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1 EXECUTIVE SUMMARY 

1.1 INTRODUCTION 

This deliverable describes the publications that resulted from task 8.3 and how they fit into the 

work plan of the project. 

The objective of task 8.3 was to enable rendering on mobile and web devices. Making use of 

various devices (cellphones, tablet PCs, high-end workstations or simple multimedia solutions that 

deliver access to an Internet browser) is a crucial element of Harvest4D. For example, in order to 

guide scanning processes, a previsualization should be possible from everywhere. In contrast to 

standard video information, 3D rendering offers many opportunities for customized solutions. 

One direction lies in fusing nearby client-side rendering with far server-side imagery and multi-

client level of detail. Another direction is to adapt video-compression methodologies to reduce 

data size and transfer. Such solutions are typically limited to temporally changing 2D content but 

some of its aspects might be transferrable. One particular issue is random access, as many 

compression schemes exploit continuity and consistency. Standard compression uses key frames 

at uniform temporal locations to skip parts of the flux. This strategy is not directly applicable to 

our data. Instead, we explore automatic solutions to cluster data in order to find “key 

representations“ from which we can efficiently encode subsequent configurations. The second 

research direction focuses on exploiting the device capacities directly; e.g., a lower resolution 

implies that a lower resolution image can be provided by the server as well. More generally, the 

space of possible adaptations is large, including color depth, stereo rendering, frame rate, even 

environmental lighting that might affect the visibility of the image on the device.  

There are so far seven publications that are mainly associated with task 8.3. These can be found in 

the appendix of this deliverable. The publications are: 

 Marco Callieri, Matteo Dellepiane, Roberto Scopigno 

Remote Visualization and Navigation of 3D models of archeological sites 

3D ARCH: 3D Virtual Reconstruction and Visualization of Complex Architectures, 2015 

 Mohamed Radwan, Stefan Ohrhallinger, Elmar Eisemann, Michael Wimmer  

Cutting Freely: Occlusion-Aware Surface Processing (submitted) 

SIGGRAPH Asia, 2016 

 Markus Schütz, Michael Wimmer  

High-Quality Point Based Rendering Using Fast Single Pass Interpolation 

Proceedings of Digital Heritage, Short Papers, 2015 

 Leonardo Scandolo, Pablo Bauszat, Elmar Eisemann  

Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows 

Computer Graphics Forum (Proc. of Eurographics), 2016 
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 Jean-Marc Thiery, Emilie Guy, Tamy Boubekeur, Elmar Eisemann  

Animated Mesh Approximation With Sphere-Meshes 

Transactions on Graphics, 2016 

 Federico Ponchio, Matteo Dellepiane  

Fast decompression for web-based view-dependent 3D rendering 

3D Web Technology, 2015 

  Gianpaolo Palma, Manuele Sabbadin, Massimiliano Corsini, Paolo Cignoni 

Enhanced Visualization of Detected 3D Geometric Differences (submitted) 

Technical Report ISTI-CNR, 2016 

Three other papers are related to task 8.3 and can be found in the deliverables they mainly 

contribute to: 

 Dawid Pająk, Robert Herzog, Radosaw Mantiuk, Piotr Didyk, Elmar Eisemann, Karol 

Myszkowski, Kari Pulli 

Perceptual depth compression for stereo applications (Task 4.1) 

Computer Graphics Forum (Proc. of Eurographics), 33(2), 2014 

 Christopher Schwartz, Roland Ruiters, Reinhard Klein 

Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions 

(Task 8.1) 

Computer Graphics Forum (Proc. of Pacific Graphics), 2013 

 Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery, Elmar Eisemann 

Geometry and Attribute Compression for Voxel Scenes (Task 4.4) 

Computer Graphics Forum (Proc. of Eurographics), 2016 

2 DESCRIPTION OF PUBLICATIONS 

2.1 OVERVIEW 

As our web rendering applications could be used by many users who are not necessarily familiar 

with 3D navigation on a computer, an obvious first step is to devise an intuitive navigation 

technique for the complex 3D environments Harvest4D deals with. To this end, we came up with a 

method that integrates the two prevalent visualization techniques in 3D navigation: the trackball 

and the first-person camera [Callieri et al. 2015]. While this works well for large navigable scenes, 

for exploring and understanding 3D models that contain multiple layers of geometry, we need to 

employ a different strategy. We make use of user-guided, occlusion-free surface selecting and 

cutting operations to unveil details within nested models, peeling away layer by layer based on 

user requirements [Radwan et al. 2016]. 

Since mobile and web rendering often suffer from limited computing power, an obvious step in 

mitigating this is to increase the performance of the rendering algorithm. For Harvest4D, point 
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cloud rendering in particular is an interesting topic. For this reason, we propose an efficient single 

pass point rendering algorithm [Schütz and Wimmer 2015]. 

Besides computing power, memory is also an important bottleneck due to both network transfer 

limitations and decreased storage room of mobile devices. To tackle this problem, content 

compression is desirable which we have pursued in the form of shadow map compression 

[Scandolo et al. 2016] as well as approximation of animated models by representing them using 

spheres meshes [Thiery et al. 2016]. For compression, fast decompression is also necessary. This is 

why our final method regarding storage specifically aims at very fast decompression besides high 

compression rates [Ponchio and Dellepiane 2015] based on multi-resolution web rendering. 

Finally, to bring the time dimension to web rendering, we have developed an online tool for 

visualizing differences between two 3D models in an intuitive fashion [Palma et al. 2016]. 

 

2.2 REMOTE VISUALIZATION AND NAVIGATION OF 3D MODELS OF ARCHEOLOGICAL SITES 

In this paper we present a solution for rendering and navigation of complex 3D environments 

using web browsers where the usual trackball paradigm for navigation cannot be applied [Callieri 

et al. 2015]. The system integrates two different visualization modalities that account for different 

needs regarding exploration of complex environments, like archeological sites. 

Starting from a multi-resolution web rendering engine based on WebGL, our proposed method 

integrates two different but complementary navigation modes. First, bird’s eye view where users 

can explore a model from its top. Second, first person mode where users can walk through the 

environment. Figure 1 illustrates two corresponding examples. The two modes are linked by a 

point of interest which helps users navigating from the top and permits intuitive switching 

between them.  Navigation is constrained by an image whereas its channels contain the data 

needed for realistic interaction, such as ground height for collision tests. So there is no need for 

proxy 3D models or similar. Moreover, unused image channels can encode other information 

which can be used for navigation, like location or invisible hotspots. Such an image can be 

generated with a semi-automatic approach starting from geometry or by hand with usual image 

processing tools. 
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Figure 1: Snapshot of bird’s eye (top), first person navigation mode (bottom) and helping minimap (right). 

In order to simplify exploration, there is also a minimap with the purpose of giving immediate 

feedback on the current position, thus, avoiding users to “get lost” when zooming or in first 

person view. It is also a convenient way to instantly jump to another location. 

2.3 CUTTING FREELY: OCCLUSION-AWARE SURFACE PROCESSING 

Intuitive navigation and exploration for scenes that contain multiple layers of geometry, such as 

the heart model in Figure 2, require novel visualization and interaction techniques. In this paper 

we present an approach for surface selection operations on complex models [Radwan et al. 2016]. 

User-guided surface selection operations, which are straightforward in a plane, become 

challenging on non-strictly convex surfaces because of self-occlusions. Since the occlusions 

change with the view, users have to alternate between moving to an unobstructed view and 

performing those selection operations. Our method enables operations like selecting or cutting in 

a single view by mapping user-defined selection or cutting curves or areas as continuous 

projections onto the object’s surface. Our mapping is unaffected by occlusions to guarantee a 
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seamless brush stroke or a manifold cut. The projected solution includes the farthest surface layer 

by default. But if that is not the desired layer users can roll back and forth through other 

solutions. We show that this enables a number of applications in an entirely different and easy 

way. Example use cases are creating illustrative cutaways from nested models, animating them 

and removal of spurious interior artifacts from isosurface meshing. 

 

Figure 2: Several surface layers can be cut away intuitively for this model of the human heart. 

2.4 HIGH-QUALITY POINT BASED RENDERING USING FAST SINGLE PASS INTERPOLATION 

Web rendering of large point clouds requires highly efficient algorithms due to limited computing 

power. To this end, we present a method to improve visual quality of point cloud renderings 

through a nearest neighbor-like interpolation of points [Schütz and Wimmer 2015]. This allows 

applications to render points at larger sizes in order to reduce holes without reducing readability 

of fine details due to occluding points. Figure 3 presents this algorithm property in comparison to 

other approaches. The implementation requires only a few modifications to existing shaders 

which makes it eligible to be integrated in software applications without major design changes.  
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Figure 3: Point rendering via squares (a) and circles (b) suffers from occlusions. Our method (c) and high-quality splats 
(d) improve readability of high-frequency details. 

2.5 COMPRESSED MULTIRESOLUTION HIERARCHIES FOR HIGH-QUALITY PRECOMPUTED 

SHADOWS 

For web rendering, the amount of available memory is limited. For this reason, we need 

compression in order to render complex scenes. In this paper we propose such a compression 

technique for shadow maps [Scandolo et al. 2016]. Shadow mapping is traditionally limited by 

texture resolution. We present a novel lossless compression scheme for high-resolution shadow 

maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can 

compactly represent homogeneous regions of shadow maps at coarser levels but require many 

nodes for fine details. By conservatively adapting the depth map, we can significantly reduce the 

tree complexity. Our proposed method offers high compression rates, avoids quantization errors, 

exploits coherency along all data dimensions and is well-suited for GPU architectures. Our 

approach can be applied for coherent shadow maps as well, enabling several applications, 

including high-quality soft shadows and dynamic lights moving on fixed trajectories. Figure 4 

shows the shadow quality we achieve despite high compression. 
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Figure 4: High-quality shadows in a static environment using a compressed 1M² shadow map (top) and precomputed 
soft shadows stored in 2048 coherent shadow maps, each with a 2048² resolution (bottom). 

2.6 ANIMATED MESH APPROXIMATION WITH SPHERE-MESHES 

Besides shadows, the mesh itself can also use much memory, which is undesirable for web 

rendering. Especially complex animated meshes may require compressed approximations, which 

is exactly what we propose in this paper [Thiery et al. 2016]. Performance capture systems can be 

used to acquire high-quality animated 3D surfaces, usually in form of a dense 3D triangle mesh. 

Extracting a more compact, yet faithful representation is often desirable. But existing solutions for 

animated sequences are surface-based which leads to limited approximation power in the case of 

extreme simplification. We introduce animated sphere meshes, which are meshes indexing a set 

of animated spheres. Figure 5 shows seven frames created with the help of our novel 

approximation. Our solution is the first to output animated volumetric structures to approximate 

animated 3D surfaces. It optimizes for approximation via spheres, connectivity, and temporal 

coherence. The result of our algorithm is a multi-resolution structure from which the user can 

choose the wanted level of simplification for rendering in real-time. We demonstrate the use of 
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animated sphere-meshes for low-cost approximate collision detection. Additionally, we propose a 

skinning decomposition, which automatically rigs the input mesh to the chosen level of detail. The 

resulting set of weights are smooth, compress the animation, and enable easy edits. 

 

Figure 5: Approximating an animated mesh using sphere meshes. 

 

2.7 FAST DECOMPRESSION FOR WEB-BASED VIEW-DEPENDENT 3D RENDERING 

In this paper we present a novel multi-resolution WebGL-based rendering algorithm which 

combines progressive loading, view-dependent resolution and a mesh compression technique 

that provides good rates and a decoding speed of millions of triangles per second using JavaScript 

[Ponchio and Dellepiane 2015]. The method is based on a class of multi-resolution structures 

where the “primitive” of the multi-resolution is a patch made of thousands of triangles. Figure 6 

shows this exemplarily. It adopts an improved partition strategy based on unbalanced kD-trees 

and, more importantly, a novel compression scheme tailored around the need for decompression 

speed. The compression algorithm encodes patches independently of each other. That is why the 

method can be efficient and fast even for small meshes and boundary vertices replicated on 

neighboring patches remain consistent despite compression. Model connectivity is compressed 

using an adaptation of a state-of-the art algorithm, while vertex attributes are compressed using a 

global quantization grid. Our method applies an entropy encoding of the input stream of bits 

using Tunstall coding. Our results prove that the proposed algorithm has very high performance 

w.r.t. decoding very large models in JavaScript. 

 

Figure 6: Rendering of a multi-resolution model (left) and its structure (right). 
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2.8 ENHANCED VISUALIZATION OF DETECTED 3D GEOMETRIC DIFFERENCES 

In this paper we propose an interactive technique for better visualization of geometric changes 

between two colored 3D triangle meshes [Palma et al. 2016]. The two models represent the same 

scene acquired at different times. Such models can for example be generated by 3D scanning or  

multi-view reconstruction techniques. The goal is to give users a web visualization tool with three 

main features:  

 to allow a linear interaction model (slider) to switch between the two time steps 

 to make scene changes clear and as easy to understand as possible 

 to preserve original color and geometry information of the two input models 

 Starting from the computation of a change probability map using a state-of-the-art method that 

segments each 3D model into change (dynamic) and no-change (static) areas, the basic idea is to 

provide a screen space interpolation technique for the renderings of both 3D models according to 

users’ temporal preference. Importantly, we use different interpolation curves for the different 

types of model areas. For the choice of these interpolation curves, we take insights of cognitive 

research on the so called Change Blindness phenomenon into account. Two user studies show 

that the proposed method is effective in visualization of changed geometry w.r.t. time. 

 

Figure 7: Algorithm overview. 
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4 APPENDIX 

The following pages contain all the publications that are directly associated with this deliverable. 

Other publications referenced in this deliverable can be found in the public Harvest4D webpage 

(for already published papers), or in the restricted section of the webpage (for papers under 

submission, conditionally accepted papers, etc.). 

 

 

 



REMOTE VISUALIZATION AND NAVIGATION OF 3D MODELS OF ARCHEOLOGICAL
SITES

M. Callieri, M. Dellepiane, R. Scopigno

Visual Computing Lab, ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa (PI), Italy
Web: http://vcg.isti.cnr.it/ Contact: surname@isti.cnr.it

ABSTRACT:

The remote visualization and navigation of 3D data directly inside the web browser is becoming a viable option, due to the recent efforts
in standardizing the components for 3D rendering on the web platform. Nevertheless, handling complex models may be a challenge,
especially when a more generic solution is needed to handle different cases. In particular, archeological and architectural models are
usually hard to handle, since their navigation can be managed in several ways, and a completely free navigation may be misleading and
not realistic. In this paper we present a solution for the remote navigation of these dataset in a WebGL component. The navigation has
two possible modes: the ”bird’s eye” mode, where the user is able to see the model from above, and the ”first person” mode, where the
user can move inside the structure. The two modalities are linked by a point of interest, that helps the user to control the navigation
in an intuitive fashion. Since the terrain may not be flat, and the architecture may be complex, it’s necessary to handle these issues,
possibly without implementing complex mesh-based collision mechanisms. Hence, a complete navigation is obtained by storing the
height and collision information in an image, which provides a very simple source of data. Moreover, the same image-based approach
can be used to store additional information that could enhance the navigation experience. The method has been tested in two complex
test cases, showing that a simple yet powerful interaction can be obtained with limited pre-processing of data.

1. INTRODUCTION

The remote visualization (via Web) of complex geometry has
become feasible only in the last couple of years. The WebGL
framework allowed to overcome the proprietary plugins issue,
and three-dimensional content is slowly becoming a usual type
of content for web pages.
The issues about the visualization of 3D models are related not
only to the necessity to handle complex data, but also to the in-
teraction with them. Navigating 3D environments is not trivial,
due to both the nature of data and the fact that most of the users
are not used to that. This is especially true when dealing with
3D models of complex environment (terrains with buildings and
ruins, often found in the archeological field); even more when
3D models come from sampling technologies (3D scanning or
3D-from-photo), which produce high-resolution, unstructured tri-
angulated models. What is the best way to interact with them?
A completely free navigation may be hard to handle, while ex-
tremely constrained approaches may limit their potentials. While
it is possible to borrow ideas from the entertainment world (i.e.
videogames industry), the best solution would be to find a flex-
ible, lightweight system needing only a small amount of pre-
processing.
This paper presents a method for the navigation of complex arch-
elogical 3D environments, especially tailored for web visualiza-
tion. The main contributions include:

• An intuitive navigation paradigm which includes two pos-
sible modes: the bird’s eye view, where the user can ex-
plore the model from top; and the first person mode, where
the user can walk inside the environment in a walk-through
fashion. The two modes are linked by the presence of a point
of interest, which helps the user in the navigation from top,
and permits an intuitive passage between the two modes.

• An image-based encoding of the constraints for navigation.
Each image channel contains the data needed for realistic
interaction (i.e. height from ground, collision), without the

need of the presence of proxy 3D models or similar. More-
over, the other channels of the image can encode also other
information which can be used for the navigation (i.e. lo-
cation or invisible hotspots). The image can be generated
with a semi-automatic approach starting from the geometry,
or by hand with the usual image processing tools.

The approach is especially suited to archeological environments
made by one or more ”levels”, but it could be adapted to other en-
vironments. It was tested on two cases: an entire insula in Pompei
acquired with terrestrial laser scanners (where location informa-
tion was used to integrate the 3D model with existing documen-
tation, linked through a website) and a medieval village whose
model was acquired with UAV. In both cases, a very intuitive nav-
igation was obtained without the need of complex pre-processing
operations.

2. RELATED WORK

Remote visualization of complex architectural environments deals
with several general issues. The main ones are the integration
of three-dimensional contents on the web, and the navigation of
complex environments. While a comprehensive overview of all
the related approaches goes well beyond the scope of the paper,
we provide an overview of the state of the art in the following
subsections.

2.1 3D and the Web

Three-dimensional data have always been considered part of mul-
timedia content, but their role in the context of web pages hasn’t
been a major one until a few years ago. This was mainly due to
the difficulty to handle complex data, but also to a lack of stan-
dardization. Hence, their visualization and use was supported
through the use of embedded software components, such as Java
applets or ActiveX controls (ACT, n.d.).
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Some research effots were devoted to define a common data for-
mat (Raggett, 1995, Don Brutzmann, 2007), but 3D scene visu-
alization was still delegated to external software components.
Only an initiative by the Khronos Group (Khronos Group, 2009a),
the creation of WebGL standard (Khronos Group, 2009c), was
able to generate a remarkable change. WebGL is a mapping of
OpenGL|ES 2.0 specifications (Khronos Group, 2009b) in Java-
Script. Direct access to the graphics hardware by the web browsers
allows to fully exploit the potentials of rendering (Evans et al.,
2014).
Following this standard, several actions were made to provide a
sort of interface between the low-level OpenGL commands and
the data visualization and navigation. We can see two different
directions of research: the first one is more dedicated to a declar-
ative approach, based on the concept of scenegraph. Two ex-
amples of declarative programming solutions are X3DOM (Behr
et al., 2009) and XML3D (Sons et al., 2010). In alternative to
the declarative approach, several other actions went in the di-
rection of an imperative approach, where a more direct inter-
action is possible. Several libraries have been developed (most
of them based on Javascript as a basic language), ranging from
scene-graph-based interfaces, such as Scene.js (Kay, 2009) and
GLGE (Brunt, 2010), to more programmer-friendly paradigms,
such as SpiderGL (Di Benedetto et al., 2010), WebGLU (DeLillo,
2009), and Three.js (Dirksen, 2013). Several examples of integra-
tion of 3D data on the web are appearing now. Among the prac-
tical issues that have to be solved to provide usable tools, there
are the necessity to integrate the models with other types of data
(Jankowski and Decker, 2012, Callieri et al., 2013), but also the
need for methods to handle the visualization of single complex
objects (Behr et al., 2012, Callieri et al., 2013). The Smithsonian
X3D explorer (http://3d.si.edu) is an alternative example where
3D models are associated to additional content, but the structure
and flexibility of the proposed system are not known.

2.2 Camera control in Computer Graphics

The issue of 3D camera control is well known in the context of
Computer Graphics. Please refer to the work of Christie (Christie
et al., 2008) for a comprehensive overview.
The main solution developed to interactively observe and inspect
a 3D model is the virtual trackball (Chen et al., 1988, Bell, 1988,
Shoemake, 1992, Henriksen et al., 2004), that allows 3D rotations
with just 2 Degrees of Freedom input devices, such as the mouse.
This interaction works very well when the aim is to rotate around
an object, but it tends to fail when the environment is more com-
plex. For example, when the user needs to explore the inside of
an object, or when its shape cannot be approximated to a sphere,
this approach usually fails.
On the other side, a totally free navigation may be difficult to
implement, and it could lead to a lost-in-space effect, where the
user is not able to find the orientation in the context of a scene.
Moreover, there are important object-related issues that should be
taken into account (i.e. in an architectural environment, the user
does not want go below the ground).
Solutions have been proposed to constrain and guide the trackball
paradigm (Fitzmaurice et al., 2008, Hachet et al., 2008), but in the
case of more complex environments (i.e. the architectural ones)
other methods have been implemented. They could be based on a
preliminary analysis of the scene to calculate pre-defined paths
(Andujar et al., 2004), or constraining the camera with force-
fields to avoid collisions (Wan et al., 2001, McCrae et al., 2009).
Another possible solution is to select a set of possible points of
view, and constrain the navigation to these points, which can
be connected by the means of pre-computed paths (Hanson and
Wernert, 1997). The choice of the points of view describing a
complex environment is a very complex task (Scott et al., 2003),

and authoring is usually necessary (Burtnyk et al., 2002, Burtnyk
et al., 2006).
Following this approach, image-based techniques have been used
to remove limitations on scene complexity and rendering quality
for interactive applications. Please refer to the recent work by Di
Benedetto (Di Benedetto et al., 2014) and its bibliography for a
comprehensive overview. Nevertheless, the aim of our work was
to provide a solution supporting the free navigation of the model,
trying to define implicit constrains and taking advantage of the
strong points of different navigation paradigms.

3. EFFICIENT RENDERING

The first problem related to the visualization scheme was to ren-
der effectively the complex 3D model representing the area of
interest. As we stated in the introduction, we are focusing to-
wards the visualization of complex 3D models of archeologi-
cal/historical areas, created by sampling the real environment (by
3D scanning or 3D-from-photos). These models are not a ”sim-
ple” terrain, that can be easily managed using 2.5D methods,
or well known terrain-specific level-of-detail approaches, but re-
quire a full 3D management. Additionally, we have to work with
extremely complex 3D models, made of millions of triangles.

While not the main contribution of this work, it is nevertheless
necessary to present the solution which we have used in order to
stream these dataset over the net and render them inside a web
browser.

3.1 WebGL and SpiderGL

Our visualization framework is based on WebGL (Khronos Group,
2009c), a component of HTML5. Thanks to this, the 3D con-
tent works natively inside the browser, without the need of plug-
ins on most modern browsers (Firefox, Chrome and Internet Ex-
plorer) on all platforms. WebGL provides direct access to the
GPU of the PC, enabling a programmer to write extremely op-
timized low-level code, as one would do in standard software
programming. However, since WebGL is very low-level, its di-
rect use is not really common, and many developers use support
libraries, able to provide higher level functionalities, data struc-
tures and helper functions. To this aim, we decided to use Spi-
derGL (Di Benedetto et al., 2010), a JavaScript support library
oriented to Computer Graphics programming.

Using these components we built a simple, yet flexible frame-
work for the creation of 3D presentation of high-res models on
the web. Using a declarative-like approach, it is possible to de-
fine a simple scene. The framework takes care of asynchronous
data loading, event management, rendering and animation. All
the components of the scene (3D models, trackball, camera) are
configurable and extensible, making it possible to create simple
visualization webpages with ease, but at the same time, when
a more complex visualization is needed, it is possible to fully
exploit the modular/configurable capabilities of the framework.
This is what we have done in this work: by tweaking the behav-
ior of the renderer and of the navigation/interaction components,
we were able to create a specialized visualization webpage.

One of the core modules of this framework is the management of
multiresolution 3D models, a feature that we have used to stream
and display the huge 3D models shown in the examples (Sec-
tion 5.).
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3.2 The Multiresolution engine

Displaying high resolution models on a web browser is not just
a matter of optimizing the rendering speed, but it also involves
considering the loading time and network traffic caused by trans-
ferring a considerable amount of data over the network. Loading
a high-resolution model as a whole through the web requires to
transfer a single chunk of data in the order of tens, if not hun-
dreds, of megabytes: this causes a lot of band usage, and the user
has to wait for the transmission to end before seeing any visual
result.

Multiresolution techniques provide the solution for both render-
ing and data transfer. These schemes generally split the geometry
in smaller chunks; for each chunk, multiple levels of detail are
available. Transmission is on demand, requiring only to load and
render the portions of the model strictly needed for the genera-
tion of the current view. While this approach is key to be able
to render very large models at an interactive frame rate, it is also
helpful to optimize the data transfer over the network, since the
geometry will be divided in small chunks and only transferred
when needed. The model is immediately available for the user
to browse it, even though at a low resolution, and it is constantly
improving its appearance as new data are progressively loaded.
On the other hand, since refinement is driven by view-dependent
criteria (observer position, orientation and distance from the 3D
model sections), only the data really needed for the required nav-
igation are transferred to the remote user.

Figure 1: The multiresoluton Engine. On left: the patches used ,
smaller and more detailed near the camera, larger and at a lower-
resolution farther away. Middle: when rendering, the geometry
appear as a continous surface. On right: the multiresolution eas-
ily manage the whole 27 million triangles model of the Pompeii
Insula.

We implemented one of those multiresolution scheme, Nexus
(Cignoni et al., 2005) (http://vcg.isti.cnr.it/nexus/), on top of the
SpiderGL library (Di Benedetto et al., 2010), obtaining very good
performances. In the two examples shown in this paper, we are
dealing with high-resolution 3D models: the Pompeii insula is
more than 27 millions triangles (Figure 1), while the San Sil-
vestro Hill is around 22 millions (Figure 7). Both datasets are
displayed at interactive rate, with almost immediate startup at
the page loading, and the progressive refinement provides good
visual results even on slower networks. This makes possible a
quick, seamless exploration of the entire dataset, and supports
instant jumping from one part of the area to another.

4. NAVIGATION

As we stated, navigation is the most important component of the
visualization. Our aim was to implement a navigation simple to
use, but able to fully explore mixed ground-buildings 3D dataset
like the Pompeii insula or the San Silvestro Hill.

Instead of trying to implement a single all-purpose navigation
method, which would result in an extremely complex interface,
we decided to implement two different but complementary navi-
gation methods: a ”bird’s eye” view, to explore the dataset from

above, and a ”first-person” view to explore the area in a more im-
mersive way. In this way, each navigation mode is easier to use
and more specialized but, by combining both navigation meth-
ods, it is possible to fully explore the 3D dataset with greater
flexibility.

Figure 2: The visualization webpage interface. On left: the 3D
view, in bird’s eye view mode, with the current point of interest
shown by the 3D locator. On top right: the current area and room
name, tracked using the location channel of the map. On middle
right: the minimap, graphically showing the current position. On
bottom right: the current position of the user, expressed in this
specific case as relative coordinates with respect to a local origin
defined in a GIS tool

4.1 Bird’s eye mode

Bird’s eye view mode mimics flying above the environment or,
with a more precise metaphore, looking from above at a maquette
of the area. The user viewpoint hovers the area, looking down at
specific details (see Figure 2).

This is, however, not a completely unbound navigation (like in
the free-camera paradigm), but is similar to what is available
in applications such as Google Earth. Basically, the camera al-
ways refers to a point of interest, located on the ground of the
environment. The user may move this point, panning across the
map, and change the camera orientation (vertical tilting, orbit-
ing, and zooming). We did not consider the use of a completely
free camera because it is really difficult to be controlled by non-
experts (especially in a web browser environment), without pro-
viding a significative increase of flexibility. Even considering its
constrains, this navigation mode enables the user to easily reach
every portion of the environment. This is especially true in the
Pompeii dataset, but also in most of the archeological sites: since
most of the roofs are missing, it is possible to see almost all of
the walls and details of the structure.

The point of interest is shown on the 3D view with a locator (a
simple 3D model, visible in Figure 2); this helps the user in hav-
ing a clear feedback on its position inside the area. The locator is
nearly human-size, to better understand the scale of the area, and
show at its base the cardinal points (the red arrow points towards
north).

The implementation of bird’s eye view is quite easy. Since we
are dealing with a terrain-like environment, it is simply a mat-
ter of defining an absolute XY positioning on the ground (X axis
aligned with East-West axis and Y axis on the North-South one).
Beside the extents of the dataset area, it is necessary to have a
way to follow the ground geometry when moving across the area.
Most datasets presents irregular, sloped, uneven terrain; and hav-
ing a way to accurately position the point of interest is crucial
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to cope with these irregularities. We will explain this point in
Section 4.4.1. No collision is necessary in this navigation mode,
since it would impose unnecessary constrains in user movement,
making the navigation of the whole area more difficult.

Bird’s eye view is the starting navigation mode of the visualiza-
tion webpage. The user may, at any time, switch to the first-
person view (see next Section). While switching to first person
view, location and orientation are preserved, i.e. the point of in-
terest of the bird’s eye will become the location of the first-person
camera, and the view direction of the bird’s eye will be the same
of the one used by the first-person (see Figure 3). In this way, it
is much easier to go back and forth between views, allowing for
a seamless exploration of the dataset. The same correspondence
will be preserved when switching back from first-person to bird’s
eye.

Figure 3: Switching from bird’s eye to first-person preserves the
user position and orientation, as it is visible in these images.

4.2 First person mode

Even if, in an environment like Pompeii, with most of the ceilings
missing, the bird’s view is more or less sufficient to explore the
entire map, it is sometimes useful/necessary to ”jump into” the
3D model, to explore the environment like it would be done in
person.

The first-person view mode lets the user moves around the en-
vironment at ground level (the camera is at a human-compatible
height). Our implementation follows the same mechanism used
in many similar tools: the first-person lets the user look in all di-
rection (using the mouse) and move around on the ground (using
the mouse or the WASD keys, generally used in videogames).

Similarly to the bird’s eye mode, also in the first-person mode it
is necessary to follow the ground geometry when moving around.
There is, however, an additional constrain often found in sim-
ilar navigation modes: the collision with walls and other ge-
ometries. Implementing these features for a first-person view
is always complex, given the unstructured nature of the kind of
3D models we are using, generated from 3D scanning. In most
videogames or interactive visualization, the 3D model used comes
from manual modeling; it has a lower resolution and, more impor-
tant, it is highly structured (walls and floors are explicitly marked,
and often a collision mesh is also manually created). This helps
a lot the navigation, but it is not easily obtainable when dealing
with this kind of 3D models.

For the terrain-height following, we have used the method de-
scribed in Section 4.4.1 , while in Section 4.4.2 we explain the
method used for managing walls collision.

4.3 Minimap

In order to simplify the exploration, we also added a mini-map
to the visualization page (see Figure 2). The minimap has two
purposes: to give an immediate feedback on the current position,

thus avoiding users to ”get lost” while zooming or when in first-
person view, but also to have a way to instantly jump to another
position.

The position of the point of interest is shown using a crosshair
drawn over the image, dynamically updated at every user move-
ment. Conversely, when the user clicks on a point on the min-
imap, the point of interest is instantly moved to that location.
Both these actions exploit the fact that there is a perfect match
of the area covered by the 3D dataset, the minimap and the one
covered by the data map (see next section). Locations are passed
between these three elements using relative coordinates (0.0-1.0),
to gather independence from image resolution.

4.4 The ”Navigation Image” encoding

As we stated in the previous section, in order to provide a easy-
to-use navigation, it is necessary to implement some mechanism
able to follow the terrain height and to manage collisions. Addi-
tionally, tracking the user position is another need often present
in this kind of visualization. In all cases, it all boils down to
knowing, for a given position in the dataset area, a specific infor-
mation: which is the terrain height in this point? Is there a wall in
this point, or is it free-ground? In which room/zone is this point?.

The idea is to have all these location-dependent information stored
in a single, easy-to-access structure; knowing the location of the
user (the point-of-interest for the bird’s eye, and the viewer po-
sition in first-person), it is easy to retrieve the location-specific
data, and have the visualization page react accordingly. We chose
to store all the data in an image file, where each channel encodes a
specific information. PNG format is used, given its lossless com-
pression. An example of such image is shown in Figure 4. This
”Navigation Image” is read at the page loading; then, it is drawn
on a hidden canvas and read back in memory in an array. At this
point, the pixels are directly addressable by Javascript code. This
structure is accessed using relative coordinates, thus ensuring in-
dependency from the image resolution, and an easier mapping
between coordinates.

4.4.1 Red channel - Terrain Height Most of the 3D datasets
built using sampled data have a high-res non-flat terrain; mov-
ing across this terrain requires then to alter the camera height to
follow the geometry of the ground. This is generally obtained
by creating a low-res collision ground, which is then tested as
the user moves. Given that this lower-res collider is generally
smooth, encoding its height in a map is not a problem, and makes
much easier its use. The red channel of our map is used to store
the base height of the terrain, i.e. a smoothed height-field rep-
resenting the ground without the walls and other occluders. By
using this map, the camera always follows the terrain when mov-
ing in the bird’s eye and first-person view. The height map is
smoothed to avoid useless camera shaking, and the walls and
small colliders are not included, to have the camera follow the
”real” ground level. Its use is straightforward: every time the XY
position of the user changes, its Z coordinate is modified accord-
ing to the value encoded in this map.

4.4.2 Blue channel - Collision Another feature which is of-
ten sought in this kind of visualization is the collision with walls
and other large geometries. This is a non-trivial task, since it re-
quires, in most game engines, the manual creation of collision
meshes (often, with specific geometrical-topological constrains,
to obtain better performances), and a complex management of
the collision check. The blue channel of our map is used to store
the collision/validity map: each pixel encodes if the correspond-
ing area is free, occupied by an occluder (mostly, walls), or im-
passable (the area outside the 3D model, or not suitable for first-
person navigation). The collision map is used mostly when the
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user is in first-person view; every time the user XY position has
to be updated, the map is checked: if the new XY position would
cause a collision, the motion is culled at the wall, preventing the
collision. Bird’s eye view does not use the collision map, since it
may be useful for the user to place its point of interest anywhere
in the map and, beside this, ignoring the walls and unsurmount-
able terrain does allow a quicker exploration of the map. The
collision map is, however, used in bird’s eye view when clicking
on the minimap: if the user has asked do go in an ”impossible”
position, its position is snapped to the closest ”safe” position. The
same mechanism is used when the view mode is switched from
bird’s eye to first-person: if the point of interest is currently in-
side a wall, the user is moved to the closest open ground, to avoid
having the user being trapped.

4.4.3 Green channel - Location A situation often occurring
in this kind of datasets is the need to determine the exact location
of the user, not just in terms of absolute XY coordinates on the
map (which we already have), but in terms of areas, sub-areas,
rooms, or any other semantical subdivision of the map. Again,
this information is easily encoded in an image map. The green
channel of our map is used to determine the position of the user
point of interest. Each pixel simply stores the ID of the area;
the 255 available values are enough to encode the areas for most
datasets.
Every time the user position changes, the ID of the pixel under
the user XY position is fetched and used to access a JSON (Java-
Script Object Notation, an open standard for representing simple
data) structure with all the information on the areas: a globally
accessible variable is updated and a call-back function is called
when the ID changes, in order for the webpage to react accord-
ingly.

Figure 4: The visualization webpage interface. On left: the 3D
view, currently in bird’s eye view mode, with the point of interest
shown by the 3D locator. On top right: the current area and room
name, tracked using the location channel of the map. On middle
right: the minimap, graphically showing the current position. On
bottom right: the current position of the user, expressed in this
specific case as relative coordinates with respect to a local origin
defined in a GIS tool

4.4.4 Other channels and encoding Since we are using PNG,
it is possible to also have an Alpha channel; at the moment, it is
not used. It may contain additional IDs of areas (if more than
255 areas have to be encoded); or could be used in conjunc-
tion with the red height channel, to have more resolution on the
vertical axis, when dealing with a steeper terrain; or to encode
any other location-based data. The assignment of the channels is
completely arbitrary, and may be easily altered to cope with spe-

cific characteristics of the dataset. It is also possible, if running
out of space, to add another image map, adding three/four more
channels.

While there are other ways to encode the same type of informa-
tion, this access strategy exploits already existing and highly op-
timized mechanisms of the browser. Additionally, given the data
contained in the channels, it behave very well when compressed.
The most valid alternative would be to keep all this data in a vec-
torial format; this would surely work, but with a limited impact
on the size of the data (depending, for example, on how complex
the geometry of the walls is), and, more importantly, it would
require a much more complex authoring and editing.

Considering the Pompeii dataset, the PNG image used is only
500kb in size, for a 1142 x 980 resolution, with a physical size of
each pixel around 10cm, more than enough to provide an accu-
rate management for terrain height, walls collision and location
tracking.

4.4.5 Authoring navigation images From the start, we wanted
a method for managing the aforementioned features (ground height,
wall collision, area detection) which was simple both when using
it in realtime and when creating the data needed for its use.

The height channel may be easily created from the 3D model: a
simple color-coded (Z value to red value) orthographic rendering
from above (or below) is enough to generate this channel. Then,
to have a more continuous height, it is possible to smooth the ren-
dered image, it is easier and have better results than starting from
a smoothed geometry. We stated that it is better to not consider, in
the height map, the walls and other non-terrain geometries. These
areas may be manually found and eliminated in the 3D model or
in the rendered image (and then smoothly filled). It is also pos-
sible to use, on the 3D model, some heuristics to automatically
select walls and similar geometries, and then cut them. This au-
tomatic approach is viable and time saving; in the cases where
the detection is not really accurate, a small manual intervention
would help obtaining a good result in a shorter time, with respect
to the completely manual approach.

The collision channel is slightly more complex. While it is an op-
tion to manually mark all the walls and colliders using an image-
editing software, this may be time consuming. The same heuris-
tics mentioned for the height channel may also be applied to find
the walls for the collision channel. Also in this case, the result
of this automatic detection may be further refined with a limited
manual intervention, resulting in a much cleaner result. This is
the procedure used to generate the collision maps shown in Fig-
ure 4 and Figure 5.

Both of these maps (height and collision), can also be created
from GIS raster or vector data: this method is easy and time-
effective, making it possible to exploit existing data.

Unfortunately, for most applications, the ”location” channel will
necessarily should be created manually, since there is not a straight-
forward way to automatically subdivide a 3D model in an archeological-
sensible way. However, creating this image from an existing GIS
vector/raster layer is a viable (and recommended) option.

4.4.6 Page interconnection Especially when dealing with com-
plex archeological environment, it is often possible to have exist-
ing databases or documentation-rich websites. It would be inter-
esting to connect the visualization page with these existing repos-
itories. This would mean having a way, on one hand, to open from
the existing website the 3D visualization page with the point of
interest and view parameters already focusing on a specific area
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and, on the other hand, from the current point of interest, go back
to the existing website, directly accessing the section related to
the current 3D location.

This is indeed possible, thanks to the parametric nature of the
visualization page. In order to open the visualization page, the
Query String mechanism can be used. It is possible to specify
completely the position and view parameters; for example, the
following url query string opens the visualization with the point
of interest located at 36.0 meters East, 12.6 meters North, with
camera looking at 45 degree with respect to north direction, 60
degree azimuthal angle, zoom level 2.0:

http://aaa.com/pompeii3D.html?StartNS

=36.0&StartEW=12.6&StartPhi=45.0&

StartTheta=60.0&StartZoom=2.0

It is also possible to ask the webpage to go to one of the ”ar-
eas” or ”rooms” defined in the JSON structure mentioned in sec-
tion 4.4.3. This structure contains a list of areas/subareas, each
one with an associated ID, name, description, and URL (see next
paragraph) and parameters for setting point of interest and view
direction to frame it. By passing the name of the desired area
to the URL of the 3D visualization webpage, the page will open
by framing the desired area, fetching the appropriate parameters
in this JSON structure. The following url query string opens the
visualization with the point of interest location and camera ori-
entation stored in the JSON entry for the ”house of Torello di
Bronzo”:

http://aaa.com/pompeii3D.html?

StartRoom=1.7_house_torello

Going in the other direction is also easy. Since at all times, the
webpage knows where the user point of interest is located, in ab-
solute coordinates or at area/room level (thanks to the location
map), it is possible to open back the existing website at the de-
sired section. This can be implemented by using the same JSON
structure just mentioned: the URL stored in each area/room is
used for this specific purpose.

5. RESULTS

The proposed rendering and navigation method was applied on
two real datasets, in order to test the usability and the possible
uses of the image map encoding. The first one represented a
nearly planar but slightly sloped, complex architectural structure,
while the second one represented a less planar, irregularly urban-
ized medieval borough on top of an hill.

5.1 The Pompei Insula V.1

The first test case was the model of the Insula V.1 of Pompei.
This wide area (1330 square meters), was acquired in the context
of a project coordinated by the Swedish Archeological School
(Dell Unto et al., 2013) using phase shift laser scanners. The
acquisition campaigns and the subsequent processing generated
several complete models of the insula at different resolutions.
The model (which was composed by 27M triangles, with a res-
olution of around 3cm) was also referenced w.r.t. the reference
system of the archeologists.
The original map of the insula was used as the minimap, while

the height and collision were created in a semi-automatic fash-
ion. The walls were removed from the 3D model, using an auto-
matic selection function of MeshLab, and the collision map was
obtained by producing a snapshot of a blue colored model from
the same point of view as the minimap (see Figure 5,right).

The height map was obtained through filling the missing por-

Figure 5: The height and collision maps for the Pompei example

tions of the geometry via Poisson reconstruction, and encoding
the height from the ground in the red channel using a per-vertex
color function of MeshLab tool (see Figure 5,left). Some exam-
ples of the navigation of the Pompei dataset are shown in Figures
2 and 3. In this case, the green channel of the image map was
used to link the 3D model to an already existing website that con-
tained the documentation (text and images) for each single room
of the Insula. By encoding in the green channel the Id of each
room, it was possible to access directly from the navigation con-
text the corresponding page on the Pompei Project website.
Figure 6 shows an example of the link between the position of the
focus point and the corresponding data sheet on the website. A
possible future extension of this system would be a perfect inte-
gration with the website, where the user could jump in and out of
the two websites in an integrated fashion.

Figure 6: Linking the navigation with a data sheets website.

5.2 San Silvestro village

San Silvestro was a miners medieval village which is currently
part of a minerary park in Tuscany, Italy. The village was the
target of an acquisition campaign using a UAV and Multi-view
stereo matching techniques. Several different flights around the
village allowed to extract more than 400 frames that were used
for obtaining a complete multi-view stereo reconstruction.
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The model of the village can be extremely valuable for several
aspects, and the possibility to freely navigate a three-dimensional
model gives the chance to overcome its peculiar placement on top
of an hill. The final 3D model (with color) was made of 22M tri-
angles, with a resolution of nearly one point every 5 cm.
As in the previous example, the model was scaled to real mea-
sures, and geo-referenced using the documentation provided by
the park authorities. Then, it was processed to be used with multi-
resolution visualization. The mini map (see Figure 4,top-left) for
navigation was obtained through a non photo-realistic rendering
of the model from top. The complete image map can be seen
in Figure 4 with all the channels encoded: the height on the red
channel, the location on the green one, and the collision in the
blue one.

The height channel was obtained in an automatic fashion by

Figure 7: Two snapshots of bird’s eye navigation of San Silvestro
model

encoding the color w.r.t. the height from the ground using a per-
vertex color function of MeshLab tool, and generating a snapshot
from the top view. The collision channel was obtained in a semi
automatic fashion, by first removing the vertical walls from the
geometry, and then modifying by hand the blue colored remain-
ing geometry. In this case, the collision surface was less easy to
define, due to the presence in the model of architectural remains,
rock and vegetation. The location channel was easily produced
by hand starting from the minimap. It defines the different (i.e.
residential, industrial, church) areas of the village.
Figure 7 shows two points of view that can be reached using the
bird’s eye modality: it’s easy to get a view from the top, but
also to explore portions of the village. On the top right of each
snapshot, the peculiar area associated to the focus point is shown.
Moreover, the UTC coordinates are available (bottom right).
Figure 8 shows two points of view that can be reached with first

person navigation: one that can re-create a real visit (the one from
the ground), the other providing a point of view not available to
visitors (it is currently not possible to climb on top of the tower).
The test on this model shows that it is possible to prepare a dataset
where the ground is not planar, with only a minimal intervention
in the creation of the image maps, and providing an extremely
flexible yet intuitive navigation.

Figure 8: Two snapshot of first person navigation of San Silvestro
model. Top: on top of the tower. Bottom: from the industrial area
outside the village.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a solution for the navigation of 3D envi-
ronments on which the usual trackball paradigm for navigation
cannot be applied. The system integrates two different visualiza-
tion modalities (linked by the concept of ”point of interest”), that
could account for different needs in the exploration of a complex
architecture.
Moreover, the important information needed to ensure a realistic
experience are stored in a image map, that could be used also to
store additional information (i.e. the location of the current point
of interest). The image map can be produced with a limited effort
by the user, and it’s easily integrated in the navigation environ-
ment.
The main limitations of the current approach are: the need for
data that are not organized on different levels (although the nav-
igation could ”switch” from one layer to another when needed),
the use of bird’s eye view when the model has roofs (although this
could be overcome by using ad-hoc visualization, like x-ray-like
shaders), and the necessity to produce the image map ”by hand”
(although the procedure is quite straightforward and could be au-
tomatized, for example using a MeshLab script).
Nevertheless, the system could be directly applied to a number of
possible test cases in the field of Cultural Heritage, from arche-
ological excavation to city navigation, or even for the exploration
of artifacts with small detail (like engraving or small decorations).
Regarding future improvements of the system, three possible di-
rections of work can be outlined: the implementation of simple
interaction functionalities (measurement, sections, simple anno-
tation), the creation of authoring tools to help in preparing new
scenes, and a better integration with existing web visualization
systems.
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Cutting Freely: Occlusion-Aware Surface Processing

Submission No. 0166

Figure 1: Occlusion-aware generation of a cutaway. From left to right: User-drawn curve, selected region (shaded green), region cut out to
reveal interior, final cutaway (after applying several such steps).

Abstract

User-guided surface selection operations which are straight-
forward in a plane become challenging on non-strictly convex sur-
faces because of self-occlusions. Since the occlusions change with
the view, users have to alternate between moving to an unobstructed
view and performing those operations. Our method enables oper-
ations like selecting or cutting in a single view, by mapping these
curves or areas as continuous projections onto the object’s surface,
unaffected by occlusions to guarantee a seamless brush stroke or
a manifold cut. By default the projected solution includes the far-
thest surface layer, but if that is not the desired layer, users can roll
back and forth through other solutions. We show that this enables
a number of applications in an entirely different and easy way, of
which we show a few as examples, creating illustrative cutaways
from nested models, animating them and removal of spurious inte-
rior artifacts from isosurface meshing.

Keywords: occlusion-aware, surface selection, geometry process-
ing

Concepts: •Computing methodologies → Mesh geometry mod-
els;

1 Introduction

Selecting a subset of the surface of a model is a very useful feature
for 3D designers. One important application is inspecting multi-
components models by generating cutaways: illustrations where the
model is cut to reveal the interior or occluded parts. The feature also
supports many surface manipulation scenarios, such as to blend out
occluding parts to paste a texture, or cutting an outer layer to re-
move inner spurious primitives (useful after isosurface meshing).
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Other than cutting, the subset can be deformed, extruded, simpli-
fied, leading to many other exciting applications.

However, drawing a boundary on an object with moderate or high
depth complexity is non-trivial. Occlusions can make it impossible
in some cases to draw a curve that adapts to the surface from a
single viewpoint. Tools in current 3D design software products only
permit simple strokes to select a region.

Figure 2: Occlusion aware surface cut from user-drawn 2D curve.
(a) 2D curve. (b) Projected, closed curve on the bear surface. (c)
Occlusion-aware cut in the model.

We propose a new method for generating view-independent cuts on
a surface, which are inferred from a user-drawn curve. This curve
is drawn in screen space, however our method makes the selection
boundary follow the object’s surface instead of moving onto oc-
cluding parts. To handle arbitrary occlusions on a manifold, we use
an illustration buffer [Carnecky et al. 2013]. Figure 2 gives an ex-
ample of how the bear’s arm can be amputated without having to
rotate the object into a view where the arm does not occlude the
body.

Our main contributions are:

• An algorithm which creates manifold boundaries and marking
of their contained surface subsets on 3D meshes with arbitrary
depth complexity from a single input loop in the view plane,
without requiring pre-processing or user-fitted primitives.

• An acceleration data structure which constructs efficiently to
enable interactive performance of this algorithm and permits
extension to point clouds and deforming meshes.

http://doi.acm.org/10.1145/9999997.9999999


In Section 2, previous related approaches are summarized and re-
viewed. We explain the algorithm in Section 3. Connectivity oper-
ations in the screen space data structure are described in Section 4.
We show our results and discuss them in Section 5 and conclude in
Section 6 with a future outlook.

2 Related Work

There is a plenty of previous research concerning cutting and seg-
menting 3D models. Generating curves on 3D meshes has been
used in many applications, such as creating cut views, segmenta-
tion (e.g. [Au et al. 2011]), and non-photorealistic rendering (e.g.
[JUDD et al. 2007], [COLE et al. 2008], [DECARLO et al. 2003]).
These methods can be generally categorized as data driven or user
driven. We focus on the user driven aspect, like our algorithm does.

[Fan et al. 2011] introduce a painting brush for segmentation that
allows the user to progressively select a region of interest. [Meng
et al. 2011] present iCutter, which constructs a scalar field on the
surface induced from a user-drawn stroke and finds the best iso-
line based on centerness and concavity. They aim at meeting the
user’s intention, but our method is more ”faithful” to the 2D drawn
curve, and thus gives the user full control over the cut boundary.
[PINDAT et al. 2013] drill holes into layers to reveal inner objects.
[LAMAR et al. 2001] and [WANG et al. 2005], extend the Magic
Lenses [BIER et al. 1993], which permits users to magnify inter-
esting parts and push away occluding parts. [MCGUFFIN et al.
2003] and [CORREA et al. 2006] provide cutting tools for volu-
metric data. All those approaches assume that the model is decom-
posed into pre-defined connected components. The sketching inter-
face of [IGARASHI et al. 1999], and the cross-sections texturing
of [OWADA et al. 2004] use a silhouette-intersecting stroke drawn
by the user to specify the cut. They assume that the 2D stroke does
not project on occluding parts of the surface. [Kndel et al. 2009]
recognize four gestures from the user: line, corner, circular, and
ribbon, with each gesture corresponding to a cut shape. Unlike this
approach, cut boundaries made by our tool can take any arbitrary
shape the user desires.

3 The Occlusion-Aware Selection Algorithm

Our method can be applied to arbitrary meshes in 3D with a man-
ifold surface, but it is beneficial especially for objects with high
depth complexity. The surface can contain holes and its triangles
can even self-intersect as long as it does not affect the mesh con-
nectivity.

The user draws a 2D curve in screen space, which we use as input
to generate the selection boundary. The algorithm consists of the
following two main steps. First, we convert this 2D curve to a 3D
curve which maps onto the surface of the model. There is a default
unique mapping, but other mappings may exist and are determined
as well, which can be presented as choice to the user. Then, the re-
gion bounded by the chosen 3D curve is marked as input for further
processing.

3.1 Mapping the Curve From Screen Space to Model

The user draws a 2D input curve Ĉ in the view plane which projects
onto the object. In order to determine the selection boundary for the
object, we need to map Ĉ to the desired 3D curve C on the surface
of the model represented by a point set P . We require C to be
closed since we use it to delimit a subset of the object’s surface.
There may not be a single solution but a candidate set C of such
curves projecting to Ĉ and some of them may be entirely invisible,
that is backfacing. So we first restrict the choice to a subset Cvis ⊆

Figure 3: The blue curve Ĉ drawn on the view plane is projected
onto the model surface as PC , the union of points of the three
curve segments C1..3. The curve segments are colored red (visi-
ble), or magenta (occluded), dotted if backfacing. The candidate
set C = {C1, C2, C3} and its visible subset is Cvis = {C1, C2},
with the default (farthest) selection boundary C = C2. C1 remains
as additional choice.

C of (partially or fully) visible candidate curves. Then, we order
the set Cvis by increasing depth of their respective farthest visible
curve segment. We define the default solution C ∈ Cvis as its last
element, as shown in Figure 3. The user can always roll through
this depth ordered set to select a nearer Ci ∈ Cvis. This is for the
that case C is not the desired choice, e.g. if that curve is barely
visible, or if it does not represent the intended cut.

We define PC = {∪Pi|p̂i ∈ Ĉ}. Intuitively, PC is the intersection
of the projecting curve Ĉ that stencils the boundary of the object in
view direction. Then, C ∈ PC and therefore C ∈ PC .

To determine C in PC , we rely on the fact that PC can be decom-
posed into a disjoint set of curve segments S ≡ PC because the
curves lie on a manifold. We define the Si ∈ S as the maximum
connected set of points in PC such that each pj ∈ Si is occluded by
a constant number of points of the model as seen from the camera
(or visible if that number is zero). See Figure 4 for an example of
this decomposition into multiple disjoint curve segments and how
those compose the set of closed curves C. By our above definition,
all Ci ∈ Cvis contain a visible Si ∈ Ci.

The two above-mentioned properties of C (closed and containing
the farthest visible curve segment) allow for its easy determina-



Figure 4: Left: Ĉ is projected onto the model, intersecting with
its surface in curve segments S1..6. Only S1 and S2 are visible
from that view point. Right: The remaining curve segments become
visible from other view points (Above: Front, Below: Back). C1 =
S1 ∪ S3, C2 = S2 ∪ S4 and C3 = S5 ∪ S6 each form a closed
curve. The visible set is Cvis = C1, C2, with the default boundary
C = C1.

tion: Start from the farthest visible segment S0 and add incident
segments in S to a set until it forms a closed curve C0. While
Ĉ0 ⊂ Ĉ, repeat this process starting with the farthest visible seg-
ment Si, Ŝi ∪ Ĉ0 = ∅. This yields a surjectively mapping of C0

onto Ĉ, since C0 may contain backfacing curve segments. Our al-
gorithm handles the case of Ĉ intersecting silhouettes of the object
in the view plane without any further modifications, since it follows
the adjacent backfacing curve segments. For the non-default solu-
tions, additional curves Ci ∈ Cvis can be generated by processing
the remaining curve segments, until there are no more visible ones.
Since we require the curve to be closed, it cannot intersect a hole in
a bounded manifold. Therefore, open curves are ignored.

3.2 Marking the Selected Surface Region

We now have found the selection boundary C, which is either the
default solution, or a nearer solution chosen by the user. C may be a
set of multiply connected curves, and it partitions the object P into
at least two subsets. In order to decide which subsets of the object
should be marked, we need to consider the orientation based on Ĉ.
Any visible point pi ∈ C assigns an orientation to adjacent visible
points in P based on whether it is located inside the closed loop Ĉ
in screen space. The propagation of the orientation on the surface
of the object using the illustration buffer is described in Section 4.
If C cuts a handle of the object, the propagation will yield a single
orientation and that would lead to selecting the entire manifold. In
that case, a second curve is required to bound a region together with
the first curve.

4 Implementation in a Discrete Acceleration
Structure

In order to determine the curve segments, we have to intersect the
curve drawn in screen space with the 3D model. However, this re-
quires to search all its N primitives, for each curve fragment. A
tree would require slow O(NlogN) construction and O(|Â|logN)

per curve, with Â as the screen space area inside the selected curve,
plus any traversed backfacing parts of surface. Instead, we con-
struct what we call a connectivity buffer based on a screen space

buffer structure: We require a functionality similar to the illustra-
tion buffer [Carnecky et al. 2013], but only store unsorted list of
fragments per pixel together with their references to the original
triangle. This reduces construction against traversal cost, which is
beneficial for our case since only a subset of fragments will be tra-
versed.

Our proposal is based on the following reasons: Construction time
for the buffer is much faster with O(N), on top of that N is smaller
since culled to screen space, so the construction time is almost
output-sensitive. Although the buffer has to be constructed anew for
each view in which the user draws a curve, this coincides with user
interaction and is therefore not noticable. The critical part that thap-
pens after completed user interaction - marking the selected subset
of the surface - is then much faster with O(‖Â‖logk). Keeping the
fragments of all layers in the buffer permits us to quickly compute
transparency or rolling through all possible solutions of curves. On
top of that, our buffer structure is easily extensible to contain point
clouds or allow for surface deformations, since we compute it for
each relevant view.

Note that our implementation is not yet optimized: Only the con-
struction of the connectivity buffer is done on the GPU and since we
follow connectivity currently on the CPU, most of the time on our
proof-of-concept implementation is wasted by CPU-GPU transfers
that will eventually become redundant. Potentially it can become
as fast as order independent transparency which uses the illustra-
tion buffer.

4.1 Connectivity Buffer Construction

We construct the buffer structure by simply rendering the model
mesh from the viewpoint of the user with the depth test disabled,
so that we keep all projected fragments. A fragment tuple stores
the distance from the view plane together with a reference to its
incident triangle. In each pixel, the visible fragment, i.e. the closest
to the view plane, is moved to the front of the fragments list. Since
there can be several visible fragments sharing the nearest vertex,
anyone of them will serve as it is used as a starting point for tracing.
Figure 5 illustrates the data structure and its construction process.

Unlike the illustration buffer, we do not accumulate connectivity
information but locate it while tracing. The time required to dy-
namically locate connectivity is more than offset because tracing
the curve and interior surface area only ever affects a subset of the
fragments. Binning the mesh into fragment lists on the other hand is
faster than traversing the mesh itself, since the relevant pixels can
be looked up directly. We consider fragments stored in the same
pixel as connected only if their referenced triangles share an edge.
Two fragments in adjacent pixels, on the other hand, are only con-
nected if they reference the same triangle (see Figure 6).

4.2 Tracing Curves and Marking Interior Surface Areas

Since PC is now discretized into fragments, curve segments on
the mesh can be traced by following ”connected” fragments (8-
connected pixels) and subsequently join these segments to curves.
A curve is discarded it does not end at the same fragment it started
from, i.e. open curve, since then it does not project surjectively on
the user-drawn curve. Closed curves are sorted by the depth of the
farthest visible fragment.

After the boundary curve is determined (bu default, or by the user),
our algorithm marks the surface area interior to the curve w.r.t.
screen space. The output is a list of triangles, but some triangles
may be intersected by the curve. First, we split those triangles
which the curve intersects, by simply connecting the intersection



Figure 5: In the rasterization stage, pixel P accumulates its frag-
ments in a list and the closest to the camera moved to its front.

points with their edges, and mark the two halves as interior and
exterior, respectively. Then, we initialize a stack with the interior
triangles and connect unoriented triangles recursively while uncon-
nected triangles remain. The stack forms the output as list of trian-
gles representing the interior area of the curve.

When dealing with self-intersecting components which are not con-
nected (e.g. ear sticking out of bear head in Figure 7), the user might
also want to remove such components that fall into the bounded
region. We leave remove-intersecting as a feature for the user to
toggle.

5 Results and Discussion

We tested our method on various data sets, including self-
intersecting meshes. In the following subsections, we explain how

Figure 6: Connectivity definitions: Three triangles are projected
on two pixels. Fragment f1 in pixel P1 is connected to both f2 and
f3 because it shares an edge with each of them. It is also connected
to f4 in pixel P2, because they have the same incident triangle.

Figure 7: Top row: remove-intersecting=off: (a) Bounded region
marked in red. (b) Cut does not affect intersecting ear. Bottom row:
remove-intersecting=on: (c) Bounded region marks ear as well. (d)
Cut removes ear.

the algorithm proved to be useful in several applications and scenar-
ios, due to its occlusion-awareness property and/or its interactive
performance.

5.1 Model Inspection and Generation of Cutaways

Figure 8: Inspecting a heart model. The user draws a curve (a),
and then he rolls among different candidate regions to select back
wall (b) or one of the occluding arteries (c,d), sorted descendingly
by depth.

The obvious application of our method is to better explore models
with significant depth complexity. Many models are self-occluding,
and some even contain very numerous interleaving components
(e.g. wires, tree branches, or blood vessels) which block the vision
of the viewer from most or all perspectives. Using our algorithm,
the user can quickly reveal the hidden areas by cutting the occlud-
ing parts with simple curve sketching. Figure 8 shows an example
where several candidate-for-selection regions are detected with a
single drawn 2D curve. The user can then simply roll back and
forth between those to choose the desired region.

Once experts have inspected such complex models, they may wish
to show selected features to non-expert users. Cutaways and trans-
parent illustrations are very good tools to expose and high-light



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Generating a transparent illustration of the heart model: (a) The user draws a curve, for which its interior region is marked yellow
(b), and turned transparent (c). A second curve is drawn (d). The user selects two other regions from that curve (e),(f) which are also turned
tansparent. The final illustration (g), also from another view point (h).

Figure 10: Cutaway illustration of a heart model.

details of such objects and have been used e.g. for centuries in
medical instruction and biology. Those drawings reveal the inner
components by manipulating the visibility of the outer layers. Our
algorithm locates projections on all different layers, and is therefore
ideally suited to quickly create such illustrations. Figure10 shows a
cutaway of the heart model and Figure9 shows a transparent illus-
tration, together with the steps used to create it. We were able to

Figure 12: (a) A tooth mesh reconstructed from an isosurface of
a CT scan, with the selected region marked red. (b) The selected
region is cut, revealing a number of spurious connected components
or triangles. (c) The user cleans the model by selecting groups of
these artifacts. (d) All artifacts have been removed and the cut can
be reversed.

create each of these drawings just from a single viewpoint.

5.2 Boundary Animation

We can even go one step further and animate our cutaways. Frames
of an animation which displays a cutaway dragged along the sur-
face, oblivious to any occluding objects, are shown in Figure 11.
While the cut boundary retains its shape in screen space, it is pro-
jected automatically on the current layer on the model.



(a) (b) (c) (d) (e)

Figure 11: Cut boundary animation: A few frames of a cut that is dragged

5.3 Surface Editing and Manipulation

The algorithm provides a smart tool for 3D selection, since it is not
hindered by occlusions. Other than cutting, the user can perform
all kinds of surface operations to the marked region, e.g. deform,
replicate, extrude, and many more. The interactive nature of the
algorithm makes it an efficient support tool for such surface ma-
nipulations. As an example application we show how meshes cre-
ated from isosurfaces (resulting e.g. from CT scans) can be cleaned
efficiently: Figure12 shows a mesh, where the user first cuts the
outer layer in order to reach the hidden spurious primitives, which
are then picked and removed by a simple selection tool. After the
model interior has been cleaned, the cutting operation is simply un-
done and the model is ready for e.g. 3D printing.

6 Conclusion

We introduced a method to select subsets on meshes without hav-
ing to remove occlusions of the mesh itself or other objects. The
meshes may self-intersect and contain holes. The results show that
users can easily create these curves and roll back and forth if there
exist choices on several layers. Objects which intersect with the
curve can be selected as well together with the primarily targeted
surface. The operations on the selection boundary or its interior
surface that can be executed subsequently are plenty: Painting, ex-
trusion, cutting, modifying surface attributes (e.g. transparency) -
we demonstrate the last two as examples as well as animating illus-
trative cut boundaries.

Limitations: At the moment, our algorithm does not support non-
manifold meshes, i.e. containing edges with more than two incident
triangles. This is not a big limitation since the kind of meshes used
for such processing should be clean in that respect anyway. If re-
quired, tracing could bifurcate for such cases, however resulting
in combinatorial complexity. Our algorithm also does not support
drawing curves through holes. This can be easily fixed by storing
boundaries and using them to complete the curves. We do not cur-
rently detect if a curve is drawn through a handle. The user has to
take care to draw additional curves such that an interior surface is
partitioned off.

Future work:

Our discrete buffer data structure permits easy incorporating of
all kinds of surface representations, as long as they provide man-
ifold connectivity. It can be easily extended to using point clouds,
e.g. with the discretized surface construction proposed by [Radwan
et al. 2014], which creates the implied connectivity.

Converting the code into a Blender plugin would allow simple ap-
plication of existing surface operations, like extrusion, mesh simpli-

fication, painting/texturing and so on. Similarly, creation of plugins
for other operations on surface subsets like mesh mixing is straight-
forward.

Extension to segmentation: The user-drawn 2D curve could serve
as guidance to fitting a 3D curve with local optimization criteria,
e.g. based on concavity isolines as in [Fan et al. 2011].
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Abstract—We present a method to improve the visual quality
of point cloud renderings through a nearest-neighbor-like interpo-
lation of points. This allows applications to render points at larger
sizes in order to reduce holes, without reducing the readability of
fine details due to occluding points. The implementation requires
only few modifications to existing shaders, making it eligible to be
integrated in software applications without major design changes.

Index Terms—Computer graphics, point clouds, WebGL

I. INTRODUCTION

3D scanning methods such as laser scanning or photogram-
metry produce enormous amounts of point cloud data. Unlike
polygon meshes, point clouds do not contain connectivity
between points, and surface normals are not always available.
Due to the missing connectivity and normals, points are often
rendered using screen-aligned squares or circles. If the size of
these primitives is too small, holes appear, and if the size is too
large, points will occlude each other and reduce the visibility
of high-frequency features such as text.

This paper presents a method that allows using larger
point sizes in order to avoid holes and at the same time,
solve undesirable occlusions by performing a nearest-neighbor-
like interpolation of points. The interpolation is achieved
by rendering points as 3d shapes through manipulation of
fragment depths. Additional passes are not required.

Our method can be seen as a trade-off between the per-
formance of the commonly used screen-aligned square and
circle primitives, and the high quality of multi-pass splatting
algorithms.

II. RELATED WORK

Related works include high-quality point-based rendering
as well as fast Voronoi diagram generation methods.

A. High-Quality Splatting

Previous high-quality splatting methods for the GPU [1]
require three rendering passes. First, a visibility pass builds
a depth map with a small offset. The blending or attribute
pass then builds a weighted sum of all attributes that pass
the depth test. The last pass normalizes attribute values by
dividing the weighted sum of attributes by the sum of weights.
These methods also render points as oriented disks or ellipses.

The results have a very high quality. The need for three
rendering passes, however, significantly reduces performance,
and rendering oriented disks requires normals, which are not
always available.

Deferred Blending [2] is a GPU-accelerated method that is
able to render opaque point clouds in a single geometry pass
and an additional compositing pass. This method is also able
to render simple transparency effects in a two-pass approach
and higher-quality transparencies in 3 passes.

These methods have in common that they require multi-
ple rendering passes. They achieve high-quality results with
smoothly blended points at a high performance cost.

B. Voronoi Diagram Generation

The results of our method closely resemble Voronoi dia-
grams. In fact, the idea of rendering points as 3D shapes has
already been used in previous works for fast generation of
Voronoi diagrams. Kenneth et al. [3] create two-dimensional
Voronoi diagrams by rendering points as cones and lines as
tents with a cone at each corner.

Jump flooding [4] uses a flooding algorithm to generate
Voronoi diagrams by repeatedly spreading pixels in a texture
until the whole texture is filled. Instead of distributing pixels to
their closest empty neighbors in each step, they are propagated
over larger distances, thus reducing the number of necessary
repetitions.

III. INTERPOLATION SHADER

This section covers the theory as well as implementation
details of our interpolation shader.

The idea behind our method is similar to creating Voronoi
diagrams by rendering points as cone meshes. [3]. However,
instead of using meshes, points are rendered as view-aligned
quads, as commonly used in point cloud renderers. The three-
dimensional shape is achieved by adding an additional offset to
the fragment depth values. This offset depends on the distance
to the center of the quad and the type of weight function.

Figure 1 shows shapes produced by different weight func-
tions. Weights are calculated for each fragment and subse-
quently used as an offset to the depth value. For spheres,
the weight function is not defined for fragments outside the
sphere’s boundaries. These fragments are therefore discarded,



Weight function Shape

sphere
√
1− (u2 + v2)

cone 1−
√
(u2 + v2)

paraboloid 1− (u2 + v2)

Fig. 1. Shapes produced by different weight functions. u, v ∈ [−1, 1]

resulting in circular shapes on screen. The cone and paraboloid
weight functions are well defined for all fragments and can
therefore be used for squares as well.

Point clouds are usually rendered with view-aligned rather
than camera-facing quads. Applying weights as depth offsets
leads to rendering distorted shapes because of the perspective
projection of view-aligned quads. Figure 2 shows how using
a paraboloid weight function results in rendering distorted
paraboloids. In practice, this has shown to work fine and
to significantly increase quality at a low cost despite the
distortion. Figure 3 shows the same points rendered as simple
view-aligned squares and paraboloids. In the latter case, the
point closest to the camera is less likely to occlude all points
behind it.

All of the listed weight functions reduce occlusion prob-
lems. There is a subtle difference, though, and we decided to
chose the paraboloid function for some of its properties. First
of all, it is the simplest one to calculate. It is also defined for
all fragments, unlike the spherical function, and can therefore
be used with square-shaped point primitives as well. But most
importantly, the intersections between paraboloids at different
distances remain straight, whereas the intersections of cones
and spheres appear rounded.

All of the weight functions assume that the radius of the
point is 1 and the generated weights range from -1 to 1. The
final depth offset is obtained by multiplying the weight by
the world-space point radius. If the world-space radius is not
known, it can be approximated by taking the pixel size and
inverting the projection, as described in Section III-A.

(a) distortion at center (b) distortion off-center

Fig. 2. The resulting shapes are distorted due to perspective projection.
.

A. Implementation

The implementation requires field of view in radians and
screen height in pixels as additional uniform inputs to the
vertex shader and the projection matrix as additional input to
the fragment shader. Field of view and screen height are used
to approximate the world-space point radius from the pixel
size of the point primitive. The projection matrix is used to
recalculate the projected depth after modifying the view-space
depth value.

Even if the world-space point radius is known, it may still
be necessary to approximate it from the pixel size instead.
For example, since this method is sensible to overdraw, our
implementation limits the point size to a maximum of 50
pixels. The pixel size is therefore no longer guaranteed to be
the screen projection of the radius.

For the approximation, the projection factor from a world-
space radius to screen-space pixel size is calculated. The pixel
size is then divided by the projection factor to obtain an
approximation of the world-space radius. This also allows
integrating the algorithm into systems that use fixed or camera-
dependent point sizes with no assumptions of point radii.

float projFactor = 1.0 / tan(fov / 2.0);
projFactor = projFactor / -vViewPos.z;
projFactor = projFactor * screenHeight / 2.0;
...
vRadius = gl_PointSize / projFactor;

The fragment shader provides coordinates that indicate the
fragment position inside the point primitive. To calculate the
weight, these coordinates have to be transformed from an
interval of [0,1] to an interval of [-1,1]. The following code
sample uses the paraboloid weight function.

float u = 2.0 * gl_PointCoord.x - 1.0;
float v = 2.0 * gl_PointCoord.y - 1.0;
float w = 1.0 - ( u*u + v*v );

The weight is multiplied by the radius of the point and
added to the screen-space depth value. The resulting position
is then projected and its projected depth value is used as the
new fragment depth.

vec4 pos = vec4(vViewPos, 1.0);
pos.z += w * vRadius;
pos = projectionMatrix * pos;
pos = pos / pos.w;
gl_FragDepthEXT = (pos.z + 1.0) / 2.0;



(a) without depth offset (b) with depth offset

Fig. 3. Top view showing (a) points occluding other points behind them and
(b) using a fragment depth offset to reduce undesirable occlusions..

(a) front (b) steep angle

Fig. 4. Point centers are indicated by black dots. (a) Front view showing
similarities of the results to a Voronoi diagram. (b) Similarities to Voronoi
diagrams decrease at steep angles. .

IV. RESULTS AND LIMITATIONS

In this section, we show images of our results and compar-
isons to screen-aligned squares and circles. We also compare
results to a three-pass high-quality splatting method using
screen-aligned circles because our datasets do not contain the
normals necessary for rendering oriented splats.

The results of this method, as seen in Figure 4, show strong
similarities to a Voronoi diagram.

Figure 5 and 7 show images generated by the differ-
ent rendering methods. Squares and circles both suffer from
occlusions. Camera rotations also cause flickering as points
change their order and occluding points suddenly become
occluded points. The interpolation and high-quality splat-
rendering modes do not suffer from this problem.

Due to its nearest-neighbor-like behavior, our method is as
susceptible to noise as squares and circles. The high-quality
splatting methods, on the other hand, blend multiple points
together and therefore reduce the impact of noise, as shown in
Figure 6.

V. PERFORMANCE

All performance tests were done on a notebook with
an Intel Core i7-4712MQ and a NVIDIA GTX 860M. We
used WebGL and the Chrome web browser to render into a
1920x955 pixel canvas element.

Figure 8 shows frames per second (FPS) for different
modes and point sizes. The size parameter is a multiplier. A
value of 0 results in a size of 1 pixel. With a value of 1, pixel

(a) squares (b) circles

(c) our method (d) high-quality splats

Fig. 5. Squares (a) and circles (b) suffer from occlusions. Our method (c)
and high-quality splats (d) improve readability of high-frequency details such
as text. .

(a) our method (b) high-quality splats

Fig. 6. A limitation of our approach: It does not improve noisy datasets.
High-quality splats are better suited in such cases..

(a) squares (b) circles

(c) our method (d) high-quality splats

Fig. 7. Improved readability of text with our method, comparable to high-
quality splats. .



Fig. 8. Performance of squares, circles, interpolation and high-quality splats
(in top-to-bottom order) in frames per second (FPS). A size factor of 1 covers
holes while minimizing overdraw. Lower values cause holes while larger
values increase overdraw. .

size is chosen in a way to close holes but minimize overdraw.
Lower values lead to holes and larger values cause increasingly
higher overdraw. Too much overdraw is problematic since
interpolation and high-quality splatting depend on features that
do not allow for early depth testing.

VI. CONCLUSION AND FUTURE WORK

We have presented a single-pass method that significantly
increases quality at a lower impact on performance than
previous high-quality methods that require two or even three
rendering passes. Implementation is simple and requires adding
a few lines of code, as described in Section III-A, to existing
shaders.

It is especially useful for close-up views of datasets with
sharp features such as text or edges.

This method can be seen as a trade-off between the
performance of screen-aligned squares and circles, and the high
quality of multi-pass splatting algorithms.

This method was developed for the WebGL point cloud
renderer Potree [5] with the help of the three.js library. [6].
A reference implementation of this method is available in the
Potree github repository.

Manipulating the fragment depth can disable some GPU
optimizations such as early depth testing. Other possible ap-
proaches to render points as paraboloids are geometry shaders
and instancing. We did not explore these options since WebGL
does not support geometry shaders at this time and instancing
is not supported by three.js.
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Figure 1: Left: High-quality shadows in a static large-scale environment rendered in 1 millisecond using a 32-bit shadow map with a
resolution of 1.048.576 x 1.048.576 pixels. The shadow map is compressed from four terabytes down to 160.6 MB (26124:1 ratio) without
loss of precision. Right: Precomputed soft-shadows from a high-detail model using 2.048 coherent shadow maps, each with a resolution of
2.048 x 2.048 pixels, rendered with 32 samples in 14 milliseconds and stored in 145 MB (227:1 ratio).

Abstract

The quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme
for high-resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can com-
pactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conserva-
tively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression
rates, avoids quantization errors, exploits coherency along all data dimensions, and is well-suited for GPU architectures. Our
approach can be applied for coherent shadow maps as well, enabling several applications, including high-quality soft shadows
and dynamic lights moving on fixed-trajectories.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture, I.4.2 [Computer Graphics]: Compression (Coding)—Exact coding

1. Introduction

High-quality shadows are an important challenge in many real-
time rendering applications in computer graphics. Shadow map-
ping [Wil78] is today’s standard for real-time shadows, however, its
quality is often limited by texture resolution. High-quality shadows
in complex scenes can easily require resolutions up to two orders
of magnitude larger than currently feasible for commodity GPUs.
Adaptive approaches such as Adaptive Shadow Maps [FFBG01] or
Cascaded Shadow Maps [Eng06,ZSXL06] are a common real-time
solution, but come at the cost of reduced run-time performance. As
virtual scenes often consist of large static parts (e.g., terrains or
buildings), precomputing shadows has become a common practice.

Recent advances have shown that precomputed compressed
high-resolution shadows maps can be a competitive alternative.
Such techniques fully handle shadows cast by static objects on
both static and dynamic receivers. Dynamic shadow casters are
handled using standard shadow mapping techniques at run-time,
with the added benefit of not having to render the static parts of the
scene. Unfortunately, conventional image compression is not suit-
able for shadow maps, because lossless encoding (which is required
to avoid light and shadow leaks) does not result in satisfactory com-
pression rates and many techniques rely on run-length encoding,
which prohibits random-access queries. Fast random-access com-
pression of color textures has been investigated in the context of

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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GPU architectures ( [DJ98, HIN04, IM06]), but these algorithms
rely on quantizing data or lead to low compression rates (up to
5%), which is insufficient for higher resolutions. Consequently,
custom schemes for shadow-map compression have recently been
proposed. These approaches typically exploit the fact that, in static
scenes, any depth value between the depth of the first and sec-
ond surface underneath a pixel leads to a conservative occlusion
test. However, previous approaches do not fully exploit the data
coherency or rely on depth quantization.

We introduce a novel compression scheme for high-resolution
shadow maps based on multiresolution hierarchies. We propose a
sparsification process, which exploits the concept of dual shadow
mapping (a shadow map for the front faces and one for the back
faces) to create an extremely sparse, but conservative, multireso-
lution decomposition of the original (front) shadow map. This de-
composition is efficiently encoded in a compressed regular tree for
fast random access during run-time. We show that our approach
achieves higher compression rates than all previous approaches,
can be queried with real-time performance, and can be efficiently
built using GPU architectures. Our approach is the first to exploit
coherency along all data dimensions, does not rely on quantization
(maintains full 32-bit precision) and supports shadow maps from
arbitrary light sources. Another benefit is that it naturally incorpo-
rates all information required for hierarchical filtering operations
since it offers a multiresolution representation and every level by it-
self is a complete shadow map. Finally, we show that our approach
can be directly extended from single shadow maps (2D encoding
using quadtrees) to a coherent set of shadow maps (3D encoding
using octrees). Our approach is the first to enable efficient com-
pression of and rendering with high-quality shadow map sets to
produce soft shadows, and moving light sources with known tra-
jectories (e.g., sun lighting).

2. Related Work

We will briefly discuss previous approaches for precomputed com-
pressed shadows and compression of tree hierarchies. For a com-
prehensive overview of real-time shadow generation, we refer to
the surveys of Eisemann et al. [ESAW11] and Woo et al. [WP12].

Compressing with line segments Based on the assumption that
shadows are not cast inside of objects, Woo et al. [Woo92] pro-
posed midpoint shadow mapping as a solution to self-shadowing
artifacts. Midpoint shadow mapping computes a new shadow map,
which represents the intermediate surface lying between the two
surfaces closest to the light source. Since all depth values stay be-
tween the front facing geometry (the surfaces that represent the
original shadow map) and the back facing geometry (the first exit
point out of the object), the resulting occlusion test is conservative.
An extension of this approach is dual shadow mapping [WE03],
where the shadow maps are kept separate and shadow biasing can
be performed adaptively. Based on this concept, Arvo et al. [AH05]
introduced Compressed Shadow Maps (CSM) and showed how to
compress a shadow map by representing each scan-line with a set of
line segments approximating the midpoint surface. This approach
shows that shadow map compression can be understood as signal
compression with a specific spatially-variant bound. Although our

approach can be interpreted as a 2D or 3D extension, finding the ex-
act analytic equivalent in higher dimensions is a significantly more
complex task.

Ritschel et al. [RGKM07] similarly compresses a set of coherent
shadow maps by encoding the depth values of each pixel for all
images by using a set of lines. However, both approaches do not
fully exploit data coherency along all dimensions (e.g., only along
the vertical dimension or "through" the image stack) and, therefore,
cannot achieve optimal compression rates. Additionally, since these
compression schemes are non-hierarchical they do not adapt well
to the underlying data and efficient filtering along dimensions other
than the compression dimension becomes impractical.

Precomputed Voxelized Shadows Recently, Sintorn et al.
[SKOA14] proposed to precompute shadow information for a vox-
elized scene representation in projective light-space, which is effi-
ciently encoded in a 2-bit Sparse Voxel Octree [LK10]. The octree
is further compressed by subtree merging using a Directed Acyclic
Graph (DAG) [KSA13]. The initial compression and construction
performance was improved and resulted in the current state-of-the-
art compression method for precomputed shadows [KSA15]. Un-
fortunately, the voxelization process leads to depth quantization
and, although, the information is encoded hierarchically, it is not a
multiresolution representation and fast filtering requires additional
memory, almost doubling the size of the octree. Furthermore, the
extension to shadow map sets is difficult since the compression is
only efficient in the projected space of the light source.

Tree Compression A large body of research exists for efficient
tree-based encoding of multiresolution hierarchies (e.g., [Woo84,
Sam85, LH07]). Unfortunately, our tree must support random ac-
cess and exhibits certain uncommon characteristics, making it dif-
ficult to apply most previous techniques. However, to address the
overhead introduced by storing topology information, we utilize
the pointer compression technique proposed by Lefebvre et al.
[LH07] and efficiently encode tree pointers using 16-bits. We do
not employ any vector quantization [GG91,CCG96,KE02] or other
optimizations to the stored depth values themselves. Our results
demonstrates that even without such data changes, our approach
outperforms previous compression approaches, while maintaining
full 32-bit depth precision.

3. Compressed Multiresolution Hierarchies

Multiresolution decompositions of images (e.g., wavelets [Mal89]
or quadtree images [Sam84]) split features into components of dif-
ferent scales, typically storing homogeneous parts at coarser levels
and details at finer levels. In consequence, finer levels (which con-
tain more coefficients) are usually sparse, and coefficients are small
if they are encoded as differentials to previous levels. Lossy com-
pression exploits this characteristic and removes small coefficients
assuming their influence to the composed image is low. However,
for lossless compression all coefficients, independent of their mag-
nitude, have to be considered. This results in decreased sparsity and
diminished compression (Fig. 2, left).

Our key idea is to compress an alternative representation of the
shadow map that is more homogeneous, but still conservative. Our

c© 2016 The Author(s)
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Figure 2: Left: A multiresolution decomposition of a shadow map requires many coefficients (red) at finer levels in varying regions and
is typically not sparse. Middle: Using dual shadow mapping, an intermediate surface (green) can be found between the shadow map (red)
and the auxillary second-surface shadow map (blue). Here, the intermediate surface represents a linear, conservative approximation of the
shadow map by a set of axis-aligned planes. Choosing these planes to represent common depth values for many pixels results in a more
homogeneous occlusion surface. Right: A significantly sparser multiresolution decomposition encoding the set of axis-aligned planes. The
overlayed quadtree shows the encoding of coefficients. Inner nodes are represented by green circles, while leaf nodes are marked as yellow.
Note the empty inner nodes (white circles) which are required to encode the topology information, but do not store any depth values.

goal is to find new depth representatives for each pixel in order
to increase the sparsity of the hierarchy, but such that a conserva-
tive depth test remains possible. This is achieved by choosing val-
ues inside the boundaries defined by the first entry and exit surface
points. To compute these bounds, we employ the concept of dual
shadow mapping (Fig. 2, middle). As a whole, the procedure can
alternatively be interpreted as the compression of an image with a
spatially-varying error bound defined by an interval that must be
met to maintain lossless compression. For fast random-access dur-
ing run-time, we encode the sparse decomposition using a com-
pressed quadtree (Fig. 2, right).

For non-watertight or one-sided objects, the upper and lower
bounds of the depth interval need to be set to the depth value of
the entry surface to ensure a conservative depth test. Although this
reduces compression capability, our technique still handles these
cases correctly and no artifacts are introduced.

In the following, we will first propose two greedy construc-
tion methods for finding sparse decompositions from conservative
depth bounds. Then, we cover efficient encoding and traversal of
the sparse representation using a compressed quadtree. Finally, we
discuss shadow map filtering and propose an optimized traversal
technique to significantly reduce filtering costs. While this section
focuses on single shadow maps only, we will demonstrate in Sec. 4
how to extend our approach to a set of coherent shadow maps using
a compressed octree.

3.1. Construction

Our first task is to define the allowable depth interval for each pixel.
While the lower depth bound is defined by the original shadow
map, the upper bound is determined using the second layer obtained
via depth peeling [Eve01].

If the scene contains intersecting watertight objects, we can even
further exploit the compression potential by ignoring surfaces in-
side of another objects. To exemplify this point, one can imagine

each shadow map pixel corresponding to a ray cast from the light
source. For each ray, one can track the encountered surfaces with a
counter while advancing in the scene. The counter is incremented
for each front-facing surface and decremented when a back-facing
surface is encountered. The first intersection corresponds to the
minimum bound of the allowable depth interval. After that, when
the counter reaches zero, the ray has exited all objects and that point
depth corresponds to the maximum of the depth interval. This pro-
cedure can be efficiently carried out for all pixels simultaneously
via a depth-peeling algorithm. In the case of one-sided surfaces,
they can be accounted for as coinciding front and back faces.

Having the per-pixel depth intervals of the shadow map, we then
find a simplified surface inside the depth bounds which allows for
a sparse decomposition. Interestingly, the task of finding an inter-
mediate surface inside a given envelope is a common problem in
mesh simplification, and for the 3D case it is known to be NP-
hard [AS94]. We propose two greedy approaches, which perform a
sparse decomposition and tree construction at the same time. The
first one is a top-down approach which tries to globally minimize
the number of distinct depth values, while the second one operates
in a bottom-up manner and inspects only local pixels from the next
finer level. The depth-value hierarchy will then be compressed us-
ing a quadtree structure.

Top-down construction The top-down construction starts at the
coarsest level, which represents the entire image domain, and
greedily selects the depth value which covers the largest number of
depth intervals. It then marks all pixels that can be represented by
this value as covered. These covered pixels will inherit the depth
value from the coarsest level and only the remaining uncovered
pixels need to store a separate depth value. The approach then pro-
ceeds to the next finer level by decomposing the domain into four
quadrants. For each quadrant that contains at least one non-covered
value, the algorithm is launched recursively. If all pixels in a quad-
rant are covered or the finest level is reached, the algorithm stops.
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Algorithm 1 Pseudo-code for top-down hierarchy creation
function createHierarchy(intervals) :

sortedIvals← sort(intervals)
createNode(rootNode, sortedIvals)

function createNode(node, sortedIvals) :
bestIval← 0
numIvals← 0
bestNum← 0
for each ival ∈ sortedIvals do

if isMin(ival) then
numIvals++

else
numIvals- -

end if
if numIvals > bestNum then

bestNum← numIvals
bestIval← ival

end if
end for
sortedIvals← extractUncovered(sortedIvals, bestIval)
for each child do

childIvals← extractChildIvals(child, sortedIvals)
createNode(child, childIvals)

end for

Consequently, homogeneous areas result in an early termination of
the process.

To find the depth value covering most intervals, a direct approach
would be to discretize the depth, create a histogram, and find the
bin with the largest number of overlapping intervals. To avoid dis-
cretization, we propose an analytic sweep-based algorithm instead.
We start by sorting all interval-bound depths (min and max) in as-
cending order. Then, we sweep through the sorted list and keep
track of the number of overlapping intervals by incrementing a
counter each time an interval minimum is encountered (we enter
an interval) and by decrementing it when a maximum is encoun-
tered (we exit an interval). The highest detected count during the
sweep leads to the depth representative which covers the maximum
amount of intervals possible (Fig. 3). The pseudo-code for the top-
down decomposition is shown in Alg. 1.

The algorithm requires a single sorting in the beginning, which
can be performed in O(n logn) with n being the number of intervals
(shadow map pixels). Once the initial list is sorted, all subsequent
levels only require an O(n) extraction step to retrieve the sorted list
of uncovered-pixel intervals for the corresponding quadrant. Since
the extraction has to be performed for each level, the overall run-
time remains O(n logn).

Bottom-up construction An alternative is a bottom-up construc-
tion, which only considers the subjacent pixels of the next finer
level during creation. This approach is better suited for parallel ex-
ecution and, for all our test scenes, it performs competitively to the
top-down construction, while being an order of magnitude faster.

The bottom-up construction is based on the idea of a min-max
mipmap creation. Initially, the pixels at the finest level will contain

Algorithm 2 Pseudo-code for bottom-up hierarchy creation
childbounds← [lower,upper]
for level from finestlevel - 1 to coarsestlevel do

for each pixel in level do
children← getChildren(pixel, level+1)
depthRepresentative← findBestRepresentative(children)
bounds(pixel)← []
for each child ∈ children do

if satisfiesBounds(depthRepresentative, child) then
setNonExistant(child)
bounds(pixel)← bounds(pixel) ∩ getBounds(child)

end if
end for

end for
end for

Unsorted intervals 
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th
 

Occurrence 

D
ep

th
 

Sorted intervals 

Figure 3: To find a depth value which intersects the maximum num-
ber of intervals from a given set (left), we propose a sweep-based
mode finding scheme. The interval boundaries are sorted in ascend-
ing order first (left). We can then find the mode which corresponds
to the best depth value by sweeping through the sorted list and keep
track of the number of open intervals.

the lower and upper depth bound. When proceeding one level up,
we analyze the four subjacent depth bounds of each pixel P using
the same sweeping algorithm as for the top-down approach to find
a largest depth interval valid for most of these four pixels. This
interval I is then stored in P and all subjacent pixels, whose depth
interval contain I are flagged as empty pixels. The algorithm then
proceeds upwards to the next level. Once we reach the coarsest
level, we will populate the map with actual depth values in every
non-empty pixel by storing the average of the interval bounds.

Since only four intervals are treated at a time, the costly sorting
step is avoided and the bottom-up construction requires only a con-
stant number of operations per pixel. Hereby, although the com-
plexity stays the same, the algorithm maps better to current GPU
architectures, leading to a practical speedup. The pseudo-code is
shown in Alg. 2 and Fig. 4 shows an example of the creation of
a three level tree. The approach shows similarities to the Mallat-
algorithm for wavelet construction [Mal89], but instead of using
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Figure 4: Three steps of the bottom up creation algorithm. Left: Initially all values are present in the finest level. Middle: The most frequent
value is pulled up the hierarchy. Right: The procedure is repeated for the next level and an empty node is created to preserve the connectivity.

the average as representative we choose the mode from the set of
intervals in order to sparsify the representation.

Tiled construction For the extremely large shadow map resolu-
tions encountered in our approach, it is infeasible to keep the full
uncompressed data in memory to begin with. Fortunately, our ap-
proach is able to perform a tiled construction. First, the shadow
map is divided in tiles of manageable size (in our implementation
typically 4k× 4k - 8k× 8k). For each tile, we compute its uncom-
pressed bounds via depth peeling, compress it using the top-down
or bottom-up algorithm, and store the depth bounds of the root
node. After all tiles have been compressed, the stored depth bounds
from all root nodes form the bounds of a new shadow map, which
is again compressed to create the top level structure of the complete
tree. Since only the uncompressed data of a single tile is required
in memory at once, this construction procedure is both efficient and
maintains a small memory footprint.

3.2. Compressed Quadtrees

The previous algorithms lead to a sparse hierarchy of depth values,
which subsequently needs to be encoded efficiently while ensuring
fast random-access at run-time — which are requirements fulfilled
by a quadtree.

Encoding Our quadtree contains three node types: leaves (nodes
with no children), inner nodes, and empty nodes. Inner nodes and
leaves contain a 32-bit depth value. Empty nodes are only required
to encode the quadtree connectivity, but do not contain a value
themselves. Unlike other multiresolution decompositions, we do
not encode the depth values using parent node differentials. In con-
sequence, only a single value needs to be fetched during tree traver-
sal, which reduces the memory throughput and accelerates lookups.

Inner and empty nodes, contain an 8-bit mask indicating the type
of each child node (stored in two bits) and a pointer to the first child.
We distinguish four cases for the child type: a) non-existent, b) leaf
node, c) inner node, d) empty node. As it is common practice, a sin-
gle pointer is sufficient, as all present child nodes are stored con-
tiguously in memory, and the location of a specific child can be
obtained from examining the mask in the parent node.

We employ the pointer encoding scheme proposed by Lefebvre
et al. [LH07] in order to reduce the amount of memory needed
to store pointers. Their scheme stores subtrees close together and
allows us to encode pointer offsets, whose magnitudes decrease
rapidly per level. Using a per-level scaling, we can efficiently en-
code pointers even for larger resolutions with just 16 bits introduc-
ing only a minimal padding overhead for alignment. We exhaus-

Levels 0 1 2 3 4 5 6 7 8 9 … 

Y 1 1 1 0 1 0 0 0 1 1 

X 0 1 0 1 0 0 1 0 1 1 

Next child = b11 = 3 

Diverging paths 

Y 0 1 0 0 1 0 0 0 1 1 

X 1 1 1 0 0 0 1 0 1 1 

8 

Sample 0 

Sample 1 

Figure 5: Finding the next child index can be done by inspecting
the bits from the x and y position of the query point. The lowest
common node of multiple query points can be found by finding the
last level where the bits are equal.

tively search for the optimal per-level scaling factor as proposed by
Lefebvre et al. Finally, we also pad full and empty nodes with a sin-
gle byte, resulting in 4-byte aligned nodes (8 bytes for full nodes,
and 4 bytes for empty nodes and leaves). The padding increases the
memory footprint, but eases fetching the values on current GPU
architectures, hence decreasing lookup times. Alternatively, 24-bit
pointers could be used, however, we decided to keep the bit count
compatible with the compressed octree representation which will
be introduced in Sec. 4. In all our test scenes, no significant dif-
ference was introduced by using 16-bit pointers instead of 24-bit
pointers for the quadtree compression. If memory footprint is over-
all more critical than traversal performance, the padding can be re-
moved to further improve the compression.

Traversal Traversal of our compressed-quadtree encoding follows
the same procedure as standard quadtree traversal, but performs
lazy fetching of the depth values to account for the presence of
empty nodes. The traversal path through the tree is defined by the
position of the query point. By keeping track of the current level,
we can directly compute the index of the next child using a few bit-
operations (see Fig. 5). We start traversal at the root node (which is
always a full node) and initialize a pointer which holds the index of
the last node containing a depth value. After reading the children
mask and pointer, we compute the index of the next child and query
the mask to validate the child’s existence. We compute the offset of
the next child node from the mask and the 16-bit child pointer, to
recursively continue the traversal. The pointer to the last position
of a depth value is always updated, if we traverse a full node. If
a child node does not exist or a leaf node is reached, the depth
value is fetched from the last-stored position and the recursion is
terminated. We do not query the depth value earlier, as these would
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Figure 6: Required traversal steps in the CLOSED CITY scene for a
5x5 PCF filtering using a naive implementation (lower-left triangle
of the image) and our optimization finding the lowest common node
first (upper-right triangle). Bright colors represent numbers close
to the maximum (tree height times number of samples), while dark
ones mean that only few levels are traversed.

be unnecessary texture fetches, since we do not store differentials,
but absolute values.

Although hierarchical traversal has typically a run-time depend-
ing on the tree height, the sparsity of our tree often leads to a ter-
mination after only a few levels.

3.3. Filtering

Efficiently filtering shadow lookups is an important aspect for
shadow mapping. Percentage-closer filtering (PCF) [RSC87] is a
popular technique which performs averaging of several depth-test
results in a fixed-size kernel (usually an r× r box). A naive im-
plementation of PCF using our approach would perform a full tree
traversal for each kernel sample. Since our quadtree encodes a mul-
tiresolution prediction, we can perform analytic filtering when all
samples end up at the same node. While this is not always the case,
most samples share at least a common path from the root node un-
til a certain level. This level can be directly computed from the
minimum and maximum query points of the filter kernel and a few
bit-operations (see Fig. 5). We propose to traverse all kernel sam-
ples together through the first few levels until we find the lowest
common node where paths divergence. After that, each sample pro-
ceeds individually. This easy-to-implement optimization can lead
to drastic improvements in PCF lookup time. A visualization of
the amount of traversal steps for the naive implementation and our
optimization for a 5x5 PCF filtering is shown in Fig. 6. Another
possible optimization is to keep a cache of the last queried sample
and reuse it if the next sample shares the same path through the tree
down to the retrieved value.

Multiresolution anti-aliasing such as hierarchical PCF computes
the shadow map footprint of a pixel and looks up the depth value
for the corresponding resolution level. Since each of our tree levels
encodes a full shadow map of the corresponding resolution, hier-
archical filtering is natively supported. When performing PCF fil-
tering, the appropriate sampling level of the hierarchy can be cho-
sen to maintain a 1 to 1 correspondence between screen pixels and

Figure 7: Left: Computing soft-shadows from an area light requires
to sample multiple close-by points on the light source to apply
slight variations to the incoming light direction. The set of shadow
maps can be stacked in a 3D image cube for efficient compression.
Right: Motion of dynamic light source, which is known in advance,
can be precomputed by discretly sampling the trajectory, e.g., for
simulating high-quality shadows from sun lights.

shadow map texels. This ensures that smooth shadows are present
at any view distance regardless of a pixel’s projected area in the
shadow map. Furthermore, tri-linear filtering can be performed by
choosing two consecutive sample levels and interpolating their val-
ues in order to create smooth transitions during motion.

4. Shadow map stacks

We can extend our concept of compressed multiresolution hier-
archies directly to a set of coherent shadow maps. By stacking
shadow maps in a 3D image cube, we can compute a sparse de-
composition in the same manner as for a single shadow map and
encode it using an octree. This approach is useful for rendering of
soft shadows from area lights (Fig. 7, left) or varying light posi-
tions (Fig. 7, right). For soft shadows, we sample multiple light po-
sitions on an area light using a Hilbert-curve sampler as also used
by Ritschel et al. [RGKM07]. The light positions can be jittered in
order to avoid banding for smaller sampling rates. For moving light
sources, the motion has to be known and the images are simply
stacked in the order of discrete sample points along the trajectory.
Our hierarchical structure is able to exploit coherency along all 3
dimensions by encoding homogeneous cubic regions in coarser lev-
els of the hierarchy.

The construction and traversal techniques of the previous section
can be directly applied for octrees as well. The only major differ-
ence, however, is that we now have to consider potentially eight
children instead of four, which leads to 16-bit child masks. This
conveniently removes the need for padding and makes the octree
nodes perfectly aligned to 4-byte boundaries by default.

In the case of light trajectories, it is often only necessary to store
a small number of different light positions. In this case, creating
an equally-sized cube would restrict the resolution to match the
number of images. Our approach allows for a convenient encoding
of non-cubic image stacks by generating placeholder nodes with a
depth boundary of [0,1]. Having the largest possible interval width,
these nodes will be merged up the hierarchy during compression
and introduce only little overhead.
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Method 1K2 2K2 4K2 16K2 64K2 256K2 512K2 1M2

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.092 MB 0.23 MB 0.56 MB 2.83 MB 12.85 MB 54.09 MB 109.8 MB 221.9 MB

Sintorn et al. - - 0.62 MB 3.40 MB 14.89 MB 60.46 MB - -
Ours 0.067 MB 0.17 MB 0.41 MB 2.10 MB 9.26 MB 38.43 MB 79.63 MB 160.5 MB

C
L

O
SE

D
C

IT
Y

Ours (ratio) 1.68% 1.06% 0.64% 0.21% 0.056% 0.015% 0.0078% 0.0039%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.15 MB 0.36 MB 0.78 MB 3.42 MB 14.03 MB 56.61 MB 113.5 MB -

Sintorn et al. - - 0.94 MB 3.94 MB 16.38 MB 63.34 MB - -
Ours 0.11 MB 0.26 MB 0.59 MB 2.70 MB 11.41 MB 46.73 MB 94.88 MB 190.4 MB

C
IT

Y
SC

A
P

E

Ours (ratio) 2.75% 1.625% 0.92% 0.26% 0.069% 0.0178% 0.0090% 0.0045%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.14 MB 0.40 MB 1.10 MB 5.89 MB 25.25 MB 103.84 MB - -

Sintorn et al. - - 1.78 MB 9.26 MB 39.70 MB 166.47 MB - -
Ours 0.11 MB 0.35 MB 0.86 MB 5.01 MB 23.61 MB 101.52 MB 205.5 MB 414.6 MBV

IL
L

A

Ours (ratio) 2.75% 2.18% 1.34% 0.48% 0.14% 0.03% 0.02% 0.009%

Uncompressed 4 MB 16 MB 64 MB 1 GB 16 GB 256 GB 1 TB 4 TB
Arvo et al. 0.21 MB 0.60 MB 1.44 MB 6.73 MB 28.23 MB 115.34 MB 233.2 MB -

Sintorn et al. - - 2.01 MB 8.66 MB 35.57 MB 153.67 MB - -
Ours 0.15 MB 0.43 MB 1.05 MB 5.26 MB 22.71 MB 94.18 MB 191.5 MB 392.1 MBSH

I P

Ours (ratio) 3.75% 2.68% 1.64% 0.51% 0.13% 0.036% 0.018% 0.0093%

Table 1: Compression results for our 2D MH approach comparing to the scanline compression of [AH05] and the voxelized shadows approach
of [SKOA14]. Our approach outperforms competing compression approaches consistently while retaining full depth precision.

Resolution Total nodes Rendering MH creation Quadtree creation Serialization Total time Kampe et al. time

1K2 14944 0.019 0.001 0.003 0.007 0.089 -
4K2 90775 0.067 0.003 0.004 0.017 0.242 0.098
64K2 2037131 3.253 0.555 0.584 0.260 5.301 4.878

C
L

O
SE

D
C

IT
Y

256K2 8477953 39.53 9.052 3.653 1.001 55.18 65.23

1K2 25859 0.012 0.001 0.003 0.009 0.089 -
4K2 130974 0.044 0.004 0.009 0.021 0.221 0.061
64K2 2508119 1.755 0.551 0.612 0.299 3.888 4.089

C
IT

Y
SC

A
P

E

256K2 10215660 22.45 8.975 4.287 0.984 38.85 51.58

Table 2: A detailed inspection of construction timings and tree characteristics for the multiresolution quadtree compression for the CLOSED

CITY and CITYSCAPE scene. Rendering times dominate construction times, while creation of the sparse decomposition and quadtree encod-
ing constitutes around one third of the total. We also provide a comparison to the method from Kampe et al. [KSA15].

5. Results

In this section, we demonstrate the compression capabilities of our
method for five test scenes and evaluate its construction and run-
time. The CLOSED CITY scene (613K triangles) represents a typi-
cal open-world game setting with both large scale and detailed fea-
tures. The CITYSCAPE scene (11K triangles) is an example of an
architectural design model, while the VILLA scene (89K triangles)
as well as the SHIP scene (810K triangles) are examples of scenes
containing many fine scale details. The DRAGON scene (7.2M tri-
angles) consists of a scanned model with a very high polygon count.

We implemented larger parts of the construction algorithm on
the GPU using NVidia CUDA 7.5. The rendering is done using
OpenGL 4.3 and deferred shading, and our measurements are re-
ported for the evaluation of the shadows. All experiments were at a
resolution of 1920x1080 on Windows 7 using a PC with and Intel
i7-5820K CPU with 16GB of system memory, and an NVidia Titan
X GPU. We re-implemented the algorithm of Arvo et al. [AH05]

for the comparison to scanline compression. For the comparison
to DAG-based compression of voxelized shadows [SKOA14], we
used the implementation provided by the authors which includes
all the improvements from Kampe et al. [KSA15].

Quadtree compression Table 1 presents compression results for
single shadow maps using multiresolution quadtree compression.
We report memory footprints for the quadtree using the 1-byte
padding for inner nodes and a full 32-bit depth precision. In all
cases, our algorithm outperforms the previous approaches and is
able to compress even large resolutions in the order of hundreds
of thousands down to a few hundred megabytes. All results used
the bottom-up construction. Note that, in contrast to the previous
approaches, our method implicitly encodes a full multiresolution
representation of the shadow information.

Table 2 showcases detailed construction times and total node
quantity for several test scenes, as well as the construction time
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Figure 8: Top: An overview of the VILLA scene with an unfiltered
32K2 compressed shadow map. Bottom left: Close-up of filtered
shadows rendered in 2 ms using a 3x3 non-hierarchical PCF kernel.
Bottom right: Another viewpoint with a 5x5 non-hierarchical PCF
filtering kernel rendered in 5 ms.

Method 4K2 16K2 64K2 256K2

Shadow mapping 0.25 0.36 - -
Ours 0.495 0.52 0.54 0.71

Si
ng

le

Arvo et al. 0.39 0.51 1.04 2.6
Sintorn et al. 0.61 0.61 0.68 0.72

Shadow mapping 0.34 0.65 - -
Our PCF Naive 3.35 3.7 3.99 4.11

3×
3

Our PCF Optimized 1.61 1.72 1.89 2.04
Arvo et al. 0.85 1.25 4.18 9.7

Shadow mapping 0.62 1.46 - -
Our PCF Naive 7.7 8.49 8.9 9.32

5×
5

Our PCF Optimized 3.45 3.95 4.4 4.72
Arvo et al. 1.4 2.25 5.6 15.9

9×9×9 Sintorn et al. 0.78 0.84 0.93 0.96

Table 3: Traversal time in ms for a single scene (VILLA) for our
approach and comparing to standard shadow mapping and the ap-
proaches from Arvo et al [AH05] and Kampe et al. [KSA15]. The
latter is highly optimized for a cubic 9×9×9 kernel size and for a
fair comparison, we only report these numbers.

for the voxelized shadows approach from Kampe et al. [KSA15].
While the preprocessing time is not interactive for larger resolu-
tions, we report numbers in the same order of magnitude as the
highly-optimized implementation from Kampe et al. It can be seen
that most of the time is spent in the depth peeling in order to obtain
the initial depth bounds. The compression itself is mostly domi-

Figure 9: Top: An example of hierarchical PCF with a 3×3 kernel
in the CLOSED CITY scene. Anti-aliased shadows are present at
all distances. Bottom left: An inset showing anti-aliased shadows
closer to the camera. Bottom right: Another inset showing anti-
aliased shadows cast by a complex occluder in the distance.

nated by the bottom-up construction that creates the sparse decom-
position, and to a lesser extent by the encoding of the quadtree.
Finding the optimal per-level scale for 16-bit pointer compression
only takes up a small fraction of the overall construction time.

In Table 3 we report timings for single lookup performance and
different PCF kernel sizes. We compare our optimized PCF imple-
mentation against a naive one, standard shadow mapping (for sup-
ported resolutions), and the methods from Arvo et al. [AH05] and
Kampe et al. [KSA15] for the VILLA scene. Since it is naturally
provided, our implementations perform hierarchical PCF. Shared
traversal is significantly faster for PCF filtering than a naive imple-
mentation (up to 2 ms for a 3x3 kernel, and 4.7 ms for 5x5). The
method from Arvo et al. performs well for small PCF kernels at
low resolutions, but does not scale well. The voxelized shadow ap-
proach is highly optimized for 9x9x9 and 17x17x17 cubic kernels,
and achieves almost the same look-up times compared to single
lookups. Nevertheless, their filtering is done in 3D space and at
reduced precision, which potentially results in artifacts.

In Fig. 8 and Fig. 9, we present visual results for unfiltered, non-
hierarchical, and hierarchical PCF filtering using our method. It can
be seen that even high-frequency shadows from small features can
be faithfully rendered. Additionally, the insets in Fig. 9 show that
anti-aliased shadows at any view distance can be achieved by sam-
pling the appropriate level.

As a practical optimization, Sintorn et al. [SKOA14] store the
top 6 levels of the hierarchy in a simple dense grid for large resolu-
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Method 5123 1K3 2K3 4K3

Uncompressed 512 MB 4 GB 32 GB 256 GB
2D MHSM 11.5 MB 48.4 MB 205.8 MB 863.6 MB
3D MHSM 6.7 MB 27.8 MB 145 MB 689.2 MB

D
R

A
G

O
N

3D/2D ratio 57.9% 57.3% 70.4% 78.8%

Table 4: Memory footprint of 3D multiresolution octree-based
compression for a set of N images with different resolutions. As
a comparison we report the memory by naively using our 2D
quadtree compression for each image individually.

Method 256 × 2K2 256 × 4K2 256 × 8K2

Uncompressed 4 GB 16 GB 64 GB
Compressed size 45.85 MB 136.08 MB 456.32 MB

C
IT

Y
SC

A
P

E

Construction time 12.3 s 36.2 s 135.9 s

Table 5: Memory footprint and construction times of 3D multires-
olution octree-based compression for a non-cubic data set of 256
images taken a fixed-trajectory moving light source.

tions. This requires a constant 8 MB of memory, which is negligible
at higher resolutions. The numbers we report for their approach in-
clude this optimization. In our case, this would allow us to remove
the upper 11 levels of the quadtree and halve the number of tra-
versed levels on average. If evaluation time is more critical than
compression, this could potentially lead to faster lookups.

Octree compression We evaluate our 3D compression for high-
quality soft shadows and light motion, and compare it against
naively compressing each image separately with our 2D scheme.
Table 4 reports memory sizes for our image stack compression al-
gorithm for soft-shadows. In the table, we show the resulting mem-
ory footprint of compressing a set of shadow maps from an area
light separately using our quadtree structure and compressing them
with our octree approach. It can be seen that our 3D compression
provides an additional gain and is able to reduce the compression
rate down to 57.9% at best compared to 2D compression.

A visual impression of high-quality soft-shadows in the SHIP

scene is given in Fig. 11. Please note that the shadow penumbrae
generated in this way is geometrically correct and appears more
realistic as opposed to PCF filtering. The lookup time for 32 ran-
dom samples per pixel out of 512 depth maps is 14 ms, whereas
evaluating 64 samples takes 30 ms.

Finally, we evaluate our 3D compression scheme for non-cubic
image stacks for fixed-trajectory light sources in Table 5. We show
different viewpoints for the CITYSCAPE scene in Fig. 10. Since the
construction of the octree is based on cubic tiles, which need to be
kept small to fit in GPU memory, the viewport size for rendering
is restricted, leading to a large amount of render calls. Therefore,
rendering makes up most of the octree creation time.

6. Conclusion and Future Work

We presented a novel compression scheme for shadow maps based
on multiresolution hierarchies. We demonstrated that our approach
creates high-quality shadows for real-time rendering and achieves

Figure 11: Realistic soft shadows in the SHIP scene generated with
an octree from 512 depth maps of 1K2 resolution. Overall, the
compressed octree is stored in 57 MB. Top: A closeup using 32
shadow-map samples per pixel rendered in 14 ms. Bottom: An-
other viewpoint using 64 samples rendered in 30 ms.

high compression rates. For example, our method is able to com-
press a 32-bit shadow map with a resolution of 1.000k x 1.000k (un-
compressed 4 terabytes) down to 0.0045% at best. Another benefit
of our approach is that a multiresolution representation is highly
beneficial for fast hierarchical filtering. Using a set of coherent
shadow maps, we are able to create soft shadows or dynamic lights
on a fixed trajectory.

While our approach can handle non-closed geometry, these parts
as well as very thin objects lead to a reduction of compression
performance. This stems from the reduced size of the depth in-
terval, diminishing the possibility for creating homogeneous re-
gions. Nonetheless, this problem is shared by all related compres-
sion methods. Another issue is geometry that is viewed at grazing
angles due to the representation of intermediate surfaces as strictly
axis-aligned planes. In the future, we would like to investigate al-
ternative, non-linear representations to overcome these limitations.

Additionally, we would like to investigate non-regular subdivi-
sion schemes (e.g., based on multiresolution kd-trees) to provide
more adaptivity to the underlying depth signal. Still, it is not clear
how to efficiently construct these non-regular trees and if the over-
head of storing subdivision information introduces a too large over-
head. Finally, we want to investigate sparse decompositions that
avoid storing topological information for empty inner nodes, e.g.,
matrix trees [AT10].
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Figure 10: The CITYSCAPE scene shows shadows from different views taken from a compressed shadow map stack of 256 4K2 images taken
on a trajectory above the city. The octree has a compressed size of 136.08 MB (uncompressed 16 gigabytes) and is queried in under 1 ms.
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Performance capture systems are used to acquire high-quality animated 3D
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a multi-resolution structure from which a level of simplification can be se-
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the coarsest levels. We demonstrate the use of animated sphere-meshes for
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1. INTRODUCTION

Modern performance capture systems automatically generate high-
resolution 3D animated meshes from real-world objects and char-
acters [Vlasic et al. 2008; de Aguiar et al. 2008]. However, the
resulting output sequences are mostly targeted for "replay"; each
frame is represented independently.

In this context, high-level control mechanisms, based on geomet-
ric approximation, are often desirable to perform shape and motion
processing, analysis and editing. The underlying structures should
capture the global spatial embedding of the animated shape and
remain coarse enough to act as intuitive intermediate representa-
tions to edit the sequence. A number of such approaches have been
proposed to reconstruct control structures having a shape-driven
3D spatial embedding such as an animation skeleton or a defor-
mations cage. The former offers a natural layout to model articu-
lated objects while the latter is more suited for volume evolution
modeling and maps better to non-tubular geometries. Ideally, one
would like to benefit from both worlds, using a medial structure,
such as the medial axis transform [Blum 1967] (MAT), which pro-
vides both explicitly an inner skeleton and local thickness mod-
els. At a coarse scale, such a solution would be a valid alterna-
tive to both cages and skeletons. At finer scales, the volumetric
nature of the medial axis is problematic, requiring an untractable
amount of values, which describe geometry far away from the lo-
cation of interest (i. e., the surface). In the case of static meshes,
sphere-meshes [Thiery et al. 2013] tackle this problem. A sphere-
mesh is a multi-resolution mesh structure (edges, faces) indexing
a set of spheres, which are optimized to properly approximate the
input geometry locally, when linearly interpolated on the sphere-
mesh simplices. Such a volume approximation compactly repre-
sents the shape as a convolution surface or a (simpler) primitive
sum, proving useful for a variety of applications such as surface
analysis [Siddiqi and Pizer 2008], shadowing [Wang et al. 2006] or
proximity queries [Stolpner et al. 2012].

Unfortunately, volumetric structures and abstractions, such as
the MAT or 3D “blobs” [Muraki 1991], exist mostly for static
shapes. For example, the MAT cannot be used to represent consis-
tently animated 3D data, since the MAT of a shape varies strongly
and in unexpected ways along the animation, even for smooth and
isometric transformations of the shape.

In this paper, we approximate animated mesh sequences with
animated sphere-meshes. Our algorithm outputs a nested hierar-
chy of simplified animated sphere-meshes that evolve from sur-
face structures at fine scales to more volumetric structures at coarse
scales, keeping a consistent connectivity during the entire animated
sequence. Our work is the first to provide a time-consistent vol-
umetric approximation of an animated surface mesh at different
levels of detail. Existing applications using this representation can
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Fig. 1. Our algorithm takes as input an animated surface mesh (a), and outputs an animated sphere-mesh: a non-manifold mesh indexing a set of animated
spheres (b): spheres in red, edges in yellow, triangles in blue). The input animation can be approximated efficiently by interpolating the spheres on the
simplices of the sphere-mesh (c): interpolated edges in grey, interpolated triangles in blue). We perform a skinning decomposition of the animation (d) using a
sphere-mesh to define a level of detail. The resulting weight maps allow us to efficiently compress the data via linear blend skinning and to define new poses.

thus trivially be used directly on our data, when they could pre-
viously use static or manually-designed animated convolution sur-
faces only. We illustrate this point with an application to approx-
imate collision detection. As a second application, we show how
to perform automatic rigging of the input animation using our ani-
mated sphere-mesh as a rigging structure for the original data. The
resulting skinning weights are smooth enough for high-end shape
modeling applications and reproduce faithfully the complex defor-
mations learned from the input animation. Additionally, we intro-
duce mixed weights to benefit from geometrically salient structures
in regions which lack detailed motions along the animation.

Specifically, we make the following contributions (see Fig. 1):
—an approximation algorithm to build an animated sphere-mesh

from the input (Sec. 3);
—a spherical quadric error metric for animated meshes (Sec. 3);
—an error-minimization algorithm (Sec. 4.1.1), which is compati-

ble with temporal-coherence optimization (Sec. 4.2);
—an optional connectivity improvement (Sec. 4.3);
—a skinning decomposition method (Sec. 6.2), based on the cho-

sen simplification level of the animated sphere-mesh, resulting
in smooth weights considering either animation or geometric
weights, depending on their appropriateness.

We present the results for our approximation (Sec. 5) and skinnning
decomposition (Sec. 6.2), before discussing our work (Sec. 7).

2. RELATED WORK

Animated-mesh simplification. Contrary to static-mesh sim-
plification [Talton 2004], few approaches address animated-mesh
simplification. Furthermore, the output of existing methods is gen-
erally an animated triangle mesh [Mohr and Gleicher 2003; DeCoro
and Rusinkiewicz 2005; Kircher and Garland 2005; Landreneau
and Schaefer 2009; Zhang et al. 2010], or a set of triangle meshes
with minimal frame-to-frame connectivity transformations [Houle
and Poulin 2001; Huang et al. 2005; Payan et al. 2007]. Most of
these techniques rely on a quadric error metric (QEM) [Garland and
Heckbert 1997] to define the cost of collapsing an edge to a 3D ver-
tex by summing the QEMs over all frames. Such a solution exhibits
two major advantages. First, edge decimation is fast and efficient,
which is crucial for processing large animations; Second, starting
from consistent meshes and decimating corresponding edges in all
frames simultaneously, maintains the output connectivity along the
animation, which simplifies storage and editing. We build upon
such a solution but, in contrast to previous approaches, we opt for
an animated volumetric approximation, which has been shown to
be favorable for coarse simplifications [Thiery et al. 2013].

Skinning from animations. For purely geometric animated-
mesh compression, most work focuses on algebraic approxima-
tions (generally assimilated by non-linear dimensionality reduc-
tion), such as skinning decomposition techniques. The latter ap-
proximate the input animation via a single mesh (often, a frame
of the animation) and additional data in form of skinning weights
and a skeleton animation [de Aguiar et al. 2008; Le and Deng
2014], or simply a set of proxy-bone transformations [Kavan et al.
2010; James and Twigg 2005; Le and Deng 2012], which can be
either rigid or arbitrary. The input is then approximated by lin-
ear blend skinning (LBS) [Magnenat-Thalmann et al. 1988; Lewis
et al. 2000]. These methods tend to produce a single bone per rigid
region, considering the motion of the input mesh rather than its
complete animated geometry (e. g., if the head of an animal is glob-
ally rigid along the animation, a single bone will be found). Addi-
tionally, the skeleton connectivity is usually deduced from an adja-
cency graph of the rigid parts in the mesh. Our approach makes it
possible to select a skeletal domain taking the full animated geom-
etry into account and to choose an appropriate level of detail before
deriving a particular skinning decomposition.

Sphere-meshes. In [Thiery et al. 2013], the QEM decimation
algorithm [Garland and Heckbert 1997] is modified to approximate
the sum of squared distances of the tangent planes in a region to
a sphere instead of a point. Iteratively, the edge inducing the low-
est error according to this metric is collapsed. The resulting nested
hierarchy of sphere-based approximations can then be traversed in
real-time, making it possible to progressively navigate from sur-
face structures to volumetric structures by decreasing the number
of spheres. Nonetheless, this approach did not consider animation,
nor does there exist any technique for building an animated simpli-
fied volumetric representation. One important reason could be that
most existing techniques for the static case rely on a MAT, which
is inconsistent during animation when determined per frame.

Technical background

We briefly present the edge-collapse decimation framework de-
scribed in [Thiery et al. 2013], which we extend in our system. It
takes as input a surface mesh (preferably but not necessarily man-
ifold nor closed, and possibly containing some wire edges), and
outputs a nested hierarchy of coarser meshes with a sphere associ-
ated with each of the vertices. The input mesh is then approximated
at multiple resolutions by linearly interpolating the spheres on each
of the triangles and edges of a sphere-mesh in the hierarchy.
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Computation from triangle meshes. At
first, each vertex vi is associated with a region of
the mesh called its barycentric cell Pi (see inset
figure). In each simplification step, an edge is col-
lapsed and the region associated with the newly-
created vertex is set as the union of the regions
of the two collapsed vertices. The cost associated
with each edge collapse is defined as the integral
of the squared distance from the tangent planes
in the region to a 3D sphere, whose radius and position are opti-
mized to minimize this energy. All edges are collapsed iteratively,
and these collapse operations are ordered by increasing cost in a
priority queue.

When optimizing the geometry of a sphere approximating a re-
gion, its diameter is constrained to be smaller than the width [Gärt-
ner and Herrmann 2001] of the region, essentially to avoid impos-
sibly large spheres approximating planar surfaces.

The cost of a partition into K regions {Ik, sk}k≤K is

C({Ik, sk}k≤K) =
∑
k≤K

QIk (sk)

where {Ik}k≤K is a partition of the vertex’ barycentric cells
{Pi}, QIk is the sum of the spherical quadric error met-
rics (SQEMs) of the vertices in the set Ik and sk is a
sphere associated with the region k. Formally, QIk (q, r) =∑
i∈Ik

∫
ξ∈Pi

SQEM(pξ,nξ)(q, r)dσξ, where

SQEM(pξ,nξ)(q, r) := (nξ
T · (pξ − q)− r)2 (1)

is the squared distance between the plane intersecting pξ ∈ R3 with
normal orientation nξ ∈ R3 and a sphere s := (q, r) ∈ R3 ×R+,
consisting of its center q and radius r, and dσξ denotes the infinites-
imal surface element. The sphere sk is optimized to best approxi-
mate the region Ik (in the sense that it minimizes its associated
quadric QIk ). As explained in detail in [Thiery et al. 2013], the
SQEM is sensitive to the normal orientation, and minimizing it
while constraining the radius of the solution to be positive prevents
approximating concave patches with a single sphere.

Hierarchy traversal. At each decimation step the locations
and radii of the collapsed and created spheres are recorded, as well
as the edges/triangles that are deleted or created. All these events
are stored in an array, representing a sphere-mesh hierarchy. After
the decimation process, the user can navigate in real-time in the
sphere-mesh hierarchy to find the desired level of detail. Following
Hoppe et al. [Hoppe 1996], we noteM0 the input mesh, andMτ

the mesh resulting from the τ th recorded edge-collapse operation
(i. e.,Mτ is obtained by collapsing an edge ofMτ−1).

Surface extraction. A surface approximating the input mesh
can be extracted from a sphere-mesh as a convolution sur-
face [Bloomenthal and Shoemake 1991] between the base mesh
and the spheres. In our work, spheres are interpolated along the
edges and faces of the base mesh. An interpolated edge corresponds
therefore to a cone cut by orthogonal planes at each edge extremity,
and an interpolated triangle corresponds to a triangular prism with
3 faces from the edges extrusion and two triangular faces represent-
ing the lower and upper crust. For the sake of simplicity, although
convolution-surface extraction algorithms exist [McCormack and
Sherstyuk 1998; Zanni et al. 2013], we mesh a sphere-mesh (if
needed) by contouring the signed distance to the sphere-mesh using
a marching cube algorithm.

Fig. 2. The input animation is approximated with a sphere-mesh with 3

spheres with time-consistent connectivity. On the left, two spheres on top
almost coincide because the sphere-mesh geometry is optimized w.r.t. the
first frame, while this choice is not adequate for the complete animation.
On the right, the sphere-mesh geometry is optimized w.r.t. all frames simul-
taneously, resulting in a geometry that is better suited to approximate the
input animation.

Rendering. The sphere-mesh primitives are rendered effi-
ciently on the GPU using the geometry shader [de Toledo and Lévy
2008], without any surface extraction.

3. ANIMATED SPHERE-MESHES

Problem statement. We aim at approximating a mesh anima-
tion with F frames, (meaning F different triangles meshes hav-
ing the same connectivity) with an animated sphere-mesh (a mesh
where each vertex is associated with a time-varying sphere). The
linear interpolation of these spheres across the sphere-mesh trian-
gles and edges results in the animated approximating shape.

Approximation algorithm overview. We cast our shape ap-
proximation problem into a partitioning of the barycentric cells P fi
around each mesh vertex vi in M0. The resulting regions of the
partitioned animated input mesh are approximated via animated
spheres. These spheres, together with the connectivity (deduced
from the dual of the partition), results in an animated sphere-mesh.

We initialize the animated sphere-mesh withM0, and simplify
it by iteratively collapsing its edges (equivalently, this means that
regions are merged in the animated mesh), while minimizing a cost
function. The output is, thus, an animated sphere-mesh hierarchy.

For a given frame f ∈ J1, F K, the SQEM Qfi for a barycentric
cell P fi describes the squared distances of the tangent planes in P fi :

Qfi (q, r) :=

∫
ξ∈Pfi

SQEM(pξ,nξ)(q, r)dσξ. (2)

The cost of a partition into K regions {Ik, {sfk}f≤F }k≤K is then

C({Ik, {sfk}f≤F }k≤K) :=
∑
k≤K

∑
f≤F

QfIk (sfk) (3)

where {Ik}k≤K is a partition of barycentric cells and sfk = (qkf , r
k
f )

is a sphere approximating region Ik in frame f (in the sense that
it minimizes QfIk :=

∑
i∈Ik Q

f
i ). By combining the cost of all

frames, the entire animation is taken into account. This step is cru-
cial (see Fig. 2); a simple three-sphere fit to a capsule in the first
frame (dashed box) is less suitable than a three-sphere approxima-
tion considering the entire sequence.
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Radius constraints. Similarly to [Thiery et al. 2013], we
bound each sphere’s diameter during the optimization process,
to avoid overly large spheres approximating planar regions. This
bound, R(PIk ) for a region Ik of the barycentric cell partition, is
computed based on an analysis of Ik over the animation. Since this
step is linked to the spheres optimization, the details are given in
Sec. 4. To enforce smoothness in the reconstruction, we also con-
strain each sphere to have a constant radius over the animation. The
motivation is that many animations (e. g., character and animal ani-
mations, etc. ) are meant to be volume-preserving, in which case the
radius should be constant. We discuss this point further in Secs. 4.2
and 5. Formally, it implies:{

r(sfk) = rk ∀ f ∈ J1, F K
0 ≤ rk ≤ R(PIk ) = minf∈J1,F KR(P fIk )

(4)

Quadrics in R3F+1

To apply the simplification process on animated meshes, we need:

Qvi(s̄) :=

F∑
f=1

∫
ξ∈Pfi

SQEM(pξ,nξ)(qf , r)dσξ, (5)

where Pi := {P fi }f≤F is the F -tuple of barycentric cells of vertex
vi and s̄ an animated sphere. In this section, we derive a closed-
form expression for this quadric.

Since we enforce that all F instances of the spheres
have the same radius, we can denote an animated sphere
s̄ ≡ (q1

T, · · · , qF T, r)
T ∈ R3F+1, i. e., the concatenation of its F

sphere centers {qf}f≤F and radius r.
Noting that each barycentric cell Pi is contained in the set of

triangles tj ∈ T1(vi), where T1(vi) is the set of triangles adjacent
to vertex vi, and that the distance from an oriented point (pξ, nξ)
to a sphere (qf , r) is constant on any triangle, we can rewrite Eq. 5:

Qvi(s̄) =
∑

tj∈T1(vi)

∑
f

wfijSQEM(p
f
j ,n

f
j )

(qf , r), (6)

where pfj (resp. nfj ) denotes the center (resp. normal) of the triangle
tfj (tj in frame f ), and wfij := area(tfj )/3.
Qvi(s̄) is itself an error quadric, as it is the sum of quadrics

Qvi,tj :=
∑
f

wfijSQEM(p
f
j ,n

f
j )

for tj ∩Pi. To find an expression

for Qvi , it is thus sufficient to sum up the quadrics Qvi,tj , which
are given by:

Qvi,tj =:
1

2
s̄T · Āij · s̄− b̄T

ij · s̄ + c̄ij , (7)

with 

Āij :=


M1 N1

. . .
...

MF NF

N1
T · · · NF

T W

 ∈ S3F+1

b̄ij :=
(
b1

T, · · · , bF T, B
)T ∈ R3F+1

c̄ij :=
∑
f (Nf

T · pfj )2 ∈ R,

(8)

where Sn denotes the set of symmetric matrices of size n× n and
Mf := 2wfijn

f
j· n

f
j

T ∈ S3

Nf := 2wfijn
f
j ∈ R3

W := 2
∑
f w

f
ij ∈ R

{
bf := (Nf

T· pfj )nfj ∈ R3

B :=
∑
f (Nf

T· pfj ) ∈ R

Importance-driven distribution. Note that it is also possi-
ble to introduce a spatially-varying importance function Kf (ξ) in
the process (e. g., taking into account the saliency of the mesh at
each frame), by setting wfij =

∫
ξ∈Pfi ∩t

f
j
Kf (ξ)dσξ (which justi-

fies indexing all terms over both the vertex and the triangle indices
in previous equations). Following [Thiery et al. 2013], for all re-
sults, we used Kf (ξ) := 1 +BBD2(κ2

f (ξ)2 + κ1
f (ξ)2), where

κ2
f (ξ)2 + κ1

f (ξ)2 denotes the total curvature at point ξ in frame
f and BBD the average over the F frames of the bounding-box
diagonal length. This measure prevents very small structures from
disappearing too early during the optimization.

4. APPROXIMATION ALGORITHM

The simplification algorithm partitions the original meshM0 into
regions by successively simplifying a sphere-mesh. The initial
sphere-mesh is defined as the input mesh, along with the quadrics
Qi associated with the barycentric cells of each vertex vi (follow-
ing Eq. 2). The spheres s̄i of the sphere-mesh are optimized as
s̄i = argmins̄Qi(s̄). The resulting approximation error is then
Qi(s̄i). The closed-form solution for the minimization process is
presented in Sec. 4.1.

The algorithm performs one edge collapse of the sphere-mesh at
a time, the one leading to the lowest approximation error. To this
extent, each possible edge collapse together with the resulting ap-
proximation error is placed in a priority queue Q , i. e., given an
edge linking two vertices u and v with corresponding error quadrics
Qu and Qv , this edge (u, v) is placed in Q with the approxima-
tion error for the quadric Qu +Qv as a priority.

When taking the top edge (u, v) from Q , we collapse it in the
sphere-mesh to a new vertex w with Qw := Qu + Qv . Remain-
ing edge-collapse suggestions involving u and v are removed from
Q while, for all edges from w to a neighbor x, the (w, x) edge-
collapse suggestion is added to Q . The algorithm iterates until
Q is empty. Notice that Qw implicitly encodes the sphere associ-
ated with w: the mesh structure mainly encodes connectivity, while
position and radius at vertices can be derived via the minimization
of the quadric error.

Radius bound computation. Following [Thiery et al. 2013],
when determining the minimizing sphere, we bound the maximal
radius to avoid flat regions being approximated by overly large
spheres, as mentioned in Sec. 3. Specifically, for two vertices u
and v with associated regions Pu and Pv , Thiery et al. suggest
setting the radius bound to R := 3/4W(Pu ∪Pv), whereW(X )
denotes the width of the set X inR3.

The width, i. e., the minimum extent over all directions [Gärt-
ner and Herrmann 2001], is computed as follows. At the initial-
ization stage, we compute the extent of the barycentric cell P fi of
the vertices vi along a given set of directions kj ∈ R3 (|kj | =

1). The extents are given by Mj(P
f
i ) := max

ξ∈Pfi
(ξT · kj) and

mj(P
f
i ) := min

ξ∈Pfi
(ξT · kj), and are used to define a width

W(P fi ) := minj |Mj(P
f
i ) − mj(P

f
i )| for frame f . Finally,

the width W(Pi) := minf (W(P fi )) is defined as the min-
imum over the F frames. The width of P fu ∪ P fv is com-
puted from the extents of P fu and P fv , which are obtained via
Mj(P

f
u ∪ P fv ) = max(Mj(P

f
u ),Mj(P

f
v )) and mj(P

f
u ∪ P fv ) =

min(mj(P
f
u ),mj(P

f
v )). During a collapse, we update the extents

for direction kj , following these formulae.
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Triangle inversion. Additionally, we suggest forbidding col-
lapsing two vertices as soon as it induces triangle inversions. For
each vertex v, we check all triangles t ∈ T1(v) and detect an in-

version when
∑
f

√
area(tf )area(t′f )n(tf )T · n(t′f ) < 0, with t′

being the geometry of t after the collapse. In other words, we test
if large triangles are inverted for a significant amount of frames.

4.1 Sphere Optimization

Here, we describe the derivation of the minimizer argmins̄Q(s̄),
under the radius constraints 0 ≤ r ≤ R.

4.1.1 General case. For convenience, in the following, we
keep the notations introduced in Eq. 8 to describe the block ele-
ments of the matrix Ā and the vector b̄, which correspond to the
quadric we want to minimize (the block structure never changes).

Quadric Mininimization (invertible):.
Minimize E(s̄) = 1

2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 8, subject to 0 ≤ r ≤ R.
Assuming all block matrices Mf are invertible, the global min-

imizer s̄∗ (without inequality constraints) is given by Ā · s̄∗ = b̄

(⇔
−→̀
s̄E(s̄∗) = ~0), which leads to:

r∗ =
B−

∑
f Nf

T ·M−1
f
·bf

W−
∑
f Nf

T ·M−1
f
·Nf

q∗f = M−1
f · (bf − r∗Nf ) ∀f ∈ J1, F K

The solution to the problem with inequality constraints is given by

{
r = min(max(r∗, 0), R)

qf = M−1
f · (bf − rNf ) ∀f ∈ J1, F K

(9)

If the denominator (W −
∑
f Nf

T ·M−1
f ·Nf ) in the expression

of r∗ is null, we set r = 0 and qf = M−1
f · bf ∀f . However, this

measure is only a sanity check to avoid numerical instabilities and
this case rarely occurred in our experiments.

4.1.2 Degenerate cases. Care must be taken if some of the ma-
tricesMf are non-invertible (i. e., the quadrics are degenerate). For
the sake of simplicity, we assume that J1,DK are the indices of the
degenerate quadrics.

In the context of edge-collapse simplification, such cases are usu-
ally handled by constraining the optimal sphere position qf to be lo-
cated on the edge (uf , vf ) which is about to be collapsed [Garland
and Heckbert 1997]: qf = uf + λf ~df , with ~df := vf − uf . This
restriction leads to a quadratic problem of sizeD + 3(F −D) + 1
with 2D + 2 linear inequality constraints. Solving this problem via
active-set methods (see [Lawson and Hanson 1974]) is very costly
for high-dimensional problems with a high number of inequalities
and, in our experiments, it happened that all F quadrics were de-
generate. Therefore, we constrain all variables λf to equal a single
value λ, i. e., qf = uf + λ ~df ∀f ∈ J1,DK, leading to the follow-
ing quadratic problem of size 3(F −D) + 2:

Quadric Minimization (not invertible):.
Minimize E(s̄) = 1

2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 10, subject to 0 ≤ λ ≤ 1 and 0 ≤ r ≤ R.

Ā =



µ ν

MD+1 ND+1

. . .
...

MF NF

ν ND+1
T · · · NF

T W


∈ S3(F−D)+2

b̄ = (β1, bD+1
T, · · · , bF T, β2)

T ∈ R3(F−D)+2

s̄ = (λ, qD+1
T, · · · , qF T, r)

T ∈ R3(F−D)+2

(10)

with the various scalars µ, ν, β1, β2 defined as
µ :=

∑
f≤D

~df
T
·Mf · ~df ν :=

∑
f≤D

Nf
T· ~df

β1 :=
∑
f≤D

(bf −Mf · uf )T· ~df β2 := B −
∑
f≤D

Nf
T·uf

For this problem, active set methods are efficient because, despite
its size, the number of inequalities is low. Alternatively, we provide
a closed-form solution for the minimization, which we used for all
examples and results, in Appendix A.

4.2 Temporal coherence

The use of a constant sphere radius implicitly captures deforma-
tions and leads to a high consistency. Nonetheless, the position of
the spheres being optimized per-frame can lead to loss of tempo-
ral correlation with the input at very coarse scales, depending on
the input. This section describes an algorithm to improve temporal
coherence, while only slightly reducing approximation accuracy.

One could enforce a smooth trajectory for each sphere. How-
ever, this approach is restrictive because it is sensitive to the time-
sampling of the input and not all sequences are smooth animations.
Further, enforcing directly null time-derivatives on trajectories re-
sults in unnatural and overly smooth animations.

Instead, we add a soft-attach term to the center of the sphere in
each frame during the optimization, biasing its position towards a
point moving consistently along the animation of the mesh. To this
extent, we choose the barycenter of the corresponding region in
M0, to which the vertex in meshMτ is associated with. Hereby,
we avoid assumptions about the sampling of the input animation
and mimic the temporal coherence of the input.

Formally, for an edge (u, v) with corresponding error quadrics
Qu and Qv , the associated quadric becomes Quv = Qu + Qv +
δTCquv instead of Qu + Qv , with δTC the temporal coherence
weight. Let σfu and cfu be the area and the mean point of the re-
gion Pu corresponding to the vertex u in frame f , we then define
quv:

quv(s̄) =
∑
f≤F

σfuv||qf − cfuv||2, (11)

where σfuv = σfu + σfv , cfuv = σ
f
uc
f
u+σ

f
v c
f
v

σ
f
u+σ

f
v

. In other words, quv(s̄)

defines the sum of the squared distances between the sphere centers
and {cfuv}f≤F over all frames. In practice, following Eq. 8, the
following elements need to be added to the quadric Qu +Qv:

Mf ←Mf + 2δTC · σfuv · I3 ∀f ≤ F
bf ← bf + 2δTC · σfuv · cfuv ∀f ≤ F
c̄← c̄+ δTC ·

∑
f≤F σ

f
uv||cfuv||2

(12)
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6 • J.-M. Thiery, E. Guy, T. Boubekeur, and E. Eisemann

Fig. 3. with δTC = 0, no connectivity optimization. For each animation, we show the input mesh (gold), the constructed sphere-mesh with transparent input,
and the interpolated sphere-mesh. Solid (resp. dashed) curves plot distances between our (resp. QEM) approximation and the input. Red curves: Hausdorff
distance (H), blue curves: mean distance from the approximation to the original model (M21), green curves: mean distance from the original model to the
approximation (M12) (distances in percentages of the bounding-box diagonal).

4.3 Connectivity optimization

Most edge collapses, especially for the first levels, maintain a
good connectivity. A verification after each edge collapse is thus
not justified due to the involved costs. However, at coarse scales,
undesired artifacts in the form of large and thin triangles cross-
ing the original surface can occur, which is a typical pitfall of
edge-decimation-based simplification algorithms. These artifacts
are more likely to occur whenever the associated regions in M0

differ significantly from the Voronoï regions of the vertices (in our

context, spheres) ofMτ . This last observation motivated the use of
(centroïdal-) Voronoï tesselation algorithms, which are considered
the most effective for 2D surfaces and 3D volumes remeshing. It
also inspires ours, which exhibits a similar behaviour.

We propose to optimize the connectivity only after selecting the
desired level of simplification τ . We start by associating each vertex
vi of the original meshM0 to a set of candidate sphere indices S(i)
inMτ , which are the sphere to which vi was collapsed and all its
adjacent spheres inMτ . This set is relatively small in practice, as it
is bounded by the highest vertex degree inMτ plus one. For each

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month 2015.
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Table I. Performance and timings for ou animated sphere-mesh approximation algorithm. The initialization time excludes the animation
parsing. #S / #E / #T: number of spheres, wire edges, and triangles in the output sphere-mesh. We compare our approximation with QEM

simplification for the same number of primitives (smallest error in bold). H, M21 ,M12 (see Fig. 3) are averaged over the animation.

INIT. DECIM. ANIMATED SPHERE-MESH QEM SIMPLIFICATION

INPUT ANIM. (#V / #T / #F) (MS) (MS) (#S / #E / #T) H M12 M21 (#V / #T) H M12 M21

Capoeira (19988 / 39972 / 499) 65338 186482 20 / 9 / 12 2.45 0.46 0.47 20 / 31 6.05 1.58 1.38
Samba (9971 / 19938 / 175) 8037 16302 40 / 12 / 46 3.05 0.37 0.39 40 / 60 4.97 1.05 0.86
Jump (10002 / 20000 / 150) 7221 15488 10 / 6 / 4 7.62 1.53 1.02 10 / 10 11.11 1.47 1.76
Flamingo poses (26394 / 52895 / 11) 2252 5628 20 / 8 / 10 3.03 0.62 0.67 20 / 21 7.79 0.96 1.89
Horse-gallop (8431 / 16843 / 48) 2338 5394 46 / 17 / 50 3.06 0.41 0.43 46 / 76 4.47 0.89 0.89
Horse-collapse (8431 / 16843 / 54) 2554 4915 46 / 9 / 61 3.84 0.65 0.66 46 / 76 5.29 0.93 0.85
Hand (7929 / 15855 / 44) 2120 4412 34 / 8 / 44 6.11 0.55 0.47 34 / 62 7.77 1.44 1.26
Cat poses (7207 / 14410 / 10) 489 1283 85 / 5 / 142 2.86 0.38 0.37 85 / 166 3.34 0.66 0.70

vertex vi an index si among S(i) is chosen as the one minimizing
the sum of distances along the animation:

si = argmin
({qf }f≤F ,r)∈S(i)

∑
f≤F

(
||vfi − qf || − r

)
The connectivity ofMτ is redefined entirely based on the dual of
the sphere-index labeling inM0: (i) for each triangle (va, vb, vc) of
M0 whose vertices are labelled with three different spheres sa, sb
and sc, the corresponding triangle (sa, sb, sc) and edges are added,
unless they already exist; (ii) for each triangle or edge ofM0 whose
vertices have two different sphere labels, a corresponding edge is
added toMτ , unless it already exists.

5. RESULTS

We implemented our shape approximation method in C++ and re-
port its performance on an Intel Core2 Duo running at 2.5 GHz
with 4GB of main memory. The algorithm is automatic and com-
putes the full hierarchy. Afterwards, the user controls one param-
eter (the target number of spheres). In Fig. 3, we show results on
performance-capture, as well as on synthetic animations.

We report timings and distances to the input (computed with
Metro [Cignoni et al. 1998]) in Table I, which serve as numeri-
cal comparisons to QEM simplification. For a fair comparison, we
allow triangles to degenerate to wire edges for QEM. However, it
results in invalid shapes, since QEM does not model volumes.

Sphere-meshes tend to better approximate shapes than tradi-
tional surface meshes for low number of primitives. We roughly
halve reconstruction errors for the Capoeira, Samba, Jumping and
Flamingo sequences, using various numbers of spheres ranging
from 10 to 42. In contrast, if many primitives are required (with
respect to the geometric complexity of the shape), sphere-meshes
tend to have smaller reconstruction-error ratios (e. g., roughly 1.2
for the Hand and Cat sequences, when approximating with 32
and 85 spheres respectively). Sphere-meshes and traditional QEM-
driven triangle meshes start with the same animated input mesh.
Hence, they are basically equivalent at the first levels of simplifi-
cation but, with a decreasing number of primitives, sphere-meshes
evolve progressively from surface to volumetric structures.

Interestingly, when comparing the Horse-gallop and Horse-
collapse sequences, which both contain 46 spheres, we observe
that animated sphere-meshes tend to become volumetric if the in-
put mesh deformations are volume preserving. Consequently, the
sphere-mesh nicely adapts and behaves either more like a skeleton
or like rigs depending on the type of deformation; e. g., a skele-
ton could animate efficiently the Horse-gallop sequence, whereas a

Fig. 4. Samba model animation approximated with animated sphere-
meshes with 7, 22, 32 and 50 spheres.

Fig. 5. Results obtained with a time-varying sphere radius.

set of surface rigs would be more efficient at animating the Horse-
collapse sequence.

Fig. 4 illustrates a similarly challenging example because the
Samba model contains large tubular parts (legs, arms, etc. ), which
can be approximated by single edges, while the dress model is bet-
ter represented using surface structures i. e., it is highly deformed
in a non-rigid way during the animation. Even with a low number,
such as 22 spheres, our sphere-meshes recover the fine details of
the dress as well as the simpler arm and leg structures. When us-
ing only 7 spheres, an abstract structure taking a plausible skeleton
form emerges. Note that the extracted surface remains manifold,
even in presence of wire-edges in the sphere-mesh.

Analysis. Fig. 5 shows results where each sphere is allowed to
have a time-varying radius, which is bounded per-frame only. The
left side shows how strongly the resulting sphere-mesh varies, even
for “volume-constant” animations. The right side shows that the
resulting sphere-mesh no longer exhibits a proper structure in the
collapsed parts, which leads to an unnatural connectivity as well
(see Fig. 3 for a comparison to our approach). Our solution results
in an improved sphere placement and behavior during animation,
which makes it applicable for skinning decompositions (see next
Section). The latter would be impossible when using varying radii.

Fig. 6 illustrates the effect of our temporal coherence method.
Connectivity and preserved features might change for the same
number of spheres and produce more natural simplifications for in-
put animations exhibiting strong temporal coherence. In particular,
as emphasized within the figure, spheres remain in the vicinity of
the same input vertices and avoid sliding over the geometry. In this
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8 • J.-M. Thiery, E. Guy, T. Boubekeur, and E. Eisemann

Fig. 6. Comparison of results obtained without (top row) and with tem-
poral coherence (bottom row, δTC = 105) using 15 spheres. Notice how,
without our temporal coherence method, the spheres (A,B,C,D) slide along
the mesh to best fit the input mesh.

Fig. 7. Comparison of results obtained without and with connectivity im-
provement for various settings.

example, it is also visible that our solution is less dependent on the
time sampling of the input sequence. Our temporal constraints are
based on the coherence of the original input, which makes sure that
no overly smooth motion is enforced where it is not present. Con-
sequently, the use of the temporal coherence constraint also leads
to more constant-length edges in the simplified animated sphere-
mesh over the course of the animation, at the cost of a slighty less
optimal geometric approximation.

Fig. 7 illustrates the impact of the connectivity optimization step.
While the Hausdorff errors might already be acceptable before this
optimization, and are not necessarily reduced significantly by a
modification of the sphere-mesh connectivity, some elements might
be undesirable. An example is the presence of primitives, such as
elongated triangles, which cross the input surface or lead to lo-
cally inverse connectivity. Fig. 7 illustrates several such cases. In
the first example (left), the tail of the horse, defined as a long tri-
angle, crosses the surface due to a non-convex partitioning of the
input mesh M0. The second example (middle) depicts a triangle
which introduces an unwanted link, with the ankle of the left leg be-
ing connected to the hip of the right leg. Finally, the third example
(right) shows that, due to inadequate local connections, complex
geometry inversions are introduced. All these connectivity prob-
lems are solved by our non-parametric optimization step, as illus-
trated next to the circled issue.

6. APPLICATIONS

Our algorithm is the first to approximate automatically animated
surfaces using an animated convolution surface. Existing applica-
tions using this representation can thus trivially be used directly
with our data, when they could previously use static or manually-
designed animated convolution surfaces only. The first applica-
tion we showcase, approximate collision detection with animated
meshes (Sec. 6.1), is a simple illustration of this. The second appli-
cation we present, skinning decomposition using our sphere-mesh
as decomposition domain (Sec. 6.2), is more involved, and relies on
the fact that our approximation method outputs geometries which

Fig. 8. We compare the use of an animated sphere-mesh (a,b,c) against
a standard mesh (d,e,f) for approximate collision detection with particles.
The normal field on large tubular structures is smooth, and so are the result-
ing bounces on the sphere-mesh (compare SQEM with QEM for the same
number of primitives). When using 16 vertices (e), a large number of parti-
cles go through the input shape and fail to bounce, whereas our 16-sphere
approximation (b) provides acceptable results.

Fig. 9. a) The input for the skinning decomposition is a user-selected LoD
of the animated sphere-mesh hierarchy, which is traversable in real-time. b)
A few iterations of successive optimizations of the bones’ transformations
(T) and the vertex’ weights (W).

are compatible with the specific nature of the input animations (as
already discussed when comparing the Horse-gallop and Horse-
collapse sequences in Sec. 5).

6.1 Approximate collision detection

Our animated sphere-mesh can be used as a direct low-budget sub-
stitute for collision detection with the animated object. By testing
the distance from a point to the primitives of the animated sphere-
mesh directly, approximate collision detection can be achieved at
high frame-rates without the building of any complex structure.

Fig. 8 illustrates the advantages of such a solution for ap-
proximate collision detection. An animated sphere-mesh with few
spheres presents enough geometric details to be a cheap, yet plau-
sible, substitute to the complete animated mesh. Compared to low
detail surface meshes (see Fig. 8), the normal field of low detail
sphere-meshes is smooth enough to avoid directional artifacts after
the bounces of the particles. In Appendix B, we give formulas for
the construction of the sphere-mesh primitives, as well as for inter-
secting them with particles (represented as spheres on segments).

6.2 Skinning decomposition with rigid bones

We use a strategy similar to [Le and Deng 2012] and decom-
pose the animation on our sphere-mesh via linear-blend skinning
(LBS). The bones for LBS correspond to the spheres of the sphere-
mesh, which is provided by the user as input for our decomposition
scheme. The user can therefore chose any level of complexity he
desires to obtain for the decomposition. The output of the decom-
position is a set of weights {wij}, which rig the rest pose to the
sphere-mesh, and bone transformations {Rfj , T

f
j }, which, together

with the weights, allow for reconstruction of the input animation.
Further, the artist can use the derived weights with the sphere-mesh
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to create new animations exhibiting the input animation’s partial
motion.

Notations: vfi is the position of vertex i in frame f , µfi is the
area of its barycentric cell in frame f , B(i) is the set of bones that
have an influence over vertex i,wij is the weight of bone j at vertex
i, pi is the rest pose vector of vertex i in R3 (we initialize the rest
pose with the first frame), and Rfj and T fj are the rotation and the
translation of the bone j in frame f . Please note the slight abuse of
notation, allowing us to consider a bone j as an index.

Constraints: {wij} are optimized under a non-negativity con-
straint (wij ≥ 0 ∀i, j), an affinity constraint (

∑
j wij = 1 ∀i),

and a sparsity constraint,i. e., a small setB(i) := {j|wij 6= 0 ∀j},
which is the set of bones having an influence on vi. While the spar-
sity mostly serves acceleration purposes, the other two constraints
are important for stability during editing processes.

In contrast to [Le and Deng 2012], we fix B(i) once and for all
based on the animated sphere-mesh, which serves as the skeletal
domain for the decomposition. For a given vertex vi in the first
frame, we define B(i) as the set of those sphere-mesh spheres
whose Voronoï cells on the input mesh are adjacent to the cell in
which vi is located. In other words, all adjacent spheres have a po-
tential influence, but none of the others.

Fig. 9 illustrates the optimization process. At first, the user picks
a level-of-detail from the animated sphere-mesh hierarchy, which is
an intuitive way to give control over the degrees of freedom desired
in the output skinning decomposition. At each step, we optimize
the vertex weights, while fixing the bones’ transformations Rfj and
T fj . Next, we optimize these bone transformations bone-by-bone
and frame-by-frame, while fixing the vertex weights. Finally, we
also optimize for the rest pose after a few (typically 5) iterations.

Transformations optimization. Similarly to [Le and Deng
2012], we optimize the transformations of the bones one after the
other. When optimizing the one of bone j, we minimize

E
R
f
j ,T

f
j

=
∑
i∈I(j)

µfi ||wij(R
f
j · pi + T fj )− qfij ||2 ,

for all frames f , where qfij is the resulting point without the con-
tribution of bone j: qfij := vfi −

∑
k∈B(i),6=j wik(Rfk · pi + T fk ),

with Rfj and T fj as variables, I(j) denoting the vertices that are
influenced by the bone j (i. e., I(j) = {i|j ∈ B(i)}), under the
only constraint that Rfj is a rotation. Details for this optimization
can be found in [Le and Deng 2012], up to the fact that the reader
should introduce the various weights {µfi } in the formulas.

Minor bones As explained in the work of Le and Deng [2012],
such a transformation-optimization process can introduce in-
stabilities with bones that have minor influence over vertices
({j|

∑
i w

2
ij < ε}). We detect them using the same criterion (bone

j is unstable if
∑
i w

2
ij < 3), and solve the issue by setting the

transformation of the bone to an average of the transformations of
its adjacent bones (following the sphere-mesh connectivity).

Vertex rest-pose optimization. We optimize the rest pose pi
of each vertex vi, by minimizing for each vertex vi independently

Epi =
∑
f

µfi ||(
∑
j∈B(i)

wijR
f
j ) · pi − (vfi −

∑
j∈B(i)

wijT
f
j )||2 ,

which boils down to solving a simple quadratic system inR3.

Mixed Weights optimization. Previous work (e. g., [Le and
Deng 2012]) optimize weights with the sole purpose of reconstruct-

ing the input animation. The control structure (i. e., the bones) and
the weights, which result from this process, exhibit a level of com-
plexity that is directly driven by the complexity of the input anima-
tion (i. e., a completely rigid animation will result in a single bone
with all mesh vertices having a weight of 1 w.r.t. this bone, render-
ing this decomposition useless for artistic editing, for example).

In contrast, we provide the control structure as input to our
skinning decomposition scheme, and we enforce the desired level
of complexity of the weight maps. We do so by initializing our
weights with geometric weights (we use [Baran and Popović 2007],
but our method makes no assumptions on the input geometric
method, and other geometric skinning weights could be used in-
stead (e. g., [Jacobson et al. 2011]), and progressively refine our
weights as to better fit the input animation.

The core idea is that geometric weights should be favored in re-
gions of the mesh where they are able to reproduce the input an-
imation, as they allow for more general transformations. In other
regions of the mesh, where these are not able to reproduce the input
animation well, the weights should be learned from the animation.

We optimize the weights {wi·}t+1 of vertex i at step t + 1 by
minimizing the following energy:

Et+1
wi

=αt+1
i

(∑
f

µfi ||
∑
j∈B(i)

wt+1
ij (Rfj · pi + T fj )− vfi ||2

+ γ
∑
f

µfi
∑
j∈B(i)

(wt+1
ij − w̃tij)2

)
+ (1− αt+1

i )γ
∑
f

µfi
∑
j∈B(i)

(wt+1
ij − wtij)2,

where γ := 10−4BBD2 is a normalization constant that com-
pensates for the differences in the range between reconstruction
and weight errors based on the bounding box diagonal, w̃tij :=∑
vk∈B(vi;3σ)

hσ(vi, vk)wtkj is a filtered version of {wtij} (we use a

Gaussian kernel over a geodesic disk centered in vi, with σ equal-
ing 3% of the bounding box diagonal), and αt+1

i is the blending
factor between animation-driven weights and the geometric alter-
native. αt+1

i should be close to one if information needs be ex-
tracted from the input animation. Otherwise, αt+1

i should be low,
leading to mostly geometric weights being used.

Our strategy to determine αt+1
i is as follows. We first compute

the weights ŵt+1
ij for all vertices vi with αi = 1. Next, we compute

the reconstruction errors of the vertices vi when considering the
newly-found weights ŵt+1

ij and the weights wtij of the previous
iteration:{
ebefore
i =

∑
f µ

f
i ||
∑
j w

t
ij(R

f
j · pi + T fj )− vfi ||2

eafter
i =

∑
f µ

f
i ||
∑
j ŵ

t+1
ij (Rfj · pi + T fj )− vfi ||2

Finally, we set a large value to αi for the vertices vi where the
reconstruction error decreases significantly when compared to the
differences in the weights δi = ||{ŵt+1

ij }j−{wtij}j ||2. Specifically,
noting γi = (ebefore

i −eafter
i )+ the decrease of the reconstruction error

of vertex vi, γ = maxi γi the maximum decrease and δ = maxi δi
the maximum weights change, we set αt+1

i = 0.8γi/γ
γi/γ+δi/δ

.

Results. Fig. 10 shows the skinning reconstruction of the
Horse-gallop, Horse-collapse and Samba inputs decomposed onto
sphere-meshes with 46 spheres. Errors (blue curves) are computed
as

MSE(f) =

∑
i µ

f
i ||
∑
j wij(R

f
j · pi + T fj )− vfi ||2

BBD2
∑
i µ

f
i

(13)
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Fig. 10. Skinning reconstructions of three sequences with 46 bones. Close-ups show artifacts that are essentially loss of volume or presence of self-
intersections. Bottom right: mean squared reconstruction error for 46 (blue), 34 (green) and 22 (red) bones. y axis is logarithmic.

Fig. 11. Pose editing using mixed weights: skinning weights learned
solely from the Horse motion provide a faithful decomposition for the body
and the legs, but lack a proper layout for the head, while our mixed weights
also account for geometry and provide the necessary degrees of freedom to
alter the grouped geometric features, even if they collectively undergo the
same motion.

We also plot the errors for skinning decompositions with 34 (green
curves) and 22 (red curves) spheres. As pointed out in Sec. 5,
the two horse sequences strongly differ in shape, local density
and exhibit differences locally in their type of structures (volu-
metric/surface), even though both input animations share the same
mesh topology and connectivity. These examples show the strength
of our approach: when converting the mesh animations into lin-
ear blend skinning, our animated sphere-mesh adapts automatically
and appears as a flexible rig structure that naturally takes the defor-
mations of the input mesh into account, resulting in either a more
volumetric or a more surface-oriented representation.

Using the animated sphere-mesh as a prior to derive the bones
impacting the reconstruction of each original vertex leads to a fast
algorithm: all our skinning decompositions were performed in a
couple of minutes. Moreover, by initializing our iterative optimiza-
tion scheme with smooth geometric weights, we output weight
maps that are efficiently learned from the animation wherever it
is pertinent, while falling back to the geometric weights elsewhere.

Fig.11 shows an example of a new pose generated using our
mixed weights. While traditional skinning decomposition methods
can learn weights on the body of the model based on its motion in
the raw sequence, they fail at providing the user with deformation
handles in the parts of the shape that are deformed rigidly, even if

Table II. Our method takes a geometry (GEO) as input parameters
for the decomposition, whereas others take a number of bones
(NOB). It is the only one to output mixed weights. Our method
uses free handles (FH: the spheres of the sphere-mesh), on the

contrary to [Le and Deng 2014] which outputs rigid bones.
OURS [Le and Deng 2012] [Le and Deng 2014]

INPUT PARAM. GEO NOB NOB
RAPIDITY ++ + –
MIXED WEIGHTS Yes No No
HANDLES FH FH BONES

they exhibit interesting structures (e. g., the head). On the contrary,
our mixed weights account for both details in the motion and in the
geometry, leading to an optimized mix of both properties.

7. DISCUSSION

Skinning decomposition. Table II summarizes the differences
with recent previous work.
(i) Our method is the first to take a geometry (i. e., the animated
sphere-mesh) as input, whereas other methods require a desired
number of bones. Hereby, a user can easily determine the param-
eters to obtain the expected precision and wanted level of detail.
This is critical, especially if the skinning decomposition method
requires several minutes to compute e. g., Le and Deng [2014] re-
port an execution time of 384 minutes for the decomposition of the
Samba sequence on a commodity laptop similar to ours.
(ii) The comparably high performance of our method results from
the use of a coarse geometry (our animated sphere-mesh), which is
optimized to respect the geometric details that are present in the in-
put animation. It is even several orders of magnitude faster than the
method of Le and Deng [2014] (all our decompositions were per-
formed in less than three minutes, even for the above-mentioned
Samba sequence — a speedup of two orders of magnitude).
(iii) Our method is the only existing one to output mixed weights,
which leads to important additional handles for editing applica-
tions, which is one of the main goals of previous work.
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Fig. 12. The input capsule is undergoing rotation around its dominant axis.
The motion is still visible when using a 8-sphere approximation, whereas 2
spheres are not sufficient to capture it.

(iv) On the downside, similarly to the method of Le and
Deng [2012], our method outputs weights w.r.t. the spheres in our
examples, which are free handles and are not constrained to re-
spect any rigidity during the animation; this differs from the explicit
edges of Le and Deng [Le and Deng 2014], which have fixed length
over the animation and their extremities connected by joints. How-
ever, not any animation can be approximated by a rigid skeleton
(e. g., sequences with large stretching).

Finally, just like other skinning decomposition techniques, rely-
ing on the input connectivity for the geometric construction of the
skeletal domain can lead to poor animation reproduction. Currently,
an input sequence containing a lot of disconnected parts leads to a
disconnected animated sphere-mesh.

Memory complexity. Presently, the input animation has to re-
side in memory, preventing us from approximating very large an-
imations. We thus cannot immediately generalize our approach to
a streaming scenario where a sphere-mesh would be refined on de-
mand. A possible solution could be to rely only on an analysis of
the most significant (e. g., least redundant) poses to compute the an-
imated sphere-mesh. This one could then be fit to the other poses.

Surface extraction. As in [Thiery et al. 2013], a surface re-
construction based on the animated sphere-mesh can be seen as a
Minkowski sum of an oriented mesh and a sphere with spatially-
varying radius (some triangles may be double sided though, and
wire edges describe complex orientations, as the degeneracy of a
cylinder over themselves). Yet, we extract the outer surface of the
complete interpolation of the spheres over the sphere-mesh, which
is equivalent to the Minkowski sum only when all triangles are
double-sided and there is no boundary in the sphere-mesh.

Noise. Filtering topological and geometric noise from the input
sequence prior to our approximation scheme, is clearly a promising
direction for future research. While the former may involve highly
non-trivial non-homotopic mappings, the latter could be adapted
from existing filtering techniques for static meshes.

Abstraction limitations. Finally, extreme simplifications of
the input mesh can fail to depict the motion of the input sequence.
Fig. 12 illustrates this point: when an 8-sphere approximation of
the capsule is used, the motion is still visible, whereas it becomes
invisible when only 2 spheres are used. As future work, one could
think of attaching a local frame to each sphere, and encode an in-
terpolating function on each edge and triangle so as to encode a
local coordinate system to the animated sphere-mesh. This could
be a step towards parameterizing the animated sphere-mesh, e. g.,
for texturing.

Conclusion

We proposed a shape approximation algorithm efficiently convert-
ing an animated mesh sequence into an animated sphere-mesh,
which is a mesh indexing a set of animated spheres. To do so,
we introduced a new optimization scheme tailoring the animated
spheres robustly to capture the animated shape at a given level
of detail. Additionally, we showed how connectivity and tempo-
ral coherence can be optimized. The resulting animated sphere-
mesh models the animated mesh sequence from a fine resolution
surface representation to a coarse volumetric one, based on a sin-
gle user-defined scale value, which still captures the dominant mo-
tions and geometric entities in the raw data, even at the coarsest
levels. In contrast to skeleton-based or cage-based performance-
capture reverse-engineering systems, our alternative can locally
model tubular structures and provide a convincing volumetric ap-
proximation for all other components. We demonstrated its effec-
tiveness on a collection of non-trivial examples and compared it to
purely surface-based approximation methods.

Based on the resulting animated sphere-mesh, we showed how
to rig a single mesh of the original sequence with it, reproducing
faithfully the full animated sequence. The underlying linear-blend
skinning map is smooth and accounts for both the animation and
the geometry of the original sequence. Hereby, regions with poor
motion, but salient structures, as well as simple geometry with sin-
gular motions are rendered editable.

Our work is the first to output an animated volumetric struc-
ture to approximate animated 3D surfaces. Volumetric structures
of static geometry have already many applications. Hand-designed
animated generalized cylinders are used for tasks such as collision
detection in modern games [Sambavaram 2007]. We showed that
our approach leads to high-quality skinning decompositions, and
offers flexibility to the artists in this context. Our work has poten-
tial to serve as an enabler for future work, as advanced computer
graphics frameworks may build upon our representation to address
new challenges, and we believe it is a step toward a unified frame-
work for volumetric shape and motion modeling and analysis.

APPENDIX

A. QUADRIC MINIMIZATION (NOT INVERTIBLE):

Minimize E(s̄) = 1
2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 10, subject to 0 ≤ λ ≤ 1 and 0 ≤ r ≤ R.
The global minimizer s̄∗ (without inequality constraints) is given

by Ā·s̄∗= b̄, leading to:
µλ+ νr = β1 (E1)

Mf · qf + rNf = bf ∀f > D (E2f )

νλ+
∑
f>D

Nf
T · qf +Wr = β2 (E3) ,

⇔


µλ+ νr = β1 (E1 :=E1)

νλ+W2r = β3 (E2 :=E3−
∑
f>D

Nf
TM−1

f
E2f )

qf = M−1
f · (bf − rNf ) ∀f > D (E3f :=M−1

f
· (E2f − rNf ))

with W2 := W−
∑
f>D

Nf
TM−1

f Nf and β3 := β2−
∑
f>D

Nf
TM−1

f bf .

The solution without inequality constraints is therefore given by
(
λ∗
r∗
)

= argmin
∣∣∣[µ ν
ν W2

]
·
(
λ
r

)
−
(
β1
β3

)∣∣∣2
q∗f = uf + λ∗ ~df ∀f ≤ D
q∗f = M−1

f · (bf − r∗Nf ) ∀f > D
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We note C :=
[
µ ν
ν W2

]
and DR := [0, 1]× [0, R]. Note that(

β1
β3

)
∈ Im(C), otherwise the gradient of the quadric could never

be null. NotingC† the pseudo-inverse ofC, several cases need to be
considered based on the dimension of C’s kernel dim(Ker(C)):

(1) If dim(Ker(C)) = 0 (⇔ Ker(C) = ∅):

—If
(
λ∗
r∗
)

= C−1 ·
(
β1
β3

)
∈ DR:

λ = λ∗ r = r∗

qf = uf + λ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

—otherwise: optimize on ∂DR (see next paragraph)
(2) if dim(Ker(C)) = 1:

—If {C† ·
(
β1
β3

)
+Ker(C)} ∩ DR 6= ∅, then choose

(
λ
r

)
in

C† ·
(
β1
β3

)
+Ker(C) with smallest radius, and{

qf = uf + λ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

—otherwise: optimize on ∂DR (see next paragraph)

(3) otherwise: the space of solutions of
−→̀

s̄E = ~0 is a two dimen-
sional space, and we choose the solution
λ = 1/2 r = 0

qf = uf + 1/2 ~df ∀f ≤ D
qf = M−1

f · bf ∀f > D

Optimization on ∂DR. ∂DR is composed of four segments:
∂DR = {0, 1} × [0, R] ∪ [0, 1]× {0, R}. The minimizer on ∂DR
is then the solution found with minimal cost over these segments.

Fixing λ to λ̂ ∈ {0, 1}: The minimizer on {λ̂} ×R is given byr∗ =
β4−

∑
f>DNf

T ·M−1
f
·bf

W−
∑
f>DNf

T ·M−1
f
·Nf

q∗f = M−1
f · (bf − r∗Nf ) ∀f > D

with β4 := β2 − λ̂ν.
If the denominator of r∗ is null, we ignore this step and fix r as

well to 0 andR and keep the solution with minimal cost. Otherwise:

—If 0 ≤ r∗ ≤ R: the minimizer on {λ̂} × [0, R] is given by
r = r∗

qf = uf + λ̂ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

.

—Otherwise we fix r as well to 0 or R and keep the solution with
minimal cost.

Fixing r to r̂ ∈ {0, R}: The minimizer onR× {r̂} is given by{
λ∗ = (β1 − νr̂)/µ
q∗f = M−1

f · (bf − r̂Nf ) ∀f > D

If the denominator µ is null, we ignore this step and fix λ as well
to 0 and 1 and keep the solution with minimal cost. Otherwise:

—If 0 ≤ λ∗ ≤ 1: the minimizer on [0, 1]× {r̂} is given by
r = r̂

qf = uf + λ∗ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

.

Fig. 13. Intersecting a capsule (blue) and a sphere-segment (or-
ange) (a) is equivalent to intersecting a thicker capsule and a seg-
ment (b). c): Cone’s normal parameterization. d): Interpolation of
three spheres on a (transparent blue) triangle.

—Otherwise we fix λ as well to 0 or 1 and keep the solution with
minimal cost.

Fixing (λ, r) to (λ̂, r̂) ∈ {0, 1} × {0, R}: The minimizer of the
energy when fixing r and λ is simply given by

r = r̂

qf = uf + λ̂ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

B. INTERSECTION WITH SPHERE-SEGMENTS

We aim at detecting the intersection between a sphere-segment
[(e0; r), (e1; r)] (a sphere with radius r travelling continuously
from point e0 to point e1) and a sphere-mesh. This can be achieved
by testing the intersections between the segment and the various
geometric primitives of the sphere-mesh, and selecting the closest
valid one. In the following, we describe the cases for intersecting
the segment with spheres, capsules, and thick triangles. We note
eλ :=e0+λ−−→e0e1 a parameterization of (e0, e1).

Against spheres: There exists an intersection with a sphere
(C;R) if the following can be satisfied:

∃λ ∈ [0, 1] | ||eλ − C||2 = (R+ r)2, (14)

which boils down to solving a simple quadratic polynomial in λ.

Against capsules: Detecting the intersection between the seg-
ment and a capsule defined as the interpolation of two spheres
(c0; r0) and (c1; r1) (with r0 ≥ r1, is equivalent to detecting the
intersection between the segment [e0, e1] and the capsule thick-
ened by r (see Fig.13a,b). We will therefore focus on the second
problem. We note cµ := c0 +µ−−→c0c1 a parameterization of the line
(c0, c1), and ~nθ one of the cone’s normal (~nθ :=cos(θ)cos(φ)u1+
sin(θ)cos(φ)u2+sin(θ)u3, see Fig.13b).

There exists an intersection if the following can be satisfied:

∃(λ, µ, θ) | eλ = cµ + (r0 + r + µ(r1 − r0))~nθ. (15)

Computing (Eq.15)T·u3 and ((Eq.15)T·u1)2+((Eq.15)T·u2)2 gives

λ−−→e0e1
T·u3 − µ(−−→c0c1

T·u3+(r1−r0) sin(φ)) = −−→e0c0
T·u3 + r0 sin(φ)

(−−→c0e0
T·u1+λ−−→e0e1

T·u1)2+

(−−→c0e0
T·u2+λ−−→e0e1

T·u2)2 =(r0+r+µ(r1−r0))2cos(φ)2

Combining these last equations leads to a simple second order
polynomial in (λ, µ). Solving this quadric provides the solution,
assuming it respects: 0 ≤ λ, µ ≤ 1.

Against thick triangles: The intersection between the segment
and a thick triangle defined as the interpolation of the three spheres
(c0; r0), (c1; r1) and (c2; r2) with normal nT , can be found by
checking the intersections against the capsules (edges of the thick
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triangle) and two additional triangles t+ = (p+
0 , p

+
1 , p

+
2 ) and t− =

(p−0 , p
−
1 , p

−
2 ) (see Fig.13c), which are constructed as follows:

(1) compute φij = tan−1((ri − rj)/||cj − ci||), ∀0 ≤ i < j ≤ 2

(2) compute pi as the intersection of the three planes:
—{−−→cipi

T · nT = 0},
—{−−→cipi

T · −−→cicj = ri||−−→cicj || sin(φij)} ∀j 6= i, 0 ≤ j ≤ 2

(3) compute p+/−
i as p+/−

i = pi +/−
√
r2
i − ||

−−→cipi||2nT
Note that t+ and t− do not always exist, e. g., if the three sphere
centers are coplanar.
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Fast decompression for web-based view-dependent 3D rendering
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Figure 1: Progressive refinement of the Happy Buddha: on the upper left corner the size downloaded, on the upper right corner the number
of triangles in the refined model. The header and index amount to 8KB

Abstract

Efficient transmission of 3D data to Web clients and mobile
applications remains a challenge due to limited bandwidth. Most of
the research focus in the context of mesh compression has been on
improving compression ratio. However, in this context the use of
Javascript on the Web and low power CPUS in mobile applications
led to critical computational costs. Progressive decoding improves
the user experience by providing a simplified version of the model
that refines with time, and it’s able to mask latency. Current
approaches do so at very poor compression rates or at additional
computational cost. The need for better performing algorithms
is especially evident with this class of methods where Limper
[Limper et al. 2013b] demonstrated how decoding time becomes
a limiting factor even at moderately low bandwidths. In this
paper we present a novel multi-resolution WebGL based rendering
algorithm which combines progressive loading, view-dependent
resolution and mesh compression, providing high frame rates and
a decoding speed of million of triangles per second in Javascript.
This method is parallelizable, robust to non-manifold meshes, and
scalable to very large models.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms;
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†e-mail:matteo.dellepiane@isti.cnr.it

Keywords: Multi-resolution, web visualization, 3D compression

1 Introduction

Limited bandwidth and increasing model sizes pose a challenge in
the transmission of 3D data to Web clients and mobile applications.
Mesh compression is a viable approach to minimize transmission
time, and most research focus in this field has been on optimizing
compression ratio.

Unfortunately, limited bandwidth often pairs with limited computa-
tional power, either because of Javascript environment or low CPU
power mobile devices, to the point that for most algorithms decod-
ing time becomes the bottleneck even at moderately low bandwidth.
Acceptable rates can be regained reducing compression ratio (for
example forfeiting connectivity compression) or using less sophis-
ticate entropy compression algorithms.

A different approach makes use of progressive reconstruction algo-
rithms, which improve the user experience by providing a simpli-
fied version of the model that refines while the remaining part of the
model is being downloaded. The model converges very quickly at
the beginning of the download, and only the details require the full
model. However this class of algorithms performs even worse in
terms of decoding time (as shown in Limper [Limper et al. 2013b])
or in terms of compression ratio.

Another desirable feature, especially for very large models, is view-
dependent resolution: this allows to prioritize the download, decode



a specific part of the model and vary resolution of the rendered ge-
ometry to maintain a constant screen resolution. This is obtained
by maximizing quality at a given frame rate.

In this paper we present a novel multi-resolution WebGL based
rendering algorithm which combines progressive loading, view-
dependent resolution and a mesh compression providing good
rates and a decoding speed of million of triangles per second in
Javascript. This method is can handle non-manifold meshes, and it
is also scalable to deal with very large models.

The method is based on a class of multiresolution structures
[Cignoni et al. 2004; Cignoni et al. 2005] where the “primitive”
of the multiresolution becamesis a patch made of thousands of tri-
angles. The processing required to traverse this structure becomes
a fraction of triangle based multiresolution algorithms, and allows
“batch” operation on the patches: moving data from disk or network
to GPU RAM, rendering, and decompression.

In section 3 we describe the improvement made on the multiresolu-
tion structure and the how the compression algorithm was designed
to optimize decoding time while maintaining a good compression
ratio. In section 4 we compare it with existing web solutions for
mesh compression and progressive visualization. It represents a
solid alternative to current methods, providing a practical mean to
handle 3D models on the web.

2 Related Work

This paper is related to several topics in the field of Computer
Graphics. Among them, the main are: web-based 3D rendering,
progressive and multiresolution rendering approaches, and fast
decompression methods for 3D models.
While a complete overview of all these subjects goes well beyond
the scope of the paper, in the next subsections we provide a short
description of the state of the art, trying to focus on the aspects
which are more related to the proposed approach.

2.1 Web-based 3D rendering

Three-dimensional content has always been considered as part of
the multimedia family. Nevertheless, especially when talking about
web visualization, its role with respect to images and videos has
always been a minor one. Visualization of 3D components was
initially devoted to external components, such as Java applets or
ActiveX controls [Mic 2013].

After some initial efforts for standardization [Raggett 1995;
Don Brutzmann 2007], the proposal of WebGL standard [Khronos
Group 2009b], which is a mapping of OpenGL|ES 2.0 [Khronos
Group 2009a] specifications in JavaScript, brought a major change.
Several actions related to the use of advanced 3D graphics has been
proposed since then. For a general survey, please refer to the survey
by Evans [Evans et al. 2014b]. Since the use of OpenGL commands
needs advanced programming skills, there have been several actions
to provide an ”interface” between them and the creation of web
pages. We could subdivide the proposed systems between declara-
tive approaches [Jankowski et al. 2013], like X3DOM [Behr et al.
2009] or XML3D [Sons et al. 2010], and imperative approaches,
like Three.js [Dirksen 2013], SpiderGL [Di Benedetto et al. 2010]
and WebGLU [DeLillo 2009]. The main difference between the
groups is that the first ones rely on the concept of scenegraph, hence
a scene has to be defined in all its elements, while the second ones
provide a more direct interface with the basic commands. Other
systems provide a sort of hybrid approach, where a very simplified

scene has to be defined.
Evans [Evans et al. 2014b] points out in his survey that declarative
approaches had a major impact in the research community, while
imperative approaches were mainly used in the programming com-
munity.
More in general, given the fact that the amount of data that needs
to be sent to the webpage can be quite big, several efforts about
a better organization of generic streamable formats [Limper et al.
2014a; Sutter et al. 2014] has been proposed. Nevertheless, when
complex 3D data have to be streamed, these structures are not flex-
ible enough to handle them.
In order to face this problem, in the last three years some progres-
sive compression methods ad hoc for 3D streaming have been de-
veloped. Gobbetti et al. [Gobbetti et al. 2012] proposed a quad-
based multi-resolution format. Behr et al. [Limper et al. 2013a]
transmit different quantization levels of the geometry using a set
of nested GPU-friendly buffers. Lavouè et al. [Lavoué et al. 2013]
proposed an adaptation for the Web (reduced decompression time
at the cost of a low compression ratio) of a previous progressive al-
gorithm [Lee et al. 2012]. Other research has been also conducted
to handle other types of data, like point clouds [Evans et al. 2014a],
which may present different types of issues to face with. Please
refer to next subsections for a more in-depth analysis.

2.2 Progressive and Multi-resolution methods

An important feature for user experience when rendering over slow
connections or compressed models is progressiveness: the possi-
bility to temporarily display an approximated version of the model
and to refine it while downloading or processing the rest of the data.

The simplest (and widely used) strategy is to use a a discrete set
of increasing resolution models (usually known as Level Of Detail,
LOD). The main drawback with this approach is the abrupt change
in detail each time a model is replaced.

A change of paradigm was brought by progressive meshes, intro-
duced by Hoppe [Hoppe 1996]. These meshes encode the sequence
of operations of a edge collapse simplification algorithm. This se-
quence is traversed in reverse, so that each collapse becomes a split,
and the mesh is refined until the original resolution. An advantage
of progressive techniques is the much more smooth transition reso-
lution changes, and the possibility to combine it with selective re-
fining or view-dependent multiresolution, but this high granularity
was achieved at the cost of low compression rates: about 37 bpv
with 10 bit vertex quantization.

A large number of progressive techniques were later developed, but
as noted in [Limper et al. 2013b], Table 1, the research focus, how-
ever, was on rate-distortion performances and speed was mostly ne-
glected. Latest algorithms still run below 200KTs in CPU.

Mobile and web application would be really too slow using these
methods. As a compromise, pop buffers [Limper et al. 2013a] pro-
pose a method to progressively transmit geometry and connectivity,
while completely avoiding compression.

Another desirable feature, especially for large models, is view-
dependent loading and visualization. Most multiresolution algo-
rithms were made obsolete by the increased relative performances
of GPU over CPU around the first years of 2000. It simply became
inefficient to operate on the mesh at the level of the single trian-
gle. Several works [Yoon et al. 2004; Sander and Mitchell 2005;
Cignoni et al. 2004; Cignoni et al. 2003] achieved much better per-
formances by increasing the granularity of the multiresolution to a
few thousand triangles.

The main problem when increasing the granularity is ensuring
boundary consistency between patches at different resolution: Yoon



[Yoon et al. 2004] and Sander [Sander and Mitchell 2005] both em-
ploy a hierarchical spatial subdivision, but while the first simply
disallow simplification of most boundary edges, which results in
scalability problems, the second relies relies on global, spatial GPU
geomorphing to ensure that progressive meshes patch simplifica-
tion is consistent between adjacent blocks. The works by Cignoni
[Cignoni et al. 2003; Cignoni et al. 2004] rely instead on a non hi-
erarchical volumetric subdivision and a boundary preserving patch
simplification strategy that guarantees coherence between different
resolutions while at the same time ensures no boundary persists for
more than one level. While not progressive in a strict sense, given
current rendering speed, the density of triangles on screen is so high
that popping effects are not noticeable.

Compression comes as a natural extension to this family of mul-
tiresolution algorithms: each patch can be compressed indepen-
dently from the others as long as the boundary still matches with
neighboring patches. a wavelet based compression was developed
in [Gobbetti et al. 2006] for terrains, a 1D Haar wavelet version in
[Rodrı́guez et al. 2013] for generic meshes on a mobile application.
A comprehensive account of compression algorithms and the con-
vergence with view-dependent rendering of large datasets can be
found on a recent survey from Maglo et al.[Maglo et al. 2015].

2.3 Fast Decompression of 3D models

Given that decompression speed is a key factor in order to be able to
use compressed mesh, there’s been some effort by the community
to provide solutions.
Gumhold and Straßer [Gumhold and Straßer 1998] developed a
connectivity only compression algorithm that was able to decom-
press at 800KTs in 1998. Pajarola and Rossignac in [Pajarola and
Rossignac 2000], in 2000, reported 26KTs for a progressive com-
pression algorithm, and developed a high-performance Huffman
decoding identifying entropy compression as a possible bottleneck.
Finally, Isenburg and Gumhold in 2003 developed a streaming ap-
proach to compression of gigantic meshes reaching an impressive
decompression speed of 2MTs.

3 Method

Our multiresolution algorithm builds upon the methods described
on [Cignoni et al. 2004; Cignoni et al. 2005], which is recapped in
section 3.1 for completeness. In our solution we adopt a improved
partition strategy (see section 3.2), and, more importantly, a novel
compression scheme (section 3.3) tailored around the need for de-
compression speed.

3.1 Batched Multiresolution

The model is split into a set of small meshes at different resolutions
that can be assembled to create a seamless mesh simply traversing
a tree which encodes the dependencies between each patch, using
the estimated screen error to select the resolution needed in each
part of the model. To build this collection of patches we need a
sequence of non-hierarchical volume partitions (V-partition) of the
the model; non hierarchical means essentially that no boundary is
preserved between partitions at different levels of the hierarchy.

The data structure is composed of a fixed size header describing
the attributes of the models, an small index which contains the
tree structure of the patches and the position of each patch in the
file, and the patches themselves. We use HTTP Range requests to
download header and index, ArrayBuffers to parse this structures
into Javascript; the patches are then download prioritizing highest

Figure 2: First column: before refinement. Second column: af-
ter refinement. From top to bottom: a visual representation of the
geometric patches representing the model, the model with pure ge-
ometry, the model with color information.

screen error. Figure 2 shows an example of a model before and after
view-dependent refinement.

The rendering requires the traversal of the patch tree, which is usu-
ally quite small since each patch is in the range of 16-32K vertices,
computing the approximated screen space error in pixel from the
bounding sphere and the quadric error (or any other error metric)
during simplification. The traversal is stopped whenever our trian-
gle budget is reached, the error target is met or the required patches
are still not available.

Since the rendering can start when the first patch is downloaded and
the model is refined as soon as some patch is available, this is ef-
fectively a progressive visualization albeit with higher granularity.
On the other hand, this structure is view dependent and thus able to
cope with very large models, on the order of hundreds of millions
of triangles.

3.2 Partition

Cignoni et al [Cignoni et al. 2005] showed that any non-hierarchical
sequence of volume partitions can be the base of a patch based mul-
tiresolution structure. Good partition strategy minimize boundaries
thus generating compact cells. In addition, it allows streaming con-
struction and generates well balanced trees even when the distribu-
tion of the model triangles is very irregular. The Voronoi structure,



while optimal for boundary minimization and balance, is not suit-
able for streaming leading to long processing times. On the other
hand the regular spatial subdivision used in [Cignoni et al. 2004]
might generate unbalanced trees for very irregular models. This
may impact on adaptivity.

In our solution each volume partition is defined by the leaves of a
KD-tree built on the triangles of the model; to ensure the non hier-
archical condition, the split ratio in the KD-tree alternates between
0.4 and 0.6 instead of the usual 0.5. This choice allows for stream-
ing processing of the model and good adaptivity. As a bonus, the
very regular shape of the patches (see figure 2) may be useful when
adding texture support.

3.3 Mesh Compression

Our multiresolution algorithm imposes a set of constrains to mesh
compression:

• each patch needs to be encoded independently from the other,
so the method must be efficient and fast even on small meshes

• boundary vertices, replicated on neighboring patches, need to
remain consistent through compression

• non manifold models must be supported

It would be possible to exploit the redundancy of the data due to the
fact that the same surface is present in patches at different levels of
resolution. We choose not to do so in order to keep the compres-
sion stage independent of the simplification algorithm used and to
simplify parallel decompression of the patches (we would have to
keep track of and enforce dependencies otherwise).

3.3.1 Connectivity compression

We modified the algorithm presented in [Floriani et al. 1998], to
support non manifold meshes and surfaces with handles or holes.

We need face-face topology for compression and this is computed
as follows: we create an array containing three edges for each tri-
angle, and sort it so that edges sharing the same vertices will be
consecutive (independently of the order of the edges). The edges
are then paired taking orientation into account, and all non paired
edges are marked as boundary. Non manifold meshes will simply
force the creation of some artificial boundaries.

The encoding process starts with a triangle and expands iteratively
adding triangles. The processed region is always homeomorphic
to a disk and if the region meets already considered triangles, we
consider the common vertices as duplicated. The boundary of the
already processed (encoded or decoded) region is stored as a dou-
bly linked list of oriented edges (active edges), The list is actually
implemented as an array for performances reasons. A queue keeps
track and prioritize the active edges.

The first triangle adds three active edges to the list; iteratively an
edge is extracted from the queue and, if not marked as processed,
the following codes are emitted (see Figure 3):

SKIP if the edge is a boundary edge, or the adjacent triangle has
already been encoded; the edge is marked as processed.

LEFT or RIGHT if the adjacent triangle shares two edges with
the boundary; The two edges are marked as processed, a new edge
added to the queue and its boundary adjacencies adjusted.

VERTEX if the adjacent triangle shares only one edge with the
boundary, in this case the edges is marked as processed and two new
edges added to the queue. If vertex of the new triangle opposing the
edge was never encountered before its position is estimated using

parallelogram prediction and the difference encoded, otherwise its
index is encoded (in literature this case is often referred as a “split”).
This is a key difference with [Floriani et al. 1998], where in the
second case a SKIP code would be emitted, to keep the encoded
region simple.

If the mesh is composed of several connected components, the pro-
cess is restarted for each component.

The order in which the active edges are processed is important as
we would like to minimize the number of VERTEX split operations,
and generate a vertex-cache-friendly triangle order. To do so, we
simply prioritize the right edges in the VERTEX operation, so that
the encoding proceeds in ’spirals’. If the mesh is not homeomorphic
to a disk, some split operations are required. This strategy reduces
the number of splits to less than 1% in our examples, incurring in
an average of 0.2 bpv cost.

This algorithm is certainly not optimal in term of bitrate, but it is
extremely simple, linear in the number of triangles and robust to
non-manifold meshes; as we will see in the results, speed is more
important than bitrate.

3.3.2 Geometry and vertex attribute compression

To ensure consistency between boundary vertices of adjacent
patches, we adopt a global quantization grid for coordinates, nor-
mals and colors. The global grid step for vertex position quantiza-
tion is chosen automatically based on the quadric errors during the
simplification step in construction.

Geometry and vertex attributes are encoded as differences to a pre-
dicted value. The distribution of these values exhibit a bias which
we can exploit to minimize the number of bits necessary to encode
them. Our strategy is based on the assumption that most of the bias
is concentrated on the position of highest bit (the log2 of the value)
of these value while the subsequent bits are mostly random. We
simply store in an array, which is later entropy coded, the number
of bits necessary to encode the value; the subsequent bits are stored
in an uncompressed bitstream. In this way we need to decode a
single symbol, from a limited alphabet, and read a few bits from a
bitstream to decode a difference.

Each new vertex position, result of a VERTEX code, is estimated
using a simple parallelogram predictor, and the differences with the
actual position encoded as above. Color information is first con-
verted into YCbCr color space and quantized, we encode the dif-
ference with one of the corner of the edge processed when emitting
the VERTEX code. Normals vector are estimated using the decode
mesh position and connectivity, and differences encoded as usual.

3.4 Entropy coding

We have shown how to convert connectivity, geometry and at-
tributes into a stream of symbols and bits. It is worth compressing
the symbol stream due to the biased probability distribution of the
symbols.

Entropy decoding is the speed bottleneck in many mesh decom-
pression methods, often due to the main goal of minimizing bit per
vertex. Pajarola and Rossignac [Pajarola and Rossignac 2000] de-
veloped a high-performance Huffman decoding algorithm in order
to overcome this problem. The main advantage of this method is
that it reduces the decoding phase to a couple of table lookups.
Arithmetic coding, for example, outperforms Huffman in term of
compression rate, but exhibits lower speed. A problem with this
approach is the initialization time required to create the, possibly
very large, decoding tables. It is then not suitable for decoding



Figure 3: The four decompression codes: black arrows represent the front, the red arrow the current edge, in green the new edges added to
the front.

small meshes where the construction time would dominate over the
decoding time.

Unlike Huffman and other variable-length codes, Tunstall code
[Tunstall 1967] maps a variable number of source symbols to a
fixed number of bits. Since in decompression the input blocks con-
sists of a fixed number of bits and the output is a variable number of
symbols, Tunstall is slightly less efficient than Huffman, especially
where the bit size of the input block is small. The decoding step
is very similar to the high-performance Huffman algorithm, as it
consists in a lookup table and a sequence of symbols for each entry,
but the table size is only determined by the word size, and a fast
method to generate it described in [Baer 2009].

Given an entropic source of M symbols, to generate an optimal en-
coding table for a word size of N bits, we need to generate 2N sym-
bol sequences that have a frequency as close as possible to 2−N ,
allows to encode every possible input (it is complete) and no se-
quence is a prefix of any other sequence (it is proper).

Tunstall optimal strategy starts with the M symbols as initial se-
quences, removes the most frequent sequence A and replaces it with
M sequences concatenating A with every symbol until we reach 2N

sequences. The algorithm most time consuming step is to find the
most probable sequence.

If we use a matrix where the first column contains the sorted symbol
in order of probability, and at each step we replace the sequence
with highest probability with M sequences adding a new column,
we can observe that this table is sorted both in columns and rows
(see Figure 4). This allows to select the next sequence by keeping
each row in a queue and using a priority queue to keep track of
which queue has the highest front element.

Figure 4: First four steps in construction of a Tunstall code with
four symbols, the sequences A, B, AA, BA are replaced with a new
column, beside each sequence, its probability is shown. In green
the candidates for the next expansion.

To initialize the decoding table the symbol frequencies needs to be
transmitted in advance.

Finally, an important advantage of variable-to-fixed coding is that
the compressed stream is random accessible: decoding can start
at any block. This makes it especially suited for parallel decom-
pression in particular GPU decompression. Unfortunately, current

limitations in the capabilities of WebGL do not allow for such an
implementation.

4 Results

The C++ and Javascript implementation is freely available at
http://vcg.isti.cnr.it/nexus under GPL licence.

Our implementation has been successfully tested on major browsers
on a variety of platform, from desktop machines to low end
cell phones. The results we report here were measured on an
iCore5 3.1Gh, using Chrome 41. Timings taken other browsers
(e.g.Firefox) where comparable.

The multiresolution model construction is a preprocessing opera-
tion, and the bottleneck is the quadric simplification algorithm that
runs at about 60K triangles per second per core. Compression time
is negligible at about 1M triangles per second.

4.1 Entropy Compression: Comparison

We tested, both in C++ and Javascript, compression rates and de-
compression speed of:

• our implementation of Tunstall coding (T)

• Huffman coding (H), in the high-performance version of Pa-
jarola [Pajarola and Rossignac 2000] (our implementation,
C++ only)

• available implementations of LZMA
in C++: http://www.7-zip.org/sdk.html
and Javascript: https://code.google.com/p/js-lzma/

• lz-string, a LZW based Javascript implementation
http://pieroxy.net/blog/pages/lz-string/index.html

C++ Javascript
symbols T H LZMA T LZMA LZW

4 1058 520 1066 201 19 55
9 369 212 170 145 10 23

13 423 168 95 150 6 20
17 359 136 77 163 6 19
22 332 98 67 180 6 17

Table 1: Decompression speed in million of output symbols per
second for Poisson distribution of 32K sequences

The results are presented in Table 1, the lenght of 32K has been
chosen since it is typical in our application.

Huffman and Tunstall are very similar in term of decompression
speed, the difference is mainly in the time required to generate
the decoding tables which are much larger for Huffman, especially
when increasing the number of symbols. We tested also other prob-
ability distributions and found little difference in terms of speed.



LZMA and LZW avoid this startup cost, however their more com-
plex and adaptive dictionary management allows them to outper-
form Huffman and Tunstall in term of decompression speed only
for very small runs (and very small dictionaries). In terms of com-
pression ratio, Huffman and LZMA performed quite close to the
theoretical minimum, while Tunstall was about 10% worse.

We did not implement Huffman in Javascript, as we are confident
the result would be very similar. On the other hand the numbers for
LZMA change dramatically. Lz-string serves as a comparison, as
a better library, optimized for Javascript. The poor LZMA perfor-
mances in Javascript help explain the relatively slow performances
of CTM in Limper [Limper et al. 2013b].

4.2 Mesh Compression: Comparison

We used the Happy Budda model (in Figure 1), to compare com-
pression ratio and decompression speed with OpenCTM (CTM)
[Geelnard ] Pop buffers (POP)[Limper et al. 2013b], P3DW
[Lavoué et al. 2013], WebGL-loader (CHUN) [Chun 2012]. We
compare our multiresolution (OUR) and, to test single resolu-
tion performances of our compression approach, a version (FLAT)
which loads only the highest resolution level of the model. In each
case the model has been quantized at 11 bit for coordinates and 8
bit for normals, and includes colors.

FLAT OUR CTM CHUN POP P3DW
MB 1.9 3.9 3.5 2.8 15 4.5
bpv 28 57 51 41 220 66
full 0.4 0.9 5.3 0.06 0.5 10

Table 2: Statistics for the Happy Buddha: model size in megabytes,
bit per vertex and time in seconds required to fully decompress the
model.

Our decompression Javascript implementation can decode about 1-
3 million triangles per second with normals and colors in a sin-
gle thread, on a desktop machine and 0.5 MT/s on a iPhone Five.
Performances are somewhat degraded when the code is run during
streaming visualization.

An important comparison is with [Rodrı́guez et al. 2013], which
employs the same multiresolution batched strategy. For their mo-
bile multiresolution application they reports compression rates of
45-50 bpv on large colored meshes (which should be compared to
our 28bpv). The difference is probably mostly due to the different
connectivity encoding which, in their case, requires 20bpv against
our 4 or 5bpv. It is difficult to compare the speed of the two decom-
pression approaches since they run natively in C# on an iPhone4
while we run in Javascript on the same platform. Our implementa-
tion speed is still, if a bit faster than their 50KTS 1, at about 60KTs.
The difference is probably due their more sophisticate (and slow)
arithmetic encoding.

C++ decompression speed is of course faster, reaching 9MTs, in-
cluding colors and normals, and 16MTs for just position and con-
nectivity. The speed reported in [Floriani et al. 1998] of 35KTs for
just the connectivity, as they mention, is due to the dynamic mem-
ory allocation in their implementation.

4.3 Streaming and Rendering

Loading the geometry through the Range HTTP request requires
an increased number of HTTP calls: one for each patch, or 30-

1The number is extrapolated from the decoding time of a large mesh
given in their paper

60 calls every million of triangles. This does not really impact over
performances: the overhead is quite small (about 400 bytes per call)
and pipelining (the process of enqueueing requests and responses
between browser and server) ensures full utilization of the available
bandwidth. Random access is really necessary only to fully exploit
the view-dependent characteristics of the multiresolution structure:
the code could be easily modified to load the model with a single
call if a higher number of HTTP calls was problematic on certain
web hosting architectures.

In the demo page (http://web3d.duckdns.org) it is possible to com-
pare the performances of our method w.r.t. existing solutions in the
case of a slow connection. Moreover, very complex geometries are
also available for further testing. As an example, in Figure 5 we
show our system rendering the Portalada, a 180M triangles model
at 30fps. The triangle budget has been fixed at 1M triangles and the
streaming requires 2-3 seconds to reach full resolution on a good
connection. The original model is 3.6GB, while the compressed
multiresolution model is 838MB.

Figure 6 shows two examples where the method deals with non-
optimal geometries. On the left side, a model exhibiting strong
topological artifacts. On the right side, a model with very unbal-
anced data density. In both cases, the method is able to deal with
the issues and provide an accurate and reliable rendering.

5 Conclusion

The method proposed in this paper provides good compression ra-
tio, progressive visualization, fast decoding and view dependent
rendering. It proves effective in a wide range of bandwidth avail-
ability, computing power and rendering capabilities. Moreover, it is
able to handle models of arbitrary size. This means that also very
complex geometries can be now explored in real time with average
connections speeds.

Many mesh compression algorithms for mobile and web applica-
tion do not employ topological connectivity compression often be-
cause it is believed to be excessively complex or slow and limited to
manifold meshes. We prove that, if implemented correctly, this is
not the case, and the choice of the entropy compression algorithm
can play a much more important role.

5.1 Future improvements

An important limitation of the current implementation is the lack
of texture support. Adding UV coordinates to the multiresolution
structure and supporting them in compression is a trivial task, but
dealing with simplification and providing multiresolution textures
is much more difficult. We plan to tackle this problem in the near
future, with an approach similar to Texture Mapping Progressive
Meshes [Sander et al. 2001].

Point clouds are currently supported, with a z-index vertex com-
pression strategy, we are working on improving the presentation.
While the multiresolution structure is not really needed, using it
has the advantage of working on an single framework.
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Figure 5: Portalada rendered in a browser: top left: the full model, top right: a detail of the figure above the arch, middle right: the resolution
of the model as seen from the middle left view point (without frustum culling)

Figure 6: Left: a model with severe topological issues. Right: a model with very imbalanced vertex distribution
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LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proceedings of the Nineteenth Interna-
tional ACM Conference on 3D Web Technologies, ACM, New
York, NY, USA, Web3D ’14, 35–43.

LIN, G., AND YU, T. P. Y. 2006. An improved vertex caching
scheme for 3d mesh rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics 12 (July), 640–648.
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Enhanced Visualization of Detected 3D Geometric Differences
Gianpaolo Palma, Manuele Sabbadin, Massimiliamo Corsini and Paolo Cignoni
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Fig. 1: Algorithm overview. After the computation of a change map for the input meshes S0 and S1, the proposed interactive change
visualization technique computes the geometry buffers for the two meshes and blends them in screen space using the time t with
two different interpolation functions: fγC for the change pixels and fγNC for the no-change pixels, enhancing significant changes and
hiding non relevant, yet visible, differences.

Abstract— The wide availability of 3D acquisition devices makes viable their use for shape monitoring. The current techniques for the
analysis of time-varying data are able to efficiently detect actual significant changes and rule out differences that are due to irrelevant
variations of the data (like sampling, lighting, coverage). On the other hand, the effective visualization of such detected changes can
be challenging when we want to preserve the actual appearance of the 3D model. In this paper, we propose a dynamic technique
for the effective visualization of detected differences between two 3D scenes. The presented approach, while retaining the original
appearance, allows the user to switch between the two models in a way that enhances the geometric differences that have been
detected as significant and visually hides the other negligible, yet visibile, variations. The main idea is to use two distinct screen
space interpolation functions for the significant 3D differences and the small variations to hide. We have validated the proposed
approach in a user study on different types of datasets, proving the objective and subjective effectiveness of the method.

Index Terms—Interactive visualization, 3D differences, temporal change

1 INTRODUCTION

The wide availability of acquisition devices like cameras, smartphones
and low-cost portable 3D scanners (e.g. Google Tango, iSense, Struc-
tureSensor), makes today possible an easy and fast harvesting of 2D
and 3D temporal data of the world around us. The correct tempo-
ral analysis and interpretation of this data are important for the au-
tomatic and robust detection of geometric changes in the scene and
the following effective visualization of the temporal evolution of these
changes. In the last years several solutions have been proposed to
solve the geometric change detection problem for different kind of
applications (3D reconstruction [34], urban growth analysis [27] and
natural events management [15]) using different input data, like image
datasets [22], mixed acquisitions with 3D models and photos [27], or
only geometric information [21]. On the other side, the effective visu-
alization of temporal data to highlight and improve the understanding
of the changes in the scene was concentrated on time-varying volumet-
ric data [32][13][4] and on videos [1]. Usually, the existing solutions
are based on static visualization of a single picture where the changes
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are encoded in some attribute like the color [20], the color saturation
[30], the surface bump [4], glyphs [28][4]. The main problem of these
solutions is that they make more difficult the shape understanding. The
typical example is the overlay of a color map that encodes the change
and no-change areas with different colors, making harder the inter-
pretation of the geometric and color information owned by the model.
Additionally, the existing methods are based on a limited or completed
absent user interaction allowing for example only the navigation of the
volumetric data. Up to now no methods are proposed to interact with
the temporal dimension of the visual input in this specific context.

We propose an interactive technique to improve the visualization of
the geometric changes between two 3D triangular meshes with color.
The two models represent the same environment acquired at different
times and can be generated by 3D scanning or by multi-view image
reconstruction using digital photos. Our goal is to give the user a vi-
sualization tool with three main features: to allow a linear interaction
model (slider) to alternate between the two time steps; to make more
clear and as understandable as possible what is changing in the scene;
to preserve all the original color and geometry attribute of the input
models.

Our approach is based on the definition of a better temporal inter-
polation between the two 3D models that simultaneously tries to max-
imize the perception and the understanding of the most important and
wide changed areas and to hide the nonsignificant, yet visible, differ-
ences that can distract the user’s attention. These subtle differences
are due to several reasons: geometric imperfections or noise due to the
3D reconstruction process, the high-frequency color shift due to the
different illumination conditions during the photographic acquisition,
the noise of the 3D scanner, actual small nonsignificant changes due



to small scale and fine details.
In particular, we assume the computation of a change probability

map using a state-of-the-art method that segments out the change (dy-
namic) and no-change (static) areas in each 3D model. Our basic idea
is to provide a screen-space interpolation technique of two renderings
of the 3D models according to the user temporal interaction using
different interpolation curves for the two classes of regions. For the
choice of the interpolation curves we take into account the insights of
the cognitive research on the Change Blindness phenomenon [26], that
is the failure of the people to detect large changes in the scene, which
normally would be easy to note, during the visual transition from one
time to the next. Researchers have developed several different expla-
nations for the occurrence of these phenomena [24], especially when
a visual disruption is introduced during the transition between the two
images. This disruption can take many forms like an eye movement, a
flashed blank screen, a blink, a cut in a motion picture. The most inter-
esting results for our work were presented by Simons et al. [25]. The
authors conducted different perceptual experiments where observers
viewed a scene throughout the change and they were actively trying to
find what was changing. The scene was viewed or with a gradual con-
dition, where the changes were presented as a 12 seconds animation
created by dissolving one image of a pair into the other, or with a dis-
ruption condition, where one image of a pair was presented for 11250
ms, followed by a blank gray screen for 250 ms, then followed by the
second image in the pair. Two different type of changes was tested in-
dependently: objects that appear or disappear from the scene replaced
by an appropriate scene background; objects or regions of the scene
with a color change. The analysis of the experiment results shows two
important trends. When changes are sufficiently gradual, the visible
change does not seem to draw attention, and large changes can go un-
detected. In these experiments, the rate of detection with a gradual
transition is not better than when the two images are separated by a
blank-screen disruption. More interesting are the results of the tests
with a color change. In this case, the color changes are detected less
often than an addition/deletion change and their detection was better
in the disruption condition than in the gradual condition.

To summarize the main contributions of our work are:

• an interactive visualization method that highlights the main tem-
poral geometric changes and, at the same time, minimizes the
perception of irrelevant small color and geometry inconsisten-
cies using different temporal interpolation curves;

• an interactive method that preserves all the color and geome-
try attributes of the input models without the use of overlay vi-
sual information, like an additional change color maps, that can
make harder and difficult the understanding of the shape and
color/geometric features of the underlying 3D models;

• a user study to understand what interpolation curves are more ef-
fective and preferred by the user in the visualization of the tem-
poral evolution of a changing scene.

In Section 2 we introduce the state-of-the-art methods for the spatial-
temporal comparative visualization of visual input, like images, video,
volumetric dataset and 3D models. Then we describe our algorithm
(Section 3) and finally we present the results obtained in a user study
to evaluate the effectiveness of the proposed method (Section 4).

2 RELATED WORK

The comparative visualization of the temporal data was studied in sev-
eral application fields but up-to-now the attention was focused mainly
on volumetric data. Pagendarm et al. [20] show the benefit of the sci-
entific visualization using overlay layer with color coding to compare
flow simulation and experimental data. Gleicher et al. [7] present a
survey of visual comparison techniques trying to extract a taxonomy
with three categories: juxtaposition to present each object separately;
superposition to present multiple objects in the same coordinate sys-
tem; explicit encoding of the relationships that encodes visual connec-
tions between objects.

Several works have been developed for the medical and biological
visualization. DeLeeuw et al [14] present a system to visualize time-
dependent data captured by a confocal microscopy of live 3D cells
taking advantage of animations to improve the understating of some
biological processes. Loomis et al. [16] propose a system for growing
plant visualization based on a linear interpolation of different images
acquired at different times. Tory et al. [28] present three different ap-
proaches to highlight changes in medical 4D data: semi-transparent
isosurfaces colored by time; direct volume rendering encoding using
intensity and change intensity over the time; glyph visualization of the
change on the isosurface. The visual comparison of biomechanical
motion and 3D data is proposed by Keefe et al. [12] with a mixed
solution of overlay and side-by-side views assisted by a graph visual-
ization of the change along a user selected direction. The side-by-side
comparison is also used in the system VisTrails [2] to allow the user to
create multiple temporal images to analyze.

Kok et al [13] use four different visualization techniques for multi-
time CT data: side-by-side, comparison by switching, overlay and a
checkerboard approach using tiles from different time images. The
last approach is extended by Malik et al. [17] using hexagon cells to
show more than two times. The visualization of statistical deforma-
tion models for 2D/3D medical images is analyzed by Caban et al. [4]
and Hermann et al. [9]. Caban et al. [4] present four visualization al-
gorithms: likelihood volumes to illustrate the probabilistic properties
of a group of images; deformable grids to show statistical deforma-
tion properties and characterize regions with high variability; spher-
ical glyphs to annotate the variability of different areas; line-based
glyphs to illustrate deformation range and morphological variability.
Hermann et al. [9] use the theory of stationary velocity fields for the
interactive non-linear image interpolation and plausible extrapolation
of large deformations.

To understand the spatio-temporal characteristics of time-varying
volumetric data, Woodring et al. [32] use a high dimensional direct
rendering of a 4D data field. They utilize different integration op-
erators and volume transfer functions to present the spatio-temporal
features to the user in an intuitive manner. Caban et al. [3] intro-
duce a texture-based feature tracking technique to detect multiple fea-
tures over time and find them in the following time volumes. Tracked
objects are used to illustrate changes. Wang et al. [30] apply an
importance-driven approach to time-varying volume data visualization
to enhance the identification and presentation of the essential aspects.
After the computation of the importance measure, they show a system
to highlight a data cluster selected by the user changing the saturation
of the color fragments. Joshi et al. [10] show how to use some tech-
niques inspired from the illustration literature, like speed-lines, flow
ribbons and strobe silhouettes, to help the user to see changes in the
3D volume visualization.

Some solutions are also proposed for videos and 3D meshes. Wu
et al. [33] propose an algorithm to magnify small changes within the
same video while Balakrishnan et al. [1] present a system for the com-
parison of two videos based on the overlays of the filtered temporal
gradient. The color of the gradient edges in the final image is based on
a measure of local dissimilarity. Nowell et al. [19] propose a system
for temporal change visualization on content collections represented as
a 3D landscape. The authors investigated three techniques for drawing
attention to changes from one time to the next: 3D morphing; cross-
fading; a wire-frame rendering of the emerging contours superimposed
on the image.

In general, the existing solutions show some limitations. Some of
them are not interactive, like the side-by-side approaches that make
harder and time consuming the comparison task for the user. Other
ones encode the changes or in some attributes, like the color, the color
saturation, the surface bump, or with overlapped glyphs that make dif-
ficult the understanding and the interpretation of the geometric and
color information of the model.

3 ALGORITHM

Let us consider two 3D meshes S0 and S1 representing the same scene
at two different time steps; we assume that the models are aligned and



the geometric differences are already identified and segmented over
the meshes.

We want to provide an interactive technique that allows the user
to switch in a continuous way between the models to understand and
discern the most important and consistent geometric changes. More
precisely we assume the input models were preprocessed with a state-
of-the-art method of automatic change detection (Section 3.1). This
preprocessing step computes a probability change map that identifies
the regions with a significant amount of geometric differences from the
regions with no change or with small irrelevant low-amplitude/high-
frequency spatial changes, for example color differences due to vary-
ing lighting conditions or geometric inconsistency due to incomplete
or noisy data.

The proposed algorithm (Section 3.2) exploits the output of this
change detection step and it is based on a novel blending approach of
rendered fragment in screen-space using different temporal interpola-
tion curves following the general insights of the studies on the Change
Blindness phenomenon. In our context, we underline two important
observations coming out from the Change Blindness experiments [25].
This type of blindness happens also when a gradual transition between
the two times is used, making, in some cases, big changes less perceiv-
able. Then the color changes are detected less often that a geometric
change (for example an object that was added or removed from the
scene) and their detection becomes trivial in the case of a simple in-
stantaneous switch between the two times. These observations suggest
us some hints in the design of our visualization algorithm. In partic-
ular, a smooth gradual transition for the regions identified as with no-
change or with irrelevant geometric and/or color differences can help
to hide as more as possible their perception at the user. On the other
side, the trivial fast switch between the two time steps make simpler
for the user to identify the significant changes but, at the same time,
it emphasizes all the color differences making harder the visual de-
tection of the geometric changes. This problem is very challenging
especially with models by multi-view 3D reconstruction, where it is
usual to have high-frequency shading variation due to the input photos
acquired in different lighting conditions. Our approach tries to merge
these two observations using different interpolation curves for the dif-
ferent regions of the 3D models in order to maximize the perception
of most significant change areas and at the same time to hide the small
differences in the others.

3.1 Change Detection
To automatically detect the changes between the input meshes we use
a slight variant of the method presented in [21]. This method is based
on two steps. A first step to detect the changes using the implicit sur-
face defined by the point clouds under a Growing Least Square(GLS)
[18] analysis; this kind of comparison produces more robust change
classification results than the classical proximity measures. After this
classification, a spatial reasoning step is performed to solve critical ge-
ometric configurations that are common in man-made environments,
like an office or a home interior. The first step computes a multi-scale
GLS descriptor on a uniform subsampling of the volume occupied by
the point clouds, independently for each point cloud, and then it maps
the differences of these descriptors in the time over the original mod-
els. In order to be more robust against meshes with large variation of in
the local point density, for example meshes generated by a multi-scale
data acquisition, we extend the method in [21] with an adaptive octree
able to adjust the density of the descriptors with the point density of
the meshes. Then since the spatial reasoning step is very sensitive to
the noise we avoid this processing for the meshes generated by multi-
view 3D reconstruction. The final results are two meshes with a [0,1]
per-vertex change field that can be interpreted as a change probability.
We assume a small amount of smoothness in the change field so that,
as shown in Figure 2, to help reducing rendering artifacts around the
transition between change and no-change regions.

3.2 Change Visualization Algorithm
The proposed visualization algorithm computes the screen-space inter-
polation of the data of the 3D colored meshes S0 and S1 using different

Fig. 2: Blue-White-Red color mapping of the [0..1] change field com-
puted with the method in [21]. Left column shows the two meshes
S0(top), S1 (bottom) where the change threshold is set d = 0.2; Right
column shows the same two meshes but with a different change thresh-
old (d = 0.5).

interpolation curves for the areas with different change values. The
segmentation of these areas depends on a segmentation change thresh-
old d. The algorithm is composed of two steps. First, we render each
model independently to generate the corresponding geometry buffers
where we store for each pixel (x,y) the normal~n(x,y), the RGB color
c(x,y) and the change value q(x,y) generated by barycentric interpola-
tion of the vertex info of each triangle. In the second step, we compute
the screen-space interpolation of the two geometry buffers using a time
variable t ∈ [0,1] whose value is controlled interactively by the user,
for example with a slider. When the t is zero the tool shows S0, when
it is one the tool shows S1, while for all the other values the tool shows
a rendering obtained by a pixel-wise blending of the geometry buffer
data controlled by the output of the function fγ (t) : [0,1]→ [0,1]. The
used function fγ (t) is a parametric smooth-step [23]:

fγ (t) =


1− t

(1/γ−2)(1−2t)+1
t ≤ 0.5

1− t
(1/γ−2)(2t−1)+1

t > 0.5

(1)

where the parameter γ ∈ (0,1) determines its shape (Figure 3a). This
function has two interesting properties: for γ = 0.5 we have the linear
function f0.5(t) = 1− t; the functions fγ (t) and f1−γ (t) are symmetric
with respect to the function 1− t.

The main idea of our technique is to use two different interpolation
functions using distinct shape parameters γ: γC for the change and γNC

for the no-change regions. The evaluation of the best pair of functions
to use for our purpose was done by means of a user study presented
in Section 4. The outline of the algorithm is shown in Algorithm 1.
The input are the geometry buffers of the two meshes and the two al-
pha values αC = fγC (t) and αNC = fγNC (t) to use in the interpolation of
change and no-change pixels. For each pixel (x,y) of the screen we re-
cover the corresponding data from the geometry buffers of each mesh
(normals~n0(x,y) and~n1(x,y), colors c0(x,y) and c1(x,y), change val-
ues q0(x,y) and q1(x,y)). This data are used to classify the pixel as
change or no-change and to determine the type of interpolation to ap-
ply. A screen pixel is classified as no change only if both the meshes
project on that pixel a value q(x,y) below the selected change segmen-
tation threshold d. If at least one mesh projects a value q(x,y) above
d the pixels is classified as change. In all the other case where only
one mesh projects geometry on the pixel, due for example to data not
acquired in the other time, the pixel is classified as change (in this case
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Fig. 3: (a) Parametric smooth-step function fγ used for the temporal
interpolation with different γ . (a) Function g(α1,α2,b) used for the
interpolation of the blending factor near the boundary of binary seg-
mentation obtained with the change threshold d.

the time with no information return a negative value q(x,y)). The next
step is the interpolation of the data. For the no-change pixels, we cal-
culate the alpha blending of the two normals and colors independently
and then we compute the final Lambertian shading with the interpo-
late values. Instead for the change pixel, we compute independently
the Lambertian shading of each time and then we blend the computed
shaded colors. For the pixel with a single valid time, we blend the
shaded color with the background color of the screen. The computa-
tion of the blending of normals and colors before the shading permits
to partially hide negligible variations like high frequency geometric
and color differences due to non-relevant factors (see the additional
video).

The use of a binary segmentation between the change and no-
change areas and the choice of the respective interpolation functions
with different parameters γ can produce visible rendering artifacts near
the boundary of the segmentation (see Figure 4 for an example). To
overcome this problem we interpolate the alpha parameters αC and αNC

in a neighborhood of the change threshold d taking advantage of the
smooth radial distribution of the change value around the real changes.
In particular, for all the pixels with at least one change value q0 and q1
in the range [d− δ ,d + δ ] we interpolate the alpha blending parame-
ters using the following function g(α1,α2, |q0−d|+ |q1−d|) (Figure
3b):

g(α1,α2,b) =


α1 +α2

2
+

(α1−α2)

2
b

2δ
b≤ 2δ

α1 b > 2δ

(2)

The obtained result is a smoother transition near the boundary of the
binary segmentation that makes less abrupt and more pleasant the final
color interpolation (Figure 4).

4 USER STUDY

In this section we present the results of the user study conducted to
evaluate the effectiveness of the proposed technique. This user study
is subdivided in two sessions. In the first one, we evaluate the effec-
tiveness of the technique from an objective point of view asking to the
subjects to perform a visual task. In the second session, we evaluate
our technique in a subjective manner asking to the user to score how
effective are four different presenting techniques in the task of clearly
showing the visual differences in a evolving scene.

In the following we provide a detailed description of the dataset
used, the techniques tested and the protocol followed in the two ses-
sions.

4.1 Dataset
We used six datasets with different characteristics and created with
different reconstruction techniques. In the following we indicate the
original scene acquired at a certain instant time t0 with S0 and the same
scene acquired at the time t1 > t0 with S1. Figure 5 and Figure 6 show

Fig. 4: Results obtained without (left) and with (right) the use of the
interpolation of αC and αNC with the function g(α1,α2,b). The bottom
row shows the corresponding weight map used for the final blending
of the meshes. (t = 0.8, αC = f0.05(t) and αNC = f0.95(t), d = 0.3,
δ = 0.15).

Procedure 1 Temporal Interpolation Algorithm

Input: Geometry Buffers c,n,q for S0 and S1
Input: Time t, change threshold d, and light direction~l
Input: αC = fγC (t) and αNC = fγNC (t)
Output: The pair 〈 color, al pha 〉 of the pixel

1: for all pixel (x,y) do
2: βC ← g(αC,αNC, |q0−d|+ |q1−d|)
3: βNC ← g(αNC,αC, |q0−d|+ |q1−d|)
4: if (q0 < d ∧ q0 ≥ 0 ∧ q1 < d ∧ q1 ≥ 0) then . no change
5: ~n← βNC ~n0 +(1−βNC)~n1
6: c← βNC c0 +(1−βNC) c1
7: return 〈 c (~n ·~l ), 1 〉
8: else if (q0 ≥ 0 ∧ q1 ≥ 0) then . change
9: c← βC c0 (~n0 ·~l )+(1−βC) c1 (~n1 ·~l )

10: return 〈 c, 1 〉
11: else if (q0 ≥ 0) then . only S0
12: return 〈 c0 (~n0 ·~l ), βC 〉
13: else if (q1 ≥ 0) then . only S1
14: return 〈 c1 (~n1 ·~l ), 1−βC 〉
15: return 〈 black, 0 〉

the 11 viewpoints used in the user study with the relative rendering
parameters: d the threshold for the change/no-change segmentation; δ

for the range of change values near the threshold d where to interpolate
the blending weights αC and αNC avoiding abrupt color variations.

Santa Marta The dataset shows an archeological excavation gen-
erated from two sets of photos (129 and 98 respectively) acquired
with a drone. The photographic acquisition was done in two differ-
ent years using two different cameras (12Mp and 24Mp). The meshes
have been generated using the MVE system [6] and have per-vertex
color. The meshes are characterized by high-frequency differences
due to the higher photo resolution of the second acquisition that gen-
erated denser color and geometry details. We select 3 viewpoints for
this dataset (ST.MARTA1, ST.MARTA2 and ST.MARTA3).

Arene de Lutece This dataset shows the Arene de Lutece in
Paris. The meshes are generated by two large sets of photos acquired
by several people with different cameras and smart-phones in two dif-
ferent days (1500 and 6000 photos). This dataset shows a multi-scale
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Fig. 5: Viewpoints used in the user study. Each viewpoint shows the two times, the relative change maps computed with [21] (blue = no-change,
red = change) and the parameters d for the change/no-change segmentation and δ for the interpolation near the binary segmentation.
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Fig. 6: Viewpoints used in the user study. Each viewpoint shows the two times, the relative change maps computed with [21] (blue = no-change,
red = change) and the parameters d for the change/no-change segmentation and δ for the interpolation near the binary segmentation.

acquisition, where the same details are acquired with very different
level of details; we used the MVE system [6] and the FSSR algo-
rithm [5] to preserve all the multi-scale acquired geometric details.
The meshes have per-vertex color. The meshes show geometric noise
due to different type of cameras and high color shading variation due
to the different lighting condition during the photographic acquisition.
We selected a single viewpoint for this dataset (PARIS).

Office The dataset is composed by two time-of-flight scans of an
office. The meshes are created using Screened Poisson Surface Recon-
struction [11]. The meshes have a per-vertex gray scale color (laser re-
flectance). The meshes are very accurate and show only large changes
(objects that are moved or that appear) with no noise and small incon-
sistencies. We selected a single viewpoint for this dataset (OFFICE).

Lab The dataset is composed by two time-of-flight scans of a labo-
ratory. The meshes are created using Screened Poisson Surface Recon-
struction [11]. The meshes have a per-vertex gray scale color (laser re-
flectance). The meshes are very accurate and show only large changes
with no noise and small inconsistencies. We selected two viewpoints
for this dataset (LAB1, LAB2).

Seaweed Pile The dataset shows a seaweed pile on the beach ac-
quired with two set of photos in different moments of the day (in the
morning and in the afternoon). The two sets contains 76 and 86 photos
acquired with a smartphone. The final meshes have been generated us-
ing Screened Poisson Surface Reconstruction [11] using as input the
dense point cloud computed by Agisoft Photoscan. The geometric
changes are very difficult to note due to the color variation of the fi-
nal meshes. We selected two viewpoints for this dataset (SEAWEED1,
SEAWEED2).

Ground Pile The dataset shows a ground pile acquired with three
set of photos in different days (55, 79 and 106 respectively). The fi-
nal meshes have been generated using Screened Poisson Surface Re-
construction [11] using as input the dense point cloud computed by
Agisoft Photoscan. The geometric changes are very localized, but the
meshes show some inconsistency with high frequency color and geom-
etry variation due to the different lighting condition during the photo-
graphic campaign and due to the noise of the input dense point cloud.
We selected two viewpoints for this dataset (GROUND1, GROUND2).

4.2 Techniques

In our study we compare four techniques: switch between images
(SWITCH), linear blending (LINEAR), and the two variants of the
proposed technique (SMOOTHSTEP1 and SMOOTHSTEP2). Figure 7
shows the shape of the interpolation functions fγC (t) and fγNC (t) used
by each technique for the change and the no-change pixels. The two
methods SWITCH and LINEAR use the same function for both the cat-
egories fγC (t) = fγNC (t) .

The switch, or instantaneous alternation, between the different
scenes is the typical way of comparing different images inside soft-
ware which use layers. For example, many image processing, image
editing and GIS software tools use layers to show different information
or different parts of overlapping images. We implement the method
with an instantaneous transition from one time to the next at the time
t = 0.5. The linear blending has been selected to understand if the sim-
ple mixing makes able the subject to interpret well the scene changes.
The method has been implemented with a function with parameter
γC = γNC = 0.5.

The first variant of the proposed method (SMOOTHSTEP1) uses a
linear blending for the no-change regions (γNC = 0.5) and a smooth-
step interpolation for the change areas (γC = 0.05). The second variant
of the method (SMOOTHSTEP2) uses a smooth-step interpolation for
both the classes with two different symmetric functions (γC = 0.05
and γNC = 0.05). The main difference of the these methods is in the
perception of the no-change regions. In the method SMOOTHSTEP1
the no-change regions are interpolated in a linear way avoiding abrupt
color changes that make the negligible differences perceivable. At
the same time the real changes appear very compressed in the central
times around t = 0.5. In the method SMOOTHSTEP2 the interpolation
of the no-change regions happens in two separated moments near t =
0 and t = 1 in a fast way while it stays completely still during the
interpolation of the change areas (around t = 0.5). In this way we
ensure no distraction factors when the change is shown.

4.3 Protocol

The user study is subdivided in two sessions with the purpose of eval-
uating both objectively and subjectively the proposed visualization
technique. At the begin of each session we make a training phase
where the subject is instructed with the task to perform in the session,
listens a description of the GUI and practices a short time with the sys-
tem. The training aims to guarantee that the subject understands the
use of the interface for the specific task.

4.3.1 First Session - Objective evaluation

To evaluate the effectiveness of the approach we measure how well
the subjects are able to correctly identify change/no-change areas in a
number of scenes by tagging squares of a superimposed grid. Each test
consists of one of the eleven viewpoints previously listed and shown in
Figure 5 and 6. A random technique from the four under investigation,
is chosen and used for each user/scene combination. The subject sees
this transition automatically animated from S0 to S1 and back to S0.
The animation lasts 5 seconds: 250ms on S0, 2000ms for the transition
from S0 to S1, 500ms on S1, 2000ms for the transition back from S1
to S0 and 250ms on S0. The subject can see the animated transition 3
times. The transition duration and the number of repetition was chosen
as sufficient to pay attention on the various parts of the scene [31] but
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Fig. 7: Shape of interpolation functions fγC and fγNC used by the four
techniques tested in the user study.

Fig. 8: Example of inputs provided by the subject in two different
scenes. Red tiles indicate perceived changes, blue tiles indicate no
changes, no input indicates that the user has no a clear choice on that
tiles.

yet short enough to make the identification task non trivial. At the end
of the third animation, the subject indicates the areas of changes.

The training phase consists in instructing the subject about the kind
of changes to indicate and how to enter the input. Concerning the kind
of changes, we asked to indicate significant geometric difference for
each scene and to avoid that non-relevant geometric changes could bias
the subject. For example, a wall of the scene can present more or less
geometric details depending on the position of the laser scanner in the
two acquisition sessions even if a real change has not happen. In this
way we avoided confusion and simplified the task requested. To better
assess what significant differences are, we mention objects or parts of
the scene with appear or disappear and parts of the scene with change
its shape significantly. Since we design our technique with the goal to
“hide” minor/moderate color changes we deliberately not mentioned
anything about color differences.

Finally, the subject is instructed to how indicate the detected visual
changes on a 7 grid overdrawn on the scene. The subject indicate with
a mouse click the tiles where a change is detected (red tiles), with
two clicks the tiles that do not change from S0 to S1 (blue tiles). The
tiles for which the subject is uncertain or does not remember the status
should remain un-tagged and are recorded as “no answer” (Figure 8).

4.3.2 Second Session - Subjective evaluation

The training phase for this session is simpler and shorter then the pre-
vious one. The subject is instructed to test the different visualization
techniques directly and rate them with a score from 1 to 5 accord-
ing to his/her preference. In this experiment the subject knows the

Fig. 9: (Top) User graphics interface used in the main monitor. For
each technique the subject can interact with the corresponding slider
to evaluate its effectiveness in the visualization of the geometric dif-
ferences. (Bottom) Layout used during the second part of the study.
A false color map is shown on a monitor close to the one in front of
the subject. On the main screen the subject can interact with the four
techniques.

change/no-change segmentation of the scene that is displayed on a
side monitor during the interactive session with a false color map (Fig-
ure 9). Note that all the techniques are visualized simultaneously so
that the subject can better appreciate the different effects produced.
We asked to evaluate with ’1’ the techniques that are not effective
to show the changes and with ’5’ the techniques that are very effec-
tive. We asked also to consider in the scoring the effectiveness in hid-
ing which parts of the scene does not change. The subject evaluates
the techniques by moving the time slider provided for each technique.
The final recommendation of the training phase is to play with all the
range of the slider to better evaluate the results that the specific tech-
nique produces. For this session we selected five viewpoints from that
in Figure 5 and 6 (ST.MARTA1, ST.MARTA2, OFFICE, SEAWEED1,
GROUND1).

4.4 Data Analysis and Discussion

Twenty-one volunteers have participated in the first session of the user
study and twenty-four in the second session. Most of them (60%) are
computer scientists, while others are not. The subjects’ age ranges
from 30 to 52 and the number of males (75%) is greater than the num-
ber of females (25%).

The data of the first session have been aggregated by measuring, for
each technique, the tiles correctly identified as “change” (C), the tile
correctly identified as “no-change” (NC) and the “no answered” tiles
(NA). We compute the weights wC = min(1, 2a

c ) for each tile indicated
by the subject as change and wNC = min(1, 2b

c ) for each tile indicated
by the subject as no-change, where c is the number of pixels in the tile
where at least one mesh projects geometry, a is the number of these
pixels classified as change and b is the number of pixel classified as
no-change. For the pixel classification we use the same approach in
Algorithm 1: a pixel is classified as no-change iff both the models
project a change value q below the segmentation threshold d on the
pixel; for all the other cases the pixel is classified as change. The final
values C are computed as average of wC of all the tiles indicated as
change for the technique (the same for the values NC). Instead, NA is
simply the percentage of tiles with no answers provided. The results



Change No-Change No-Answer
C #Tiles Score NC #Tiles Score NA #Tiles

SWITCH 0.680(±0.136) 437 0.382(±0.070) 0.931(±0.043) 421 0.633(±0.058) 0.46 730
LINEAR 0.758(±0.107) 351 0.448(±0.092) 0.923(±0.051) 643 0.695(±0.059) 0.374 595

SMOOTHSTEP1 0.738(±0.109) 478 0.497(±0.060) 0.958(±0.027) 600 0.717(±0.038) 0.319 506
SMOOTHSTEP2 0.729(±0.118) 410 0.420(±0.076) 0.929(±0.049) 507 0.655(±0.055) 0.412 643

Table 1: Results from the objective evaluation session. All the techniques are almost equally efficient for the identification of the scene changes
with the exception of SWITCH. The method SMOOTHSTEP1 performs better than the other two methods yielding a lower number of no-answer
(NA) and a higher number of correct change tiles detected (0.738×643 = 352.7 tiles). This is confirmed by the global score for change 0.497
and no-change 0.717. The numbers in parenthesis are the corresponding variances.

Score
SWITCH 1.68(±0.89)
LINEAR 2.50(±1.40)

SMOOTHSTEP1 4.10(±0.70)
SMOOTHSTEP2 3.90(±1.09)

Table 2: Techniques subjective evaluation. Note the high preference
of SMOOTHSTEP1 method and its variant SMOOTHSTEP2 w.r.t to the
other techniques tested. The numbers in parenthesis are the variance.

for each technique are summarized in Table 1 (means and variances
for C and NC, the unknown rate NA and the absolute number of tile
for each categories #Tiles). See the additional material for the data
aggregated by scene.

From these results is possible to note that, despite the intrinsic dif-
ficulty of the task requested, the subjects are quite good to identify
changes between the scenes. The SWITCH technique is the one that
performs poorly. Instead, the other three methods have similar perfor-
mance for the value C and NC even if the SMOOTHSTEP1 technique is
quite better in reducing the number of tiles that received “no answer”.
This means that the SMOOTHSTEP1 method helps more the subject
to understand where the changes are. This is confirmed by the higher
number of tiles (column #Tiles) indicated by the subjects as change
(478), which is the 36% higher than LINEAR and 16% higher than
SMOOTHSTEP2. A better evaluation can be done computing a global
score for the detection of change and no change considering the un-
known rate NA. This score is reported in the columns #Score for the
change and the no-change in the Table 1. The value of this score is
obtained by computing for each single test two performance parame-
ters: the right change score C and the right no-change score NS of the
test weighted with the percentage of tiles with an answer. This per-test
score are aggregated for each technique. In this way the contribution
of a subject with a test with few no-answer tiles is higher in the com-
putation of the final score. With this new score, it is more clear that
the technique SMOOTHSTEP1 performs better than the others meth-
ods. The fact that the three methods are almost equally efficient for
the identification of the scene changes can indicate that the task is or-
ganized in a fair way with respect to 4 tested techniques.

Concerning the second session we analyzed the scores collected in
order to identify and remove scoring bias. To do so, we model the
score si j provided by the subject i for the technique j as:

si j = gis j +bi +ni j (3)

where s j is the “real” score of the answer j, gi is a gain factor, bi is an
offset, and ni j is a source of noise sampled from a zero-mean, white
Gaussian which models eventual systematic or random errors. In this
model, the gain and the offset vary from subject to subject, since any
subject provides scores according to an own scale. By aggregating
the scores for each technique and performing an analysis-of-variance
(ANOVA) we found that a simple mean normalization [8] of the scores
is sufficient to remove differences across subjects.

Fig. 10: Average scores and 95% confidence intervals of the four tested
techniques without the subjects detected as outliers.

These scores had been also analyzed using a Kurtosis analysis in
order to identify a range of values for which a subject can be consid-
ered an outlier and then screened. The screening procedure follow the
Annex 2 of ITU BT.500 Recommendation [29]. The procedure de-
pends on if the scores distribution can be considered or not a normal
distribution. In case of a normal distribution the lower bound is set
to be µ − 2σ , while the upper bound µ + 2σ (µ is the mean of the
scores and σ the standard deviation). This limits change to µ−

√
20σ

and µ +
√

20σ for a non-normal distribution. Then, indicating with
P the number of scores under the lower bound limit and with Q the
number of scores over the upper bound limit, a subject is screened if
(P+Q)/N > 0.05 AND (P−Q)/(P+Q) < 0.3. Following this pro-
cedure we found that 3 of 24 subjects may be outliers, so they were re-
moved from the final analysis. Table 2 contains the aggregated scores
(average and variance) for each techniques after the outliers screening.
Figure 10 shows a chart with the average scores and the relative 95%
confidence interval. Table 3 and Figure 11 show the scores aggregated
for each scene.

The results in Table 2 show that for the user the most effective
method for the visualization of the geometric differences is SMOOTH-
STEP1 (highest score and lowest variance). The method SMOOTH-
STEP2 has a slightly worse rate but is almost as effective as SMOOTH-
STEP1. Its lower score is due to the no-change interpolation function
that makes clearly noticeable miminum color differences between the
meshes at the beginning and at the end of the slider. This features can
disturb the user especially in dataset with high-frequency color vari-
ation, like SEAWEED1 and GROUND1. On the contrary, the method
LINEAR presents a very low score despite its high evaluation in the
fist session of the user study. Finally, the method SWITCH confirms
the bad performance already emerged in the first session.

Finally using the Kolmogorov-Smirnov (KS) test, we can reject the



Scenes
ST.MARTA1 ST.MARTA2 OFFICE SEAWEED1 GROUND1

SWITCH 1.47(±0.73) 1.72(±0.87) 2.33(±1.17) 1.29(±0.50) 1.57(±0.53)
LINEAR 2.95(±1.57) 2.57(±1.20) 2.62(±1.38) 1.90(±0.94) 2.43(±1.29)

SMOOTHSTEP1 4.05(±0.81) 3.86(±0.7) 3.86(±0.69) 4.38(±0.52) 4.33(±0.51)
SMOOTHSTEP2 3.86(±1.17) 3.86(±1.46) 3.67(±1.08) 4.00(±0.86) 4.10(±0.75)

Table 3: Subjective evaluation data aggregated by scene. The methods SMOOTHSTEP1 and SMOOTHSTEP2 are the most effective in each tested
scene with a slightly higher preference for the method SMOOTHSTEP1. The numbers in parenthesis are the variance of the subject’s scores.

Fig. 11: Average scores and 95% confidence intervals of the four tested techniques aggregated for each scene without the subjects detected as
outliers.

null hypotheses that the pairs SWITCH-LINEAR (p = 6.94×10−7),
SWITCH-SMOOTHSTEP1 (p = 1.97×10−29), SWITCH-
SMOOTHSTEP2 (p = 3.25×10−23), LINEAR-SMOOTHSTEP1
(p = 1.35×10−12) and LINEAR-SMOOTHSTEP2 (p = 1.06×10−9)
are from the same distribution. On the contrary the pair
SMOOTHSTEP1-SMOOTHSTEP2 are strictly correlated (p = 0.78)
as we expect. This correlation is also indirectly confirmed by
the opinions of the subjects at the end of the second session
where many people declared that the methods SMOOTHSTEP1 and
SMOOTHSTEP2 are in general very similar and hard to distinguish.

For sake of documentation, and for the interested reader, we have
included as additional material the non-aggregated results of the two
sessions of the user study with all the C/NC/NA taggings and the
scores provided by the users for the presented viewpoints and tech-
niques.

5 CONCLUSION

We have proposed a new interactive visualization method to bet-
ter understand the 3D temporal geometric changes of an evolving
scene. Starting from a change/no-change segmentation of two input
3D meshes, the method computes a screen-space interpolation of the
two geometry buffers using different interpolation curves according
to the change/no-change. In particular, exploiting the insights of the
cognitive experiments on Change Blindness, we propose two differ-
ent interpolation functions with two goals: to improve the percep-
tion of the most significantly changed regions and to hide the neg-
ligible, yet visually evident, color and geometric differences due to
noise and high-frequency variations (small acquisition imperfections,
color shading variation due to different lighting, small non-significant
changes). To evaluate the interpolation functions, we conducted a user
study to test the two proposed methods SMOOTHSTEP1 and SMOOTH-
STEP2 with two other techniques: a simple fast switch (SWITCH) and
a linear blending (LINEAR). The user test was organized in two sec-
tions to evaluate, in objective and subjective way, the effectiveness of
each technique in clearly showing what was marked as changed in the
scene. Analyzing the test results we can conclude that the proposed

methods are the most effective and the most preferred techniques with
a slightly better score for the technique SMOOTHSTEP1. More pre-
cisely we showed that the method SMOOTHSTEP1 is the most effi-
cient in helping the subject to understand where is the change with
less uncertainty (it has the lowest number of areas with no answer)
and similarly, in the subjective evaluation, the method SMOOTHSTEP1
received the highest score with the lowest variance.

Since the proposed approach is very simple to implement, it could
be adapted for the change visualization of other input, like 2D images,
in order to enhance only the most important changes in noisy data.
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