contrast to other measures like
Euclidean distance.

Having corrected for the spatial misalignment we next
try to undo the linear intensity scaling of the intensity in
the high ISO image compared to the low ISO image. To do
this, we estimate a linear model that relates the intensities
in both images. Then we alter the high ISO image such
that this linear effect is accounted for by transforming the
intensities in the high ISO image with the estimated linear
model. Figure 3c shows the difference image after the linear
correction. It can be seen that the intensity dependent bias
in the residual is gone.

However, there is still a low frequency pattern on the dif-
ference image that we account to small changes in the ambi-
ent lighting. To remove this residual bias we add to the high
ISO image a low-pass filtered version of the residual image.
In detail, we use a broad Gaussian filter with a standard de-
viation of 20 pixels. Figure 3d shows the final difference
image after the low-frequency correction. Now we can see
a zero-mean noise image as we expected. Also we see that
the variance of the noise increases with the intensity of the
mean signal value µI , as expected.

When applying the acquisition scenario to outdoor
scenes, it is likely that some parts of the scene will change
due to objects in the scene moving and deforming. In fu-
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Figure 4. Estimation error of the spatial alignment as a function of
the intensity-dependent noise strength. (a) Applying and undoing
the translation only or (b) with additional linear intensity scaling.

ture work, we aim to exploit that these scene changes are
spatially localized in order to detect them and to exclude
them from further analysis. For now we are constraining
ourselves to indoor imagery.

5. Experiments on Image Noise
In this section we evaluate the post-processing presented

in Sec. 4. We also compare noise characteristics estimated
from our dataset to the approach from [9].

Residual errors. We evaluate the removal of residual er-
rors by simulating the process of spatial misalignments and
linear intensity changes. In detail, we sample random trans-
lations from a normal distribution with mean zero and stan-
dard deviation of 0.3 pixels in both x and y direction to
represent the spatial misalignment. For the linear intensity
changes we apply a linear transformation where the slope is
sampled from a normal distribution with mean 1 and stan-
dard deviation of 0.002. These values are representative for
what we empirically estimated on real data. The translation
and the linear scaling are applied to a mosaiced test image.
To the transformed images we add Poisson-Gaussian noise

Noise level [log10] -5 -4 -3 -2 -1 0

S / S 0.0000 0.0001 0.0003 0.0016 0.0531 0.3597
S / T + S 0.0001 0.0001 0.0004 0.0017 0.0539 0.3616
T + S / T + S 0.0147 0.0145 0.0152 0.0162 0.0668 0.3686

(a)

Noise level [log10] -5 -4 -3 -2 -1 0

S / S 0.0000 0.0000 0.0001 0.0004 0.0177 0.1612
S / T + S 0.0000 0.0000 0.0001 0.0004 0.0180 0.1620
T + S / T + S 0.0041 0.0041 0.0043 0.0045 0.0217 0.1637

(b)

Table 1. RMS errors of linear scale correction.

of different strengths to simulate the effect of capturing the
transformed image at a higher ISO value.

Now we study how well our residual error removal pro-
cedure can undo the simulated transformations. First, we
look at the spatial registration. Figures 4a and 4b show the
mean Euclidean error and standard deviations of recovering
the applied translation when applying only the translation
or both translation and linear scaling, respectively. As can
be seen the estimation error is robust to increasing noise up
to a level where the noise variance is equal to the actual
intensity. Also, applying the linear scaling to the intensi-
ties does not affect the performance, which we contribute to
the use of a correlation-based registration method. Interest-
ingly, we found in further experiments that the registration
performance decreases when a high-resolution test image
is used instead of the low-resolution image of this experi-
ment. We suspect that with little high frequencies the effect
of noise will increasingly hurt the registration performance.
Resolving this is issue is part of future work.

Table 1 shows the root mean squared error of estimating
the slope and offset of the linear transformation of inten-
sities. Here, we look at three settings: 1) Applying and
undoing just the linear scaling, 2) applying the linear scal-
ing and undoing translation and scaling and 3) applying and
undoing both translation and scaling. We make two main
observations. First, the error increases again with the noise
level, but more drastically than when estimating the transla-
tion. Second, estimating the coefficients of the linear trans-
formation gets more difficult when the simulated high ISO
image is corrupted by the translation. Hence, future work
has to focus on how to robustify this step of our alignment
pipeline.

Noise characteristics. To show the usefulness of our
dataset, we estimate the noise level function on the differ-
ence image between a low and high ISO exposure of the
scene shown in Fig. 5a. We estimate pairs of mean intensity
and noise variances by applying a procedure similar to [9].
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Figure 5. Comparison of noise-level functions estimated from the
difference image between low and high ISO image and using [9]
on the high ISO image. The input image is shown in (a) and the
noise-level functions in (b).

First, we decompose the low ISO image into approximation
and detail wavelet coefficients wapp and wdet, respectively.
Then we estimate level sets of the intensity of the low ISO
image by binning the approximation coefficients in regular
spaced intensity intervals. For each bin we calculate the
mean intensity and the variance of the corresponding pixels
in the difference image between low and high ISO image.

Figure 5b shows the estimated noise-level functions of
our method for a ISO 400 and ISO 1600 image. The low
ISO image was taken at ISO 100. We also show the noise-
level function estimated with [9] on the high ISO images.
According to Eq. (27) the noise variance of the ISO 1600
image should be four times the variance of the ISO 400 im-
age. The noise-level function estimated from the difference
image reflects that behavior while the method of [9] overes-
timates the noise for the ISO 400 image. This emphasizes
that the noise estimation based on our dataset is more accu-
rate than estimating the noise just on a single image.

6. Conclusion and Outlook
This paper presents a first significant step toward a data

set of image noise for noise modeling as well as measur-
ing the performance of noise estimation and denoising
algorithms. We presented an acquisition procedure for
sets of images, each showing the same scene but with
different gains and exposure time. We mathematically
argued that all images from the same scene should have the
same per-pixel mean intensity and that the variance will
increase with the gain. In practice, we encountered residual
errors, however. We proposed and partially evaluated a
procedure for handling residual errors stemming from
spatial misalignment, inaccurate gain changes, as well
as lighting changes. Our experiments showed reasonable
accuracy of this post-processing, but also revealed that
small spatial translations of the camera remain a problem
area. In future we thus aim to explore improved spatial
alignment methods, e.g. an extension of [17] that can
decompose a set of images into a low-rank and sparse error
component, where additionally each image undergoes some
unknown spatial deformation. We also aim to include more
camera models in the acquisition of our planned dataset.
Since the most used cameras nowadays are in smartphones,
we also aim to use phones featuring the Camera 2 API that
allows capturing raw images.
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