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1 EXECUTIVE SUMMARY 

1.1 INTRODUCTION 

This deliverable describes the publications that resulted from task 5.3 and how they fit into the 
work plan of the project. 

The objective of task 5.3 is to improve basic multi-scale algorithms developed for or related to 
task 5.2. For this reason, we have devised new or adapted existing implementations to achieve 
results of higher quality or targeted performance issues, such as high computational demands, 
high memory consumption, etc. 

There are three publications which are mainly attributed to task 5.3. They are in the appendix of 
this deliverable. Additionally, there are five publications that are related to this deliverable. We 
briefly mention these documents but do not discuss them in depth since they are extensively 
described in other deliverables. For the latter, related papers are available via the Harvest4D web 
site or in the deliverables to which they mainly belong. 

1.2 PUBLICATIONS 

The following three main publications of task 5.3 can be found in the appendix: 

� Patrick Seemann, Simon Fuhrmann, Fabian Langguth, Stefan Guthe and Michael Goesele 
Simplification of Multi-Scale Geometry Using Adaptive Curvature Fields. 
Submitted to the 21st International Symposium on Vision, Modeling and Visualization (VMV), 
Bayreuth, Germany, 2016. 

� Sebastian Ochmann, Richard Vock, Raoul Wessel and Reinhard Klein 
Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds. 
In: Computers & Graphics, 2015. 

� Simon Fuhrmann, Misha Kazhdan and Michael Goesele 
Accurate Isosurface Interpolation with Hermite Data. 
In: Proceedings of the International Conference on 3D Vision, Lyon, France, 2015. 

The following related publications are on the Harvest4D web site or in other deliverables: 

� Jean-Marc Thiery, Emilie Guy, Tamy Boubekeur and Elmar Eisemann 
Animated Mesh Approximation with Sphere-Meshes. 
In: ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2016. 

� Leonardo Scandolo, Pablo Bauszat and Elmar Eisemann 
Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows. 
In: Computer Graphics Forum (Proceedings of Eurographics), 2016.  
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� Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke and Michael Wimmer 
Large-Scale Point Cloud Visualization through Localized Textured Surface Reconstruction. 
In: IEEE Transactions on Visualization & Computer Graphics, 2014. 

� Murat Arikan, Reinhold Preiner and Michael Wimmer 
Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction. 
In: IEEE Transactions on Visualization & Computer Graphics, 2015. 

� Thierry Guillemot, Andrès Almansa and Tamy Boubekeur 
Covariance Trees for 2D and 3D Processing. 
In: Computer Vision and Pattern Recognition (CVPR, Oral), 2014. 

2 DESCRIPTION OF PUBLICATIONS 

2.1 OVERVIEW 

The multi-scale data structures and algorithms that we implemented for task 5.2 underwent 
improvements or augmentations to fulfill the goals of the successive task 5.3. As initially planned, 
we focused on implementation and scalability issues. That is why we investigated problematic 
parts of our multi-scale approaches and searched fitting enhancements w.r.t. quality of 
reconstructions or scalability. 

Particularly, we improved the isosurface extraction method of the algorithm Floating Scale 
Surface Reconstruction to increase the quality of our multi-scale mesh reconstructions. Moreover, 
we devised a novel, automatic and adaptive curvature estimation algorithm for such multi-scale 
models to enable reasonable application of post processing steps like mesh simplification for less 
consumption of resources. Finally, we developed an automatic approach for creation of multi-
level and parametric building models from indoor point clouds. 

2.2 ACCURATE ISOSURFACE INTERPOLATION WITH HERMITE DATA  

As described in deliverable 5.22, Floating Scale Surface Reconstruction (FSSR) [Fuhrmann et al. 
2014] takes a dense point cloud that represents the scene as input for creating a globally 
consistent multi-scale surface mesh. The algorithm computes a local basis function for each input 
surface sample. FSSR aggregates all of these local functions in an implicit and approximate surface 
distance function to get an intermediate representation of the complete scene.  We finally 
employ a sparse octree in order to efficiently sample the global implicit function in a multi-scale 
fashion. This enables a hierarchical marching cubes (MC) surface extraction algorithm. 

In contrast to the previous FSSR approach [Fuhrmann et al. 2014] that we describe in deliverable 
5.21, the work of the follow-up publication [Fuhrmann et al. 2015] investigates a novel MC 
surface extraction algorithm. Previously, we employed an MC algorithm that performs contouring 
of a global implicit function by means of linear interpolation. Hereby, isovertices are found by 
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finding zero-crossings in linear interpolations along cell edges of signed implicit function values 
defined at octree cell corners. These isovertices are then triangulated to get a surface mesh. 
Figure 1 illustrates this approach. 

 
Figure 1. [Fuhrmann et al. 2015]: There are four edges with a sign change (left), interpolation of the signed implicit 

function values results in four corresponding isovertices (middle) which are used for polygonization (right). 

 
The linear interpolation works well in cases where the underlying function is piecewise linear or 
close to that. Global implicit functions produced by FSSR or Poisson Surface Reconstruction are 
clearly not piecewise linear [Fuhrmann et al. 2015]. This leads to distance errors between the 
implicit representation and the final surface. We solve this problem by computing implicit 
function gradients to obtain Hermite data and perform non-linear interpolation, which results in a 
closer fit of the extracted surface to its underlying implicit function. Figure 2 shows a comparison 
that presents the increased quality of reconstructions.  

 
Figure 2. [Fuhrmann et al. 2015], Miniature City: Geometric quality difference using linear (left) and cubic 

interpolation (right) for contouring. 

 

2.3 SIMPLIFICATION OF MULTI-SCALE GEOMETRY USING ADAPTIVE CURVATURE FIELDS 

In this publication, we present a novel algorithm to compute multi-scale curvature fields on 
triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball 
neighborhood, where the radius of a ball corresponds to the scale of the features. The challenge 
lies in finding a good radius for each ball to obtain a reliable curvature estimation. Figure 3 
exemplarily shows that using a single scale for curvature estimation on true multi-scale meshes 
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fails. It results in either overfitting due to ball neighborhoods that are too small and fit to noise, or 
oversmoothing due to ball neighborhoods which are too large and coarse for smaller and 
enclosed features. 

 
Figure 3. [Seemann et al. 2016]:  City Wall dataset (top) and two close-ups of the mean curvature field computed at a 
single scale which preserves small features of the lion head (right). The highlights show two example areas in which 
the mean curvature has the same magnitude even though the scale of the mesh is much smaller at the lion head than 
on the edge (left). Note also the noise in planar regions. 

We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm 
is applicable to meshes produced by image-based reconstruction systems, such as MVE and FSSR. 
The resulting meshes often contain geometric features at various scales, for example if certain 
regions have been captured in higher detail. We also show how to convert such a multi-scale 
curvature field to a density field which can subsequently be used to guide applications like mesh 
simplification. 

2.4 AUTOMATIC RECONSTRUCTION OF PARAMETRIC BUILDING MODELS FROM INDOOR 
POINT CLOUDS 

We present a novel, automatic approach for the reconstruction of parametric 3D building models 
from indoor point clouds [Ochmann et al. 2015]. Figure 4 briefly presents an overview of our 
method. In contrast to previous approaches, such parametric building models additionally 
incorporate contextual information about the scene such as large-scale, global wall connectivity. 
Our global optimization approach reconstructs wall elements shared between rooms while it 
simultaneously maintains plausible connectivity between all wall elements. Our automatic prior 
segmentation of the input point clouds into rooms and outside areas filters large-scale outliers 
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and yields priors for the definition of labeling costs for our energy minimization. Detected doors 
and windows further enrich the reconstructed model. 

First, the resulting parametric models allow for an efficient high-level scene editing and even 
prototyping in terms of, e.g., wall removal or room reshaping, which always result in a 
topologically consistent representation. Second, our parametric models also enable 
determination of low-level details like wall thickness or room areas. Thanks to these multi-scale 
properties of our building models, they are relevant for architects and engineers. Furthermore, 
the global connectivity information enables path finding in whole buildings that are particularly 
relevant for tasks, such as simulation and optimization of escape routes. 

 
Figure 4. [Ochmann et al. 2015]: (a) Input point cloud with assignment of points to differently colored scans. (b) 
Refined assignment after automatic segmentation. (c) Detected vertical planes transferred to the ground plane. 

(d) Wall candidates derived from single and pairs of projected planes. (e) Pruned ground plan via graph 
labeling. (f) Final model with detected and classified wall openings, (green) doors and (yellow) windows. 
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3 OTHER RESULTS 
A number of additional publications that mainly belong to other deliverables and which are 
discussed in these also make use of multi-scale aspects. Here, we briefly explain their relationship 
to task 5.3.  

Covariance Trees [Guillemot et al. 2014] target the issue that Gaussian Mixture Models have not 
been adopted highly despite their performance breakthroughs in patch-based image denoising 
and restoration problems. Important reasons for that are simply the high computational demand 
for learning such models on large image databases and their need for tedious parameter 
trimming. Contrary to that, Covariance Trees are flexible and generic tools that can handle such 
models and circumvent the mentioned computational penalty or tedious manual trimming. The 
Covariance Trees achieve this by their hierarchical multi-scale data organization. It allows for 
queries at different levels of scale around any point in feature space.  

Multi Mesh Texturing [Arikan et al. 2014] and Multi-Depth-Map Raytracing [Arikan et al. 2015] 
provide a high-quality visualization of large input point clouds that are augmented with high-
resolution images taken from different positions and viewing angles within the scene. In 
both approaches, the geometry is represented at the scale of the best available photograph, and 
stored along with the RGB data in a set of textured depth maps, which are triangulated and 
stitched [Arikan et al. 2014] or ray traced [Arikan et al. 2015]  to a complete image at render  
time. Similar in spirit to FSSR, this scene representation in its entirety consists of a composition of 
data from multiple scales. The multi-scale composition is guided by available images and 
automatically adapts to the optimal scale to cope with large data sets and keep demand of 
resources low. 

Sphere meshes enable extreme simplification of an animated triangle mesh [Thiery et al. 2016] by 
indexing a number of spheres. It offers a tradeoff between performance and accuracy to the user. 
A higher accuracy that preserves small-scale animation features is achieved by increasing the 
number of spheres, which in turn, naturally, decreases the performance and increases memory 
consumption. On the other hand, the user can sacrifice accuracy for lower resource demand by 
employing fewer spheres when features of larger scale are already sufficient. 

High-quality precomputed shadows can be significantly compressed by exploitation of multi-scale 
properties [Scandolo et al. 2016] which enables wider application of high-resolution shadow 
maps. We achieve high compression rates using multi-resolution hierarchies that are computed 
efficiently on the GPU. Moreover, the hierarchical structure of our GPU data enables real-time 
rendering. 
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4 APPENDIX 
The following pages contain all the publications listed in Section 1.2 that primarily belong to this 
deliverable. Other publications, which we reference here, are on the public Harvest4D web site or 
in other deliverables. 
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Simplification of Multi-Scale Geometry

using Adaptive Curvature Fields
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Figure 1: A single mean curvature field visualized on the mesh surface. In multi-scale meshes, the scale between the curvature values vary
by several orders of magnitude. This is illustrated here using three colormaps that show the curvature field at different scales.

Abstract

We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding
robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The
essential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm
that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based
reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have
been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and
used to guide applications like mesh simplification.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric Algorithms, Languages, and Systems

1. Introduction

Triangle meshes are the most common geometry representation
and their properties have been studied extensively in order to vi-
sualize, analyze, and modify them effectively. An important ge-
ometric property is surface curvature. In differential geometry it
is readily defined via the second derivative of the surface. How-
ever, due to the discrete nature of triangle meshes the computa-
tion of their curvature values is non-trivial. In practical scenar-
ios noise can have a strong influence on the output of estima-
tion algorithms. To cope with these problems recent techniques
[YLHP06, SHBK10, APM15] apply a smoothing operator which
successfully removes noise but ultimately also affects the geomet-
ric detail. The biggest problem is to select an appropriate scale for

this operator. If the scale is chosen too small, the noise will inter-
fere with curvature estimation; if the scale is chosen too large, sur-
face details will be smoothed away. This problem is even more pro-
nounced for multi-scale geometry. Image-based geometry acquisi-
tion pipelines using multi-view stereo (e.g., [FLG14]) can generate
surfaces on vastly different scales depending on the camera res-
olution and its distance to the real-world objects as illustrated in
Figure 2. The resulting triangle meshes then contain geometric fea-
tures and noise on different levels of detail. A single scale curvature
estimation cannot capture the true properties of the whole surface.

In this work we present a novel algorithm that estimates the
curvature field of multi-scale triangle meshes. Previous methods
[YLHP06,SHBK10] compute curvatures by evaluating a neighbor-

submitted to Vision, Modeling, and Visualization (2016)
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hood around a given vertex using the ball neighborhood, which we
also use in our work. Integral invariants (Section 3.1) can then be
used to compute the mean curvature using the neighborhood of a
vertex within the ball radius. The chosen radius defines the scale at
which features are preserved and noise is smoothed. If the radius
of the ball is fixed, the operator uses a uniform scale and cannot
adapt to the scale variations of the surface. As a result the operator
smoothes too much detail or retains too much noise.

Our main contribution is the independent and automatic selec-
tion of an appropriate ball radius for each vertex. Our method is
robust against large variations in scale and can effectively distin-
guish between noise and geometric features. It operates directly on
the mesh representation and does not require a volumetric shape
representation. It is able to handle difficult input data, such as the
meshes produced by image-based reconstruction techniques, which
usually have varying level of detail and contain many holes.

A direct application of our method is mesh simplification. Partic-
ularly in image-based reconstruction scenarios the resulting meshes
often contain millions of triangles because the vertex sampling is
determined by the resolution of input images, not the geometric
properties of the surface. We show how our estimated curvature
field can be effectively transformed into a density field that guides
the simplification process. As a result, the simplification algorithm
does not need to be concerned with preserving geometric features
of the surface. Instead, its task reduces to producing a vertex dis-
tribution prescribed by the density field, thus preserving more geo-
metric detail in regions of higher curvature.

2. Related Work

Curvature estimation on discrete surfaces has been thoroughly stud-
ied and can be classified into local fitting methods, methods based
on the angles between edges, and integral invariant-based methods,
which integrate over larger surface regions. The latter methods are
most promising in our scenario and usually perform better if the
meshes are large, have geometric features at various scales, vary-
ing level of detail and noise. Many methods estimate curvature on
a user-provided scale and compute curvature using a neighborhood
with fixed radius. These methods do not perform well on multi-
scale geometry because a suitable radius does not exist. Multi-scale
methods, on the other hand, try to determine a suitable radius for
each vertex.

2.1. Curvature Estimation on a Fixed Scale

There are many algorithms for computing curvature on a fixed
scale [YZ13, ASWL11, MOG09]. The scale is usually provided by
the user as input. Seibert et al. [SHBK10] make use of geomet-
ric algebra and compute principal curvatures directly on point set
surfaces. Their approach estimates curvature at each vertex x by
fitting osculating circles in uniformly sampled directions around x
to a fixed local neighborhood of points. The principal curvatures
for each vertex are obtained by combining the radii of the osculat-
ing circles for all directions. Because their approach relies on least
squares fitting, a dense vertex sampling is required, and noise and
outliers quickly degrade the curvature estimation. Their algorithm

is not applicable to multi-scale geometry because it operates on a
fixed local neighborhood around each vertex.

Andreadis et al. [APM15] compute geometric features (such as
mean curvature [PWY⇤07]) at multiple scales by first transforming
the input mesh into a parametric space. This decouples the compu-
tational complexity from the underlying geometry in order to pro-
duce a GPU-friendly, highly performant algorithm. However, their
method relies on a mesh parameterization which has to be precom-
puted and is more difficult for less controlled meshes (higher genus,
boundaries and holes in the surface, etc). The scale at which the
curvature is computed is fixed and provided as user input.

Other approaches are based on integral invariants. Yang et al.
[YLHP06,PWY⇤07] were the first to use integral invariants for ro-
bust estimation of curvature information of 3D meshes. To this end,
the authors define the ball, sphere and surface-patch neighborhoods
and perform a principal component analysis (PCA) on each neigh-
borhood. They derive formulas to calculate the two principal cur-
vatures and the mean curvature based on volume integral invariants
from the PCA. Their definition yields the notation of curvatures at a
scale r, where r corresponds to the radius of the neighborhood. The
authors claim that their approach is more robust than normal cy-
cles [CSM03] and local fitting methods like osculating jets [CP05].
In particular, the ball neighborhood seems suitable for noisy in-
put data. Our approach is based on the ball neighborhood, and we
extend their method by robust and automatic, per-vertex scale se-
lection over a large range of scales.

2.2. Multi-Scale Curvature Estimation

Multi-scale algorithms try to choose an appropriate scale for each
vertex at which the curvature is estimated. Usually, the user spec-
ifies a lower and upper bound instead of a single scale. Lai et
al. [LHF09] also use integral invariants based on the ball neigh-
borhood to compute multi-scale principal curvatures. Instead of
relying on user input to specify the scale of interest, an iterative
algorithm adjusts the radius r of the ball neighborhood for each
vertex independently. A series of n subsequent ball radii between
by a lower and upper are evaluated, and principal curvatures are
computed for each radius. The algorithm uses the pre-computed
curvatures and interpolates new, refined radii until convergence.

Choosing the lower and upper bound, however, remains a chal-
lenging problem. The authors propose to determine these values as
factors of the average edge length in the mesh. While this solution
works in the authors scenario where evaluation is performed on
meshes with almost identical triangle sizes, we target true multi-
scale meshes where the triangle sizes vary substantially. Thus, a
global starting radius cannot be defined, this is illustrated in Fig-
ure 2. Our method improves this aspect and selects the per-vertex
radius using the edge lengths in the local neighborhood of a vertex.

Another drawback of their method is that it requires a voxel rep-
resentation of the model to approximate the volume of the ball
neighborhood. However, a voxelization (e.g., using scan conver-
sion) causes problems when the input mesh is not closed or has
many holes. Our algorithm computes the ball neighborhood at a
given vertex without relying on a volumetric representation.

submitted to Vision, Modeling, and Visualization (2016)
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min max min 0 max

Figure 2: The average edge length in a 1-ring around a vertex (left)
varies drastically throughout the mesh. Our mean curvature field
(right) is not influenced by the different triangle sizes and produces
correct values. To increase readability, the average edge length was
clamped to the 1th- and 90th-percentiles and plotted in log-scale. In
this mesh, the smallest triangles are about 42 times smaller than the
largest ones.

3. Algorithm

Curvature is defined as the second-order derivative of the mesh sur-
face and thus inherently depends on its scale. Given the discrete na-
ture of a mesh, it must be evaluated numerically over an appropri-
ately sized neighborhood. Additionally, if the mesh contains noise,
a large enough neighborhood must be found that cancels out the
noise while maintaining important surface details.

The first and most involved step of our algorithm computes the
curvature field on the mesh surface. For each vertex of the mesh,
a ball with an appropriate radius is found and used to compute a
signed mean curvature value using integral invariants. We then mo-
tivate how the curvature field can be used for the purpose of mesh
simplification by converting it to a density field. The density field
prescribes the relative vertex sampling density to faithfully repre-
sent the mesh surface at a given vertex budget, by distributing more
vertices in regions of higher curvature. As a result, the simplifica-
tion algorithm is not concerned with preserving geometric features
during decimation. Instead, it merely selects vertices for decima-
tion which have a small amount of density associated with it.

3.1. Integral Invariants

A detailed analysis of integral invariants was published by Manay
et al. [MHYS04]. In essence, they are used to compute integral
quantities (as opposed to differential ones) over different types of
neighborhoods. The invariance depends on the function that is used
to compute it. In our case, we compute the volume integral, which
yields the invariance to mesh rotation and translation. Because one
does not have to compute higher order derivatives, integral invari-
ants are more stable in the presence of noise. The neighborhood
on triangle meshes is defined by the surface of the mesh and the
volume which it represents. Pottmann et al. [PWY⇤07] propose the
sphere, ball, and the surface-patch neighborhoods. They analyze
these neighborhoods with respect to their noise properties and con-
clude that the ball neighborhood performs best. We use this neigh-
borhood when computing our volume integral invariants.

The formal definition of the volume integral invariant using the

Figure 3: For each vertex, we compute the mean curvature at differ-
ent radii (green circles) and then select the correct radius for each
vertex (blue circles).

ball neighborhood is as follows. Let D be a domain and F its
boundary surface. For any point p 2 F and ball B(r, p) with ra-
dius r centered at p one can compute the intersection volume for
the neighborhood around r: Vb(r, p) = D \ B(r, p). Pottmann et
al. [PWY⇤07] derive a formula for computing the mean curvature
H from the ball neighborhood at a given radius r:

Hball(r, p) =
4

pr4

✓
2p
3

r3 �Vb(r, p)
◆

(1)

This discrete mean curvature converges to the actual continuous
mean curvature for r ! 0. For larger radii, the mean curvature is
smoothed. As Lai et al. [LHF09] noted, the radius r is of special
importance since larger radii produce smoother results which are
thus more robust to noise. On the other hand, there is a risk of
smoothing away small geometric features when the radius is too
large. Therefore, a single radius is not applicable for meshes with
multiple scales. Because in some regions the radius will be too large
and smoothes away important surface details. In other regions, the
radius will be too small and produces an unwanted response in the
presence of noise.

3.2. Curvature Field Computation

To compute the curvature field of a triangle mesh, we first evalu-
ate the mean curvature at each vertex using Equation 1 on multiple
radii (see Section 3.5) and eventually select the correct radius for
each vertex, see Figure 3. For the calculation of the integral invari-
ant, the volume of the ball neighborhood has to be evaluated for
each individual radius. We approximate this volume using a trian-
gulated sphere with an adaptive tessellation along the intersection
border (see Section 3.4). To intersect the sphere with the surface
of the mesh, a circular surface patch consisting of all faces within
the the current radius (see Section 3.3) is used. For finding the final
radius, we fit a cubic polynomial to the collected data as described
in Section 3.5.

3.3. Surface Patch

For calculating the volume of the ball neighborhood Vb(vc,r)
around a vertex vc, we first find the surface patch contained within
the radius r using a region growing approach. We start by iterating
over all faces fi in a 1-ring around vc. For each vertex v j in fi we
check whether it is inside the radius by calculating the Euclidean

submitted to Vision, Modeling, and Visualization (2016)
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Figure 4: Triangulation of a circular patch (left): New triangles are
created where the circle intersects a face. Two triangles (A and B)
are created if one vertex is outside the radius. One triangle (C) is
created if two vertices are outside. Faces fully within the radius are
simply copied into the patch. The right picture shows the adaptive
intersection (green faces) of a sphere with the surface.

distance to the center of the sphere: kv j � vck  r. We then add
every vertex where this inequality holds to a list of vertices we visit
in the next iteration. If all three vertices of the face fi are within
the radius, we simply add fi to the patch. If some vertices are out-
side the radius, we cut the face fi at the intersection points of the
radius with the edges of the face and create new triangles with the
intersection points. There can only be two cases: Either one or two
vertices of fi are outside the radius. See Figure 4 for an illustra-
tion. When the algorithm terminates, the result is a circular surface
patch. As a final step, we calculate the face and vertex normals of
all triangles in the patch. These will later be used to compute the
intersection volume.

3.4. Volume Computation using a Triangulated Sphere

The volume of the ball neighborhood is approximated by intersect-
ing a triangulated sphere with the triangulated shape. The surface
is represented by the surface patch that was computed in the pre-
vious step. Using the triangles of the patch as well as all faces of
the sphere which are behind the surface, the volume of the resulting
polyhedron can be computed by the following formula:

Vapprox. =
1
6

N�1

Â
i=0

ai · n̂i (2)

where N is the number of triangles and n̂i is the unnormalized nor-
mal of triangle fi = (a,b,c) calculated by n̂i = (b�a)⇥ (c�a).

For numerical stability, we first translate the surface patch to the
origin. Thus, the sphere is also centered at the origin and scaled by
the current radius. Computing the actual intersection of the sphere
and the patch is non-trivial and costly. We therefore approximate
the intersection by finding all faces of the sphere which lie behind
the surface. We check whether each vertex of the sphere is behind
or in front of the surface by finding its nearest neighbor vertex on
the surface patch and perform an inside/outside check based on the
scalar product of both vertex normals. We accellerate this nearest
neighbor lookup, using a k-D tree data structure with all patch ver-
tices. To compute the final volume, we use Equation 2 and sum

over all patch faces as well as all faces of the sphere behind the
mesh surface.

The triangulated sphere is generated using two Loop subdivi-
sion iterations [Loo87] on an Icosahedron, which result in 162
faces. The sphere faces along the intersection with the mesh sur-
face are further subdivided as illustrated in Figure 4. Experiments
have shown that six subdivisions along the border result in negligi-
ble approximation error for the intersection boundary.

3.5. Radius Sampling

To get a suitable initial radius for the current vertex v, we use the
average edge lengths in a 1-ring neighborhood around v. Let s(v)
denote the scale of a vertex v. The starting scale s0 of v is then
computed by

s0(v) =
Âw2N(v)kw� vk

| N(v) | (3)

where N(v) is the set of all neighbors of v. This approach already
produces a good starting radius for each vertex. In order to cope
with regions where the edge lengths are extremely small or large,
we smooth the initial radius afterwards. For this, we perform n mul-
tiple smoothing iterations and update the initial scale of each vertex
v based on its surrounding vertices:

si+1(v) = si(v)+ Â
w2N(v)

l si(w)� si(v)
| N(v) | (4)

where l is a smoothing factor. A larger value of l increases the
influence of neighboring vertices on v. If overall smoother results
are desired, the starting radius can be multiplied with an additional
factor > 1.

To sample the mean curvature at different radii r0 . . .rn =
s0... fmax · s0(v), we exponentially increase the radius by finc until
it reaches a predefined maximum fmax. In each iteration i, we com-
pute the mean curvature for a vertex v at radius ri = ri�1 · finc =
r0 · f i

inc. For all of our experiments we use finc = 1.3 and fmax = 10
(corresponding to n = 8) which results in a large enough sampling
region to distinguish small features from noise while still being able
to detect planar regions.

This sampling yields two dimensional data Dv = {(ri,H(ri,v)) |
ri 2 {r0, ...,rn}} for each vertex v. Because the sampling is dis-
crete, we fit a function to Dv in order to make a decision for the
final radius in continuous space. This fit, however, must be per-
formed on the normalized curvature to not be influenced by the
smoothing introduced through the radius of the ball neighborhood.
Using Equation 1 we get the normalized curvature:

Hnorm(r,Vb) = r ·Hball(r, p) =
8
3
� 4

pr3 Vb. (5)

Equivalently to the unnormalized case, Hnorm is zero when Vb
is exactly half of the ball volume; for larger and smaller val-
ues we get Hnorm < 0 and Hnorm > 0 respectively, see Figure 5
for an illustration. This leads to scale invariant, normalized data
D̂v = {(ri,Hnorm(ri,v))|ri 2 {r0, ...,rn}} for each radius increase.
We fit a cubic function in the least-squares sense to the data D̂v for
each vertex. In our experiments a quadratic fit often does not rep-
resent the data well enough while higher order polynomials cause
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Vb(r, p)

(a) Hnorm = 0.0

Vb(r, p)

(b) Hnorm < 0.0

Vb(r, p)

(c) Hnorm > 0.0

Figure 5: The surface is either planar and has zero mean curvature
or it is curved and thus has a negative or positive mean curvature.
Vb(r, p) is the volume of the ball neighborhood with radius r at
point p.
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Figure 6: The final surface patch for four vertices which were clas-
sified to be in a planar region. The graphs show the mean curvature
(left) and the normalized curvature (right) for a single vertex. Here,
the curvature at radius 0.03 is treated as an outlier.

problems because of overfitting. Thus, we check if the error of the
fit is small (below 2%). Otherwise we try to optimize it by itera-
tively removing data samples starting with the sample at the largest
radius.

3.6. Radius Selection

The final radius for each vertex is chosen in different ways depend-
ing on the local surface properties. We first decide if the vertex lies
on a planar or non-planar region. In the latter case, we analyze the
extrema of the fitted polynomial which can have up to two extrema
in the given interval. The following cases are considered.

Planar regions: If a surface region is planar the normalized cur-
vature values are close or equal to zero. We use the average of the
normalized curvatures of the current vertex and check whether it
is below the planar threshold of tp = 0.2, which is a good choice
for most meshes. If the surface of the triangle mesh is particularly
noisy, tp can be increased, which will result in more smoothing.
Whenever a planar region is detected, we select the largest radius
at which the normalized curvature is below the threshold, see Fig-
ure 6.
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Figure 7: Example vertices around a valley which lie in a non-
planar region. The extreme point of the fitted polynomial is used to
select the final radius by interpolating between the smallest radius
and the radius at the extreme point based on the edge smoothing
factor fes.

Single extrema: One extreme point within the sampled radius
range is an indicator for a region which starts off with high cur-
vature. Because the smoothing performed by the integral invariant
based mean curvature computation, we cannot simply choose the
radius at the extreme point as the final radius because the closer we
choose a radius towards the extreme point, the smaller the mean
curvature gets (Figure 7). We therefore introduced a global "edge
smoothing" factor fes. This factor is used to control the final radius
in such a case where fes = 0.0 results in the smallest radius r0 and
fes = 1.0 corresponds to the radius at the extreme point.

Two extrema: This indicates geometric detail at the first extrema
and another significant enough surface feature at the second. The
first extrema is used to compute the final radius to preserve surface
detail. We select this final radius by applying the edge smoothing
factor as described in the previous paragraph.

No extrema: This can be observed when the polynomial either has
no extreme points or when both extreme points are outside of the ra-
dius range. E.g., consider an edge where Hnorm converges towards
� 4

3 or 4
3 , for a 90�or 270�edge respectively. Note that Hnorm is

not constant because edges in meshes resulting from surface recon-
struction algorithms are typically not sharp in contrast to meshes
used in Computer Aided Design. If there is a saddle point, we use
it as a reference and interpolate between it and the smallest radius
based on fes. Otherwise we use the middle radius.
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min max

Figure 8: To create a density field useful for mesh simplification,
the curvature values are remapped using the density function d(x).

3.7. Density Field Computation

For mesh simplification the curvature field is remapped to a range
more suitable for this application. We need to define the importance
of a vertex as a single positive number. The sign of the curvature
is not important, so we only consider the absolute mean curvature
value. The curvature values are remapped (Figure 8) such that the
density values are constant up a minimum and then increased up to
a maximum using a sigmoid function.

The exact definition of the mapping we used is as follows:

d(x) =

8
>><

>>:

dmin for x  min

dscale ·
⇣

1
1+e�4x̂ � 1

1+e4

⌘
+dmin for min < x  max

dmax for x > max

with x̂ = 2 x�min
max�min �1 and dscale =

dmax�dmin
1

1+e�4 � 1
1+e4

.

dmin and dmax correspond to the minimum and maximum density
values and should be chosen according to the mesh simplification
algorithm that is used. A final smoothing on the density field helps
to gradually change the triangle sizes from low to higher density
regions. In our experiments, however, we found that this smoothing
is not absolutely necessary and depends on the application.

4. Results

We evaluate our algorithm on several real-world datasets which
were created using the open source image-based reconstruction
pipeline of [FLM⇤15]. Mesh simplification was performed using
the Remesher tool from [FAKG10] together with our density fields.
The mesh properties and the runtimes of our implementation are
summarized in Table 1.

In Figure 9 we show the Bronze Akt dataset. The statue has a
very rough surface and the reconstruction produced different levels
of geometric noise, resulting from pictures taken from various dis-
tances to the model. In order to extract curvatures in a meaningful
way, the radius for the ball neighborhood must be chosen such that
small scale features which can be found in the platform region are
preserved while noise on the overall model is smoothed. Choos-
ing a single radius that preserves small-scale features results in a
noisy curvature estimate on the rest of the surface. Using a larger
radius removes most of the noise but also smoothes away important
features. Our algorithm preserves the features while also removing
noise by adaptively varying the radius per vertex.

Figure 9: Bronze Akt: Our curvature field (left) as well as three
closeups of the platform region. Our result (top), curvatures com-
puted using a fixed small radius (middle) and fixed larger radius
(bottom).

Simplification of multi-scale geometry is a direct application of
using the density field described in Section 3.7. Figure 10 shows a
model of the Fountain dataset, which has many small-scale features
at the statue. We simplified this mesh to 4% of the original number
of vertices to achieve a size that is manageable for real-time or
mobile applications. Using a single-scale density field results in
a direct loss of small-scale features. Our multi-scale density field
guides the simplification to preserve important features such as the
hand of the statue.

The effects of using a single-scale radius can be also be seen in
the Goethe-Fountain dataset, Figure 11. This dataset is another ex-
ample with significant scale differences. A globally selected radius
cannot cover all of the geometry features that are captured in dif-
ferent resolutions. During simplification we reduced the amount of
vertices to 3%. The details on the fountain head are lost or edges
are smoothed too much when a single-scale curvature is used. Our
multi-scale curvature estimate leads to a significantly better simpli-
fication result which still retains most of the geometric detail from
the original mesh.

The Owl dataset does not contain scale differences. Here we
show that our algorithm gracefully degenerates to estimating cur-
vature at a single scale.
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Figure 10: Fountain: Simplification without density field, single-
scale curvature field (top), our multi-scale curvature field (middle),
simplification using the single-scale curvature field (bottom left)
and our simplification (bottom right). We simplified the original
mesh to 4% in both cases.

Dataset Name # Vertices Runtime

Owl 280 752 ~11 min

Fountain 2 068 619 ~65 min

Bronze Akt 3 666 075 ~111 min

Goethe-Fountain 4 675 851 ~159 min

Table 1: Runtime of our algorithm for estimating multi-scale curva-
tures. The total computation time increases linearly with the num-
ber of vertices.

Figure 11: Goethe-Fountain: overview shot (top), curvature fields
(left column) and corresponding simplifications (right column):
single-scale curvature large radius (top) and small radius (middle),
our multi-scale result (bottom)
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Figure 12: Owl: Our multi-scale curvature (left) is visually indis-
tinguishable from the curvature field computed using a carefully
hand-selected scale. The absolute differences (heavily amplified)
are shown on the right.

5. Conclusion

In this paper, we revisited the problem of robust curvature estima-
tion with a focus on multi-scale triangle meshes. Compared to pre-
vious approaches which ignore the presence of varying feature and
noise scales, our algorithm is designed to take the local scale of
the vertices into account. Our main contribution is the automatic
computation of a mean curvature field, meaning that the radius of
the ball is chosen for each vertex independently. We reviewed the
performance and usefulness of our approach on several multi-scale
datasets with respect to robust curvature estimation as well as adap-
tive mesh simplification using a density field as guidance. Even
though our algorithm performs favorably on multi-scale data, we
showed that this is not a requirement and that our algorithm also
works on single-scale input data (Figure 12). In theory, the algo-
rithm takes five optional parameters as input. In practice however,
only the planar threshold tp and the initial radius factor finitial may
be increased to achieve more smoothing if desired.

We see future work in optimizing our algorithm to reduce its run-
time. In regions with very small triangles, many duplicate computa-
tions are performed when moving from one vertex to a neighboring.
In a planar region that is highly tessellated, many CPU cycles are
therefore wasted computing very similar curvatures. Furthermore,
with a robust multi-scale curvature field at hand, other applications
such as adaptive mesh smoothing seem promising.
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a b s t r a c t

We present an automatic approach for the reconstruction of parametric 3D building models from indoor
point clouds. While recently developed methods in this domain focus on mere local surface
reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric
building model that additionally incorporates contextual information such as global wall connectivity. In
contrast to pure surface reconstructions, our representation thereby allows more comprehensive use:
first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping
which always result in a topologically consistent representation. Second, it enables easy taking of
measurements like e.g. determining wall thickness or room areas. These properties render our
reconstruction method especially beneficial to architects or engineers for planning renovation or
retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling
problem which is solved by an energy minimization. This global optimization approach allows for the
reconstruction of wall elements shared between rooms while simultaneously maintaining plausible
connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms
and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the
energy minimization. The reconstructed model is further enriched by detected doors and windows. We
demonstrate the applicability and reconstruction power of our new approach on a variety of complex
real-world datasets requiring little or no parameter adjustment.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Digital 3D building models are increasingly used for diverse
tasks in architecture and design such as construction planning,
visualization, navigation, simulation, facility management, renova-
tion, and retrofitting. Especially for legacy buildings, suitable
models are usually not available from the initial planning. Point
cloud measurements are often used as a starting point for
generating 3D models in architectural software. But despite fast
scanning devices and modern software, the generation of models
from scratch still are largely manual and time-consuming tasks
which make automatic reconstruction methods highly desirable.

Reconstruction of indoor environments poses specific chal-
lenges due to complex room layouts, clutter and occlusions.
Furthermore, planning and maintenance tasks often require mod-
els which give deeper insight into a building's structure on the
level of building elements such as walls, and their relations like
wall connectivity. This enables high-level editing for prototyping
planned changes and simulations requiring information like room

neighborhood or wall thickness. While previous reconstruction
methods are able to faithfully recover partially observed surfaces
from indoor point clouds and generate accurate boundary repre-
sentations in the form of mesh models, a plausible decomposition
into parametric, globally interrelated, volumetric building ele-
ments yet remained an open challenge. Existing approaches either
represent walls, floors and ceilings as sets of unconnected planar
structures detected in the point cloud [13,1,15,21,7] (Fig. 1(a)), or
as collections of closed 3D boundaries of either the whole building
[12], or separate rooms [4,19,18,8] (Fig. 1(b)). While the method in
[20] reconstructs volumetric walls, their thickness is defined
manually instead of being estimated from the input data.

To overcome the limitations of previous approaches, we pro-
pose a novel reconstruction method in which the representation of
buildings using parametric, interrelated, volumetric elements
(Fig. 1(c)) is an integral component. Our approach automatically
reconstructs walls between adjacent rooms from opposite wall
surfaces observed in the input data while simultaneously taking
into account globally plausible connectivity of all elements.
Together with a faithful estimation of wall thickness, the result
is a high-level editable model of volumetric wall elements. The
reconstruction is formulated as an energy minimization problem
which simultaneously optimizes costs for assigning rooms to areal

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2015.07.008
0097-8493/& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

n Corresponding author.
E-mail address: ochmann@cs.uni-bonn.de (S. Ochmann).

Computers & Graphics 54 (2016) 94–103

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.07.008
http://dx.doi.org/10.1016/j.cag.2015.07.008
http://dx.doi.org/10.1016/j.cag.2015.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.07.008&domain=pdf
mailto:ochmann@cs.uni-bonn.de
http://dx.doi.org/10.1016/j.cag.2015.07.008


regions of the building, and costs for separating adjacent rooms by
volumetric wall elements. In contrast to previous approaches, this
has the advantage that reasonable binary costs for the assignment
of pairs of room labels to adjacent areal regions of the building –

and thus the selection of suitable wall elements – is directly
incorporated into the global optimization. To make our method
robust against large-scale clutter outside the building, outliers are
automatically filtered prior to reconstruction. Finally, doors and
windows are detected, classified and assigned to the respective
wall elements to further enrich the model. Our evaluation using
various real-world indoor scans shows that our method rapidly
provides models which can be used for e.g. planning of retrofitting,
especially since our method requires little or no parameter
adjustment.

Applications: The distinguishing feature of our approach is that
it directly captures important properties and relations of building
elements. Since architectural Building Information Modeling (BIM)
formats (e.g. Industry Foundation Classes, IFC) are based on similar
relational paradigms, exporting our results to architectural soft-
ware is straight forward. This enables a whole range of processing
and analysis tasks in industry-standard software. We exemplify
some applications for e.g. planning of retrofitting in Fig. 2 which
can directly be implemented using our results: since the incidence
and adjacency relations of walls and rooms are inherently known,
selecting e.g. all walls enclosing a room or manipulating whole
walls while maintaining overall room topology is easily possible
(Fig. 2(a)). This allows for quick, high-level prototyping of changes
on the level of semantically meaningful construction element
groups. The available information also enables more complex
queries for e.g. the subset of wall elements that are simultaneously
incident to two adjacent rooms (Fig. 2(b)). Together with directly
available properties like wall thickness, openings, room and wall
areas, this provides important information for performing acoustic
or thermal simulations. The global connectivity information
further allows us to perform pathfinding in the whole building
story (Fig. 2(c)) for e.g. simulating and optimizing escape routes.

2. Related work

Okorn et al. [13] generate 2D floor plans from 3D point clouds.
A histogram of the vertical positions of all measured points is built.
Peaks in this histogram are considered to be large horizontal
planar structures (i.e. floor and ceiling surfaces). After removing
points belonging to the detected horizontal structures, a line
fitting on the remaining points is performed. The resulting line
segments constituting the floor plan are not connected and do not
provide e.g. closed boundaries of rooms. Budroni and Boehm [4]
extract planar structures for floors, ceilings and walls by conduct-
ing a plane sweep. Using a piecewise linear partitioning of the x–y-
plane, they classify cells of this partitioning as inside and outside
by determining the occupancy of the cells by measured points and
considering densely occupied cells as inside. The result is a 2.5D
extrusion of the determined room boundary. In the approach by
Sanchez and Zakhor [15], points are classified into floor, ceiling,
wall, and remaining points using the point normal orientations.
For floor, ceiling and wall points, planar patches are fitted and
their extents are estimated using alpha shapes. Parametric stair-
case models are fitted to the set of remaining points. The resulting
mesh models consist of unconnected planar surfaces. Monszpart
et al. [7] propose a method for extracting planar structures in point
clouds which follow regularity constraints. Their optimization
approach balances data fitting and simplicity of the resulting
arrangement of planes. A method for generating visually appealing
indoor models is proposed by Xiao and Furukawa [20]. An inverse-
CSG approach is used for reconstructing the building's geometry
by detecting planar structures and then fitting cuboid primitives.
These primitives are combined using CSG operations; the quality
of the resulting model is tested using an energy functional. Finally,
the resulting mesh model is textured using captured images. A
drawback is that the building needs to be sufficiently well
approximated by the used cuboid primitives. Adan and Huber [1]
reconstruct planar floor, ceiling, and wall surfaces frommulti-story
point clouds by first detecting the modes of a histogram of point

Fig. 1. Schematic of editing capabilities of different kinds of reconstructions. The input point cloud is shown on the left. The remaining columns exemplify editing operations,
i.e. elements are moved in the directions of the arrows. Surface representations without (column (a)) or with (column (b)) connectivity information do not allow intuitive
editing on the level of wall elements. Our reconstruction (column (c)) maintains room topology and global wall connectivity.

Fig. 2. Example operations which are easily implemented using our results. (a) Relations between walls and rooms enable editing while maintaining room topology. Note
how incident walls are adjusted automatically. (b) Automatic determination of wall elements shared between rooms together with automatic measurements enable e.g.
acoustic or thermal simulations. (c) Global connectivity enables pathfinding for e.g. simulation and optimization of escape routes.
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height values to find horizontal planes, and then detecting vertical
planes by means of Hough transform. They recover occluded parts
of reconstructed surfaces and perform an opening detection by
means of Support Vector Machine (SVM) learning. Xiong et al. [21]
extend this approach by classifying detected planar patches as
floor, ceiling, wall or clutter using a stacked learning approach,
also taking into account contextual information of neighboring
patches. Mura et al. [8] reconstruct indoor scenes with arbitrary
wall orientations by building a 3D Delaunay tetrahedralization of
the input dataset and partitioning inside and outside using a
diffusion process governed by affinities of tetrahedron pairs. A
binary space partitioning is also done by Oesau et al. [12] by first
splitting the input dataset horizontally at height levels of high
point densities and then constructing 2D arrangements of projec-
tions of detected wall surfaces. The space partitioning into inside
and outside is performed by means of Graph-Cut. Other
approaches not only perform binary space partitioning but label
different rooms: Turner and Zakhor [19] generate 2.5D watertight
meshes by first computing an inside/outside labeling of a trian-
gulation of wall points and a subsequent partitioning into separate
rooms using a Graph-Cut approach. This method is further devel-
oped by Turner et al. in [18], improving the texture mapping
capabilities of the algorithm. The results are well-regularized,
watertight, textured mesh models. Mura et al. [9] first extract
candidate wall elements while taking into account possibly
occluded parts of the surfaces to determine the real wall heights
for filtering out invalid candidates. After constructing a 2D line
arrangement, they use a diffusion embedding to establish a global
affinity measure between faces of the arrangement, and determine
clusters of faces constituting rooms. The result is a labeled
boundary representation of the building's rooms. Many of these
methods build upon a spatial partitioning defined by detected wall
surfaces and a subsequent classification of regions of this parti-
tioning. Although the resulting models have applications like
visualization, navigation or energy monitoring [17], they do not
realize a reconstruction of volumetric, interconnected building
elements like walls.

3. Approach

The starting point of our approach is a registered point cloud of
one building story consisting of multiple indoor scans including
scanner positions. Registration is usually done using the scanner
software and is outside the scope of this paper. The unit of
measurement and up direction are assumed to be known. Surface
normals for each point are estimated.

We argue that the wall structure of most building stories can be
represented as a piecewise-linear, planar graph in which edges
represent wall elements and vertices are locations where walls are
incident (Fig. 3(e)). Wall thickness is a scalar edge attribute.
Conversely, faces of this graph represent the spatial room layout.
There obviously exists a duality between the story's room layout
and its wall constellation, i.e. one representation can directly be
derived from the other. The main idea of our approach is that –

while both representations are essentially equally hard to recon-
struct – we can derive important hints (priors) for the room layout
from indoor point cloud scans since they are a sampling of the
inner surfaces of room volumes. It is therefore meaningful to base
our reconstruction on the derivation of a suitable room layout
from which the constellation of walls is immediately obtained due
to the duality.

We extract priors for the room layout as follows: assuming that
each room was scanned from one position (or few positions),
separate scans yield a coarse segmentation of the point cloud into
separate rooms (Fig. 3(a)). We improve this segmentation using a

diffusion process which eliminates most overlapping regions
between scans (Fig. 3(b)) and automatically filters out clutter
outside of the building. As further described below, the determi-
nation of a suitable room layout is then formulated as a labeling
problem of the regions of a suitable partitioning of the horizontal
plane (using labels for different rooms and the outside area). This
directly follows the aforementioned duality principle: after deter-
mining a suitable labeling, connected components of identically
labeled cells are rooms, and edges separating differently labeled
regions are wall elements.

Since our goal is to extract a piecewise-linear graph of walls, we
construct a partitioning based on potential wall surfaces: we first
detect vertical planes as candidates for wall surfaces and project
them to the horizontal plane (Fig. 3(c)). Similar to previous
approaches [9,11,12] we then construct an arrangement of (infi-
nitely long) lines from the set of possible wall surfaces (Fig. 3(d)).
In contrast to previous approaches, edges of this arrangement
represent wall centerlines instead of wall surfaces. Furthermore,
arrangement lines are not only constructed from single wall
surfaces but also from pairs of parallel surfaces which yield
candidates for walls separating adjacent rooms. This subtle but
crucial difference allows us to go beyond the reconstruction of
separate room volumes as done in previous works (Fig. 1(b)) by
enabling the algorithm to reconstruct room-separating wall ele-
ments directly. In order to guide the selection of adequate wall
elements, we retain the information from which supporting
measured points each edge originates. This yields wall selection
priors encouraging the reconstruction of wall elements which
were constructed from surfaces belonging to the same pair of
rooms that the wall separates.

The determination of a globally plausible labeling is then formu-
lated as an energy minimization problem. This allows us to incorpo-
rate room layout priors and wall selection priors as unary and binary
costs into one optimization. After an optimal labeling has been
determined, only retaining edges separating differently labeled
regions are the sought wall structures (Fig. 3(e)). Extruding walls
according to estimated room heights and a detection and classification
of openings yields the final parametric model (Fig. 3(f)).

4. Point cloud segmentation

To obtain priors for the localization of rooms in subsequent
steps, each point of the input point cloud is automatically assigned
a label for a room or the outside area. Our approach is based on the
method by Ochmann et al. [10] which we will briefly summarize
before describing our modifications: the original method assumes
at least one scan within each room; multiple scans per room are
merged manually such that a one-to-one mapping between
(merged) scans and rooms is obtained. The initial assignment of
each point to one of the (merged) scans (Fig. 3(a)) provides a
coarse segmentation of the point cloud into rooms. However,
openings such as open doors lead to severe overlaps between
scans, causing large areas of the point cloud to contain a mix of
differently labeled points. To obtain a point labeling that roughly
corresponds to the building's room layout and is homogeneous
within each room (Fig. 3(b)), an automatic labeling refinement is
performed. The process is based on the assumption that most
points that are visible from the position of a point p are already
labeled correctly. By determining which points are visible from the
position of p and averaging the observed labels, a new (soft)
labeling of p is obtained. After iterating this procedure, the label
with the highest confidence is assigned to p. This process can be
interpreted as a diffusion of point labels between points governed
by mutual visibility. In practice, a stochastic ray casting from the
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position of p into the hemisphere around the normal of p is
performed.

We extend this method in two ways: first, we automatically
filter out clutter outside of the building which is often caused by
windows or mirrors. We argue that for a point p that is part of
clutter outside of the building, most rays cast from p into the
hemisphere around the normal of p do not hit any interior wall
surfaces. In this case we assign a high value for an additional
outside label to p. This modification proves to be highly effective in
our experiments as demonstrated in Fig. 3(b) (gray points have
been assigned the outside label). Second, we do not require that
multiple scans per room are merged manually. Instead, we run the
reconstruction using all scans as separate labels. In case of multi-
ple scans in a room, this leads to implausible walls within rooms
which are subsequently removed as described in Section 7.

5. Generation of wall candidates

Candidates for wall elements are derived from vertical surfaces
observed in the scans. They constitute possible locations of walls
for the optimization in Section 6. Since wall heights and lengths
are not regarded in this step, the following 2D representation is
used: each wall candidate w¼ ðtw;nw; dwÞ is defined by a thickness
twAR⩾0 and an infinite centerline in the horizontal plane given in
Hesse normal form 〈nw; x〉$dw ¼ 0. Wall heights and lengths will
be determined later.

In a first step, planes in the 3D point cloud are detected using a
RANSAC implementation by Schnabel et al. [16]. Nearly vertical
planes ð711Þ with a sufficiently large approximate area ð⩾1:5 m2Þ
are considered as potential wall surfaces. For a plane P fulfilling
these constraints, let nPAR3 be the plane normal and PP the set of

measured points supporting P. Each extracted plane P is trans-
ferred to the horizontal plane as a wall surface line lP defined by
〈nlP ; x〉$dlP ¼ 0. A schematic example for the extraction of wall
surface lines is shown in Fig. 4(a)–(c). The normal nlP is approxi-
mated by the projection of nP into the horizontal plane,

nlP : ¼
ððnPÞx; ðnP ÞyÞ

‖ððnPÞx; ðnP ÞyÞ‖2
:

The distance to the origin dlP is determined by least squares fitting
to the set Pxy

P of support points projected to the horizontal plane
using the fixed normal nlP such that

P
pAPxy

P
ð〈nlP ; p〉$dlP Þ

2 is
minimized. From the wall surface lines, we then generate two
kinds of wall candidates as we do not know at this point which
types of candidates will yield a globally plausible reconstruction:

Outside walls: For each single wall surface line lP , we construct a
candidate for a wall separating a room from the outside area
(Fig. 4(d)). Since the real wall thickness cannot be determined
automatically from a single surface, a user-specified thickness is
used (in our experiments, tw ¼ 20 cm). The centerline of the
candidate is constructed such that the side of the wall candidate
that points towards the inside of the room is identical to lP , i.e. the
centerline is defined by 〈nlP ; x〉$dw ¼ $tw=2.

Room-separating walls: To generate candidates for walls separ-
ating adjacent rooms, each pair of wall surface lines fulfilling
certain constraints is considered as two opposite surfaces of a wall
separating adjacent rooms (Fig. 4(e)). Let lP1 and lP2 be two wall
surface lines that are approximately parallel ð711Þ and have
opposing normal orientations. To prune invalid pairs, a coarse
check is performed whether the projected support pointsets of the
originating planes Pxy

P1
; Pxy

P2
(partially) overlap. To this end, the

support pointsets are projected onto the respective opposite line.
If support points are present near the projected points, their

Fig. 3. Overview of our approach (see also Section 3). (a) Input point cloud; assignment of points to scans shown in different colors. (b) Refined assignment after automatic
segmentation. (c) Detected vertical planes transferred to the horizontal plane. (d) Candidates for walls are derived from single and pairs of projected planes. Intersecting their
centerlines yields a planar graph whose faces are subsequently assigned labels for rooms or outside area. (e) Only edges separating differently labeled faces are retained.
(f) The final model with detected and classified wall openings, e.g. doors (green) and windows (yellow). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 4. Wall candidate generation. (a) and (b) Detected vertical planes in the 3D point cloud are projected into the horizontal plane. (c) Different wall surface lines including
the respective (projected) support points and surface normals. (d) For each single wall surface, an infinitely long wall candidate w for a wall separating a room from outside
area is generated. In this case, the thickness tw is user-specified. (e) For each pair of approximately parallel wall surfaces, a candidate for separating adjacent rooms is
generated. In this case, wall thickness is estimated from the data.
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support is considered overlapping. For each pair fulfilling these
constraints, a wall candidate is generated by fitting to lP1 and lP2

simultaneously: The candidate's normal nw is first determined as
the average of the normals n1;n2 of lP1 ; lP2 , weighted with the
cardinality of the support pointsets,

nw : ¼
jPxy

P1
jn1þ jPxy

P2
j ð$n2Þ

J ðjPxy
P1
jn1þ jPxy

P2
j ð$n2ÞÞJ2

:

Using the common normal nw, two parallel lines li; iAf1;2g
defined by 〈nw; x〉$di ¼ 0 are fitted to the respective support
pointsets such that

P
pAPxy

Pi
ð〈nw; p〉$diÞ2 is minimized. The center-

line of the wall candidate is constructed midway between the
parallel lines, 〈nw; x〉$1

2 ðd1þd2Þ ¼ 0, and the candidate's thickness
is defined as the distance between them, tw ¼ jd1$d2 j . Candi-
dates with a thickness above a threshold are discarded (in our
experiments, tw460 cm).

6. Determination of an optimal room and wall layout

From the infinitely long wall candidates, we determine a set of
wall segments which yields a plausible reconstruction of the
building's walls. To this end, we consider the intersection of all
wall candidate centerlines in the horizontal plane which yields a
planar graph W 0 ¼ ðV 0; E0Þ (Fig. 5(b)). Faces of W 0 are regions of the
building's layout (i.e. parts of rooms or outside area), edges E0 are
segments of possible walls, and vertices V 0 are possible locations
where walls are incident. We follow the intuition that walls
separate different regions, i.e. adjacent rooms, or rooms and the
outside world. Consequently, a classification of the faces of W 0

implies locations of walls in the following sense: connected
components of identically labeled faces are rooms (or outside
areas), and edges between differently labeled faces are walls.
Fig. 5(c) shows an example for a face labeling from which
connected wall elements as shown in Fig. 5(d) are extracted. Wall
thickness of an edge e is set to the thickness of the wall candidate
from which e originates.

We formulate the face classification as a labeling problemwhich is
solved using an energy minimization approach. The target functional
has two terms: unary costs for the assignment of labels to faces of W 0

and binary costs for the assignment of label pairs to adjacent faces.
Unary costs provide hints where rooms (or outside areas) are located
and binary costs guide the selection of adequate edges for separating
differently labeled faces. In particular, if two adjacent rooms share a

commonwall, a wall candidate constructed fromwall surfaces of these
rooms should separate them. We will now formalize the problem. Let
W ¼ ðV ; EÞ be the dual graph of W 0 and let fl1;…; lk; log be the set of
labels where li; iAf1;…; kg are labels for each scan and lo is the
outside label. For clarity, we assume for now that each room was
scanned from exactly one position and thus k equals the number of
rooms; the more general case of multiple scans per room will be
discussed later. Given a unary cost function UvðlvÞ yielding the cost for
assigning label lv to a vertex vAV , and a binary cost function
Bv;wðlv; lwÞ yielding the cost for assigning the (unordered) pair of
labels lv; lw to v;wAV , we minimize the total cost for a labeling l, i.e.

EðlÞ ¼
X

vAV

UvðlvÞþ
X

ðv;wÞAE

Bv;wðlv; lwÞ-min: ð1Þ

Applying the minimization algorithm to the dual graphW ofW 0

allows us to determine a labeling of the faces of W 0 by finding an
optimal labeling of the vertices of W. The problem stated in Eq. (1)
is solved using the algorithm by Boykov et al. [3,6,2]. We now
define unary and binary cost functions for label assignments. In
the following, the notation for label vectors

Lð&Þ ¼ ðc1;…; ck; coÞ; 8 i : ci⩾0; ‖Lð&Þ‖1 ¼ 1

will be used for soft label assignments to different entities, e.g.
points, faces and edges. The coefficient ci of Lð&Þ corresponding to
label li will be denoted Lið&Þ. As a shorthand, let I i denote a hard
label vector with ci ¼ 1, and let I ij : ¼ 1

2ðI iþI jÞ.
Unary costs: Intuitively, the cost UvðlvÞ shall be low iff the area

spanned by face f in W 0 is likely to belong to lv. We first estimate a
label vector Lðf Þ whose coefficients reflect the probabilities that
the area covered by f belongs to each room or the outside area. A
naive approach would be to project all measured points into the
horizontal plane and to determine how many points of each room
(with respect to the point labels obtained in Section 4) are located
within f. The first problem is that non-uniform distributions of
measured points (Fig. 6, left) yield a similar probability estimate
like a uniform distribution (Fig. 6, right) although the latter
provides stronger evidence that the whole face belongs to a
certain room. The second problem is that we need to estimate
the probability that f is located in the outside area which is not
represented by measured points.

We therefore propose a stratified sampling method which
takes the spatial distribution of projected measured points into
account and yields an estimate for the outside label. All measured
points are projected into a uniform 2D grid in the horizontal plane.
The side length of the grid cells is chosen as twice the point cloud
subsampling density (see Section 8). The label vectors of all points
within a grid cell are averaged and empty cells are assigned the
outside label vector Io. Subsequently, the label vector Lðf Þ of f is
estimated by picking in the grid at uniformly sampled positions
within f and averaging the resulting label vectors. The number of
samples within f is chosen proportionally to the face area (at least

Fig. 5. Determination of suitable wall candidate segments. (a) Input point cloud after segmentation. (b) Intersecting all wall candidate centerlines yields a planar graph. We
determine an assignment of all faces to rooms or outside area such that connected components of identically labeled faces are rooms and edges between differently labeled
faces are wall elements. (c) Resulting labeling of faces after optimization; colors indicate room labels. (d) Retaining only edges separating differently labeled faces yields a
subgraph representing the sought wall elements and their connectivity. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 6. Considering only the number of projected points within a face for unary
costs does not take into account their spatial distribution.
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one sample is enforced). The unary cost function is then defined as

UvðlvÞ : ¼ α $ areaðf Þ $ ‖Lðf Þ%Iv‖1; ð2Þ

where v is the vertex of W corresponding to face f in W 0, and α is a
weighting factor (see Section 8). Lðf Þ is the estimated labeling of
face f, and I v is the ideal expected label vector for label lv. The
distance between these label vectors is weighted proportionally to
the area of f in order to mitigate the impact of differently sized
faces in the sum of total labeling costs.

Binary costs: For the binary cost Bv;wðlv; lwÞ, consider edge e in
W 0 to which the edge ðv;wÞ in W corresponds. Intuitively, the cost
for assigning labels lv; lw to vAV and wAV shall be low iff the
surfaces of the wall represented by e are supported by measured
points with labels lv; lw (in the case of wall bordering the outside
area, there should be no support on the exterior side). In other
words, for the separation of faces with different labels lv; lw, wall
elements whose surfaces are supported by points with labels lv; lw
shall be preferred. For estimating the label vector for an edge e, a
sampling strategy similar to the face label vectors is used. Consider
edge e originating from up to two wall surface lines lP1 ; lP2 (see
Section 5) with according projected support points Pxy

P1
; Pxy

P2
. If e

originates from a single wall surface line lP1 , we set Pxy
P2

¼∅.
Analogous to the 2D grid in the horizontal plane, we construct a
one-dimensional grid on e. The support points Pxy

P1
[ Pxy

P2
are

projected into the grid and their point labels are averaged per
cell. Empty cells are assigned the outside label. The label vector
LðeÞ is now estimated by sampling uniformly distributed points on
e and averaging the label vectors obtained by picking in the grid at
the sample positions. We then define the binary costs as

Bv;wðlv; lwÞ : ¼
β $ lenðeÞ $ ð‖LðeÞ%I vw‖1þγLoðeÞÞ if lva lw;
0 otherwise;

(

ð3Þ

where v;w are the vertices of W corresponding to faces f ; g in W 0

that are separated by edge e, lenðeÞ is the Euclidean length of edge
e, and β,γ are weighting factors (see Section 8) respectively. Similar
to the unary costs, weighting the distance between the observed
and ideal label vectors by edge length mitigates the influence of
different edge lengths. The additional term LoðeÞ penalizes usage
of edges with a high outside prior. We found that this term helps
to select correct edges with support points on both sides for
separating adjacent rooms. After the face labeling is determined,
only edges which separate differently labeled faces are retained.
The resulting subgraph W of W 0 (Fig. 5 (d)) is used in Section 7 for
reconstructing connected wall elements.

Multiple scans within one room: We previously assumed that
each room was scanned from exactly one position within that
room. In the case of more than one scan, one room is represented
by a set of different labels. Fig. 7(a) shows an example of a hallway
scanned from three positions. After segmentation (Section 4), the
hallway is split into multiple regions represented by differently
labeled points (Fig. 7(b)). The graph labeling optimization sepa-
rates these sections by implausible walls (Fig. 7(c)). We remove

such walls (Fig. 7(d)) as part of the opening detection in the next
section.

7. Model generation and opening detection

From the determined graph, the final model can now be
derived in a straight forward manner. The model is further
enriched by detected window and door openings.

Walls: For each edge e ¼ ðv;wÞ of W , a wall element W is
constructed with centerline endpoints located at v and w . The
thickness of W is determined by the thickness of the wall
candidate from which e originates. Endpoints of wall elements
are connected iff the corresponding edges are incident to a
common vertex. For vertical extrusion, we first estimate floor
and ceiling heights for each face f in W separately using the
following heuristic: consider all approximately horizontal planes
detected during wall candidate generation (Section 5). For each
plane, the number of support points located within f is deter-
mined. The elevation of the plane with the largest support within
f and upwards- (resp. downwards-) facing normal is chosen as the
floor height hflðf Þ (resp. ceiling height hclðf Þ) of f . The vertical
extent of a wall represented by edge f separating faces f 1; f 2 is
then defined to span the heights of both adjacent rooms:
½minðhflðf 1Þ;hflðf 2ÞÞ;maxðhclðf 1Þ;hclðf 2ÞÞ(.

Opening detection: Openings in walls either arise from doors
and windows, or because a reconstructed wall was artificially
introduced due to multiple scans within one room as described in
Section 6. By classifying detected openings accordingly, we further
enrich the model by doors and windows, and determine which
walls to remove for handling multiple scans within rooms. To
locate potential openings, we determine intersection points
between reconstructed walls and simulated laser rays from the
scan positions to the measured points. The intersection points are
clustered in the 2D domain of the wall surfaces (a simple greedy,
single-linkage clustering based on distances between intersection
points yielded satisfactory results); see Fig. 8 (b) for an example.
The clusters are then classified as doors, windows, virtual (i.e.
openings due to excess walls) or invalid (i.e. clutter) by means of
supervised learning using libsvm [5]. Six-dimensional feature
vectors with the following features are used to characterize
openings: cluster bounding box width and height, distance from
lower and upper wall bounds, approximate coverage by intersec-
tion points, and a binary feature indicating whether the associated
wall is adjacent to outside area. Clusters recognized as doors or
windows are assigned to the respective wall elements. Adjacent
faces of W separated by wall elements containing at least one
virtual opening (magenta clusters in Fig. 8(b)) are merged by
removing all edges to which both faces are incident. To account for
changes after a wall removal, the determination of room heights,
intersection points, clusters and opening classes is performed
iteratively until no more virtual openings exist.

Fig. 7. Multiple scans within a single room. (a) The hallway has been scanned from three positions; room labels are mixed within that room. (b) After segmentation
(Section 4), the hallway is still split into multiple sections. (c) The labeling algorithm separates these regions by wall elements that are not part of the building's true walls.
(d) By detecting and removing excess wall elements, faces are merged to larger rooms.
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8. Evaluation

We tested our approach on real-world point clouds of 14 stories
from 5 different buildings; statistics are given in Table 1. The
shown number of points is after subsampling with the Point Cloud
Library [14] using a resolution of ε¼ 0:02 cm (i.e. in a voxel grid
with a resolution of ε, at most one point in each voxel is retained).
Normals are estimated by means of local PCA using point patches
of 48 nearest neighbors. Normals are flipped towards the respec-
tive scanner position.

Parameter selection: The first set of crucial parameters affects
plane detection in the extraction of wall surfaces (Section 5). For
classifying planes as vertical (wall surfaces) or horizontal (floor
and ceiling surfaces) we chose a threshold on the angular devia-
tion of 711 from the ideal orientations. We ignore planes with
less than 500 support points or an approximate areal coverage by
support points below 1:5 m2. Also, vertical planes resulting in line
segments below 0:5 m are ignored. These parameters control a
tradeoff between avoiding clutter and ignoring small details: high
thresholds only consider larger (but potentially more stable)
planes as candidates for wall surfaces. Conversely, low thresholds
may introduce clutter due to incorrectly detected planes. Fig. 9
demonstrates different choices. The second important set of
parameters consists of the weights α,β,γ in Eqs. (2) and (3). In
our experiments, we found that a ratio of α=β of 4/1, and γ ¼ 4
yielded good results (Fig. 10(c)). The effects of setting either α, β, or
γ to zero are shown in Fig. 10(d)–(f). We also found that smoothing
the 2D and 1D grids used for the determination of face and edge
label vectors in Section 6 using a large Gaussian kernel usually
improves results.

Robustness: Quality and robustness of our reconstruction
depend on plane detection quality which is influenced by e.g.
scanner noise, point density, registration accuracy, and clutter
outside and inside of the building. As our datasets were captured

using professional laser scanners, noise level and sampling density
were no issue. Registration errors directly influence the position of
detected planes and thus the generated wall candidates. Our
algorithm adapts well to small misalignment; stronger transla-
tional or rotational alignment errors have specific effects as
exemplified in Fig. 11. Clutter outside of the building is effectively
eliminated by our automatic filtering method. Clutter inside of
rooms and scan holes pose big challenges when working with
indoor scans. Except for extreme cases (e.g. completely unob-
served wall surfaces or objects which span the whole story height
and thus yield planes that are indistinguishable from walls), our
algorithm proves to be robust against e.g. furniture within rooms
as shown in Fig. 12: despite the presence of large scan holes, using
all available points (from e.g. furniture) as priors for room
localization closes holes, and the smoothness property of the used
graph-cut-based optimization yields well-regularized walls.
Furthermore, as our approach uses infinitely long wall candidates,
small or medium sized holes in the support pointsets of wall
surfaces caused by occlusions are automatically bridged in a
plausible manner (Fig. 13). We also found that the algorithm is
very robust against errors in the segmentation step (Section 4),
especially in the interior of the building, i.e. if overlaps between
scans of adjacent rooms still exist. However, filtering out large-
scale clutter outside the building is important in order to avoid
erroneous classification of outside area as rooms.

Opening detection accuracy: Our method for opening detection
consists of three parts (see Section 7): (1) determination of
intersection points, (2) clustering of intersection points, and
(3) classification of these clusters using supervised learning.
Regarding (1), we found that the determined intersection points
indicate locations and extents of openings well, with a low
number of false positives. For (2), a simple single-linkage cluster-
ing based on point distances already yielded good results due to
the low number of clutter intersection points which may cause
chaining effects. However, a more sophisticated clustering method
could improve results in some cases, e.g. multiple neighboring
windows are sometimes recognized as a single cluster. Concerning
(3), our training examples comprise 269 doors, 306 windows, 118
virtual, and 415 invalid clusters which were obtained by manually
correcting a heuristic classification. During training, all stories
originating from the building being classified were removed from
the training set. Average cross validation rate of the training sets

Table 1
Datasets used in our experiments. Figure references marked with “n” indicate that
only a subset of the dataset is shown.

Dataset Points Scans Time (s) Figures

Building A, storey 1 9,524,724 23 84.9 12n

Building A, storey 2 19,365,622 33 215.7 16(a)
Building B, storey 1 826,229 5 6.0 —

Building B, storey 2 1,676,486 6 11.9 9n

Building B, storey 3 1,673,919 6 12.2 1, 3
Building B, storey 4 2,203,670 8 16.0 2
Building B, storey 5 2,470,678 11 17.7 5
Building C, storey 1 4,749,565 9 39.7 14n

Building C, storey 2 22,757,718 67 486.3 7n, 8n, 16(c)
Building C, storey 3 23,883,396 63 449.6 —

Building D, storey 1 17,712,659 34 252.2 15
Building E, storey 1 14,399,907 37 189.3 13n

Building E, storey 2 19,769,647 51 319.9 —

Building E, storey 3 17,104,101 43 241.5 16 (b)

Fig. 8. Opening detection and classification. (a) The input point cloud after segmentation. (b) Detected clusters of intersections between reconstructed walls and simulated
laser rays between scanner positions and measured points. Clusters are classified as doors (green), windows (yellow), “virtual” clusters indicating walls to be removed for
merging multiple scans within a room (magenta), and invalid (red). (c) The final model after removal of walls containing “virtual” openings. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. Different plane detection options: Allowing smaller planes as potential wall
surfaces allows for more detailed structures (right-hand side) at the cost of possibly
detecting incorrect candidates in clutter.
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was 90.34%, average classification accuracy was 85.02%. This small
yet significant gap indicates a generalization performance below
optimum which we believe is caused by systematic differences
between e.g. the used windows in different buildings, causing the
feature vectors to not be i.i.d. Given the limited number of test
data, we think that our approach is promising, especially since
newly obtained examples can be fed back into the algorithm.

Comparison to manually generated models: A visual comparison
between our reconstruction and a professional, manually gener-
ated model is shown in Fig. 15. Locations and thickness of wall
elements, and locations of doors are generally good; a few walls
are missing either due to the fact that (small) rooms were not
scanned separately and thus room labels are missing, or because
openings were misclassified as “virtual” clusters.

Time and memory requirements: Our experiments were run on a
6-core Intel Core i7-4930K (32 GB RAM) with a NVIDIA GeForce
GTX 780 (3 GB RAM). Processing times of our prototypical imple-
mentation are shown in Table 1. Peak RAM usage (incl. visualiza-
tion) for the largest dataset (Fig. 16c) was about 16 GB.

Limitations: If rooms are not completely enclosed by walls
(e.g. balconies or partially scanned staircases), points might
erroneously be classified as outside area during the segmentation
step which may lead to missing parts in the reconstruction. Due to
the current formulation of our approach, wall elements which are
not connected to other walls at both ends cannot be represented.

Fig. 10. Different choices for α; β; γ in Eqs. (2) and (3). (a) and (b) Perspective and orthographic view of an example situation. (c) Parameters chosen as described in Section 8.
Wall centerlines are well-regularized and common wall elements have been reconstructed between rooms. (d) Without unary costs ðα : ¼ 0Þ. While the resulting walls are
well-regularized, parts of rooms are missing despite high areal support by measured points. (e) Without binary costs ðβ : ¼ 0Þ. Walls are located similar to (c) but are overly
complex due to missing regularization and preference for correctly labeled edges. ðf Þ Without penalty for high outside labeling ðγ : ¼ 0Þ. The algorithm does not prefer
common walls for separating adjacent rooms.

Fig. 11. Effects of registration errors. (a) Result without alignment errors. Wall volumes are shown in gray together with the respective wall centerlines. (b) Translational registration
errors may result in offset walls to which the algorithm adapts accordingly (right detail view). Wall thickness may also change (wall separating the red and green rooms in the left
detail view). (c) Rotational registration errors may lead to wall surface pairs not to be associated to commonwalls. Wall thickness is incorrect since the wall candidates do not originate
from wall surfaces pairs. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 13. Our cost minimization approach and infinitely long wall candidates
automatically bridge scan holes in a plausible manner.

Fig. 12. Highly cluttered rooms. Left: clutter and transparent surfaces (windows)
cause large scan holes; wall surfaces are only partially scanned. Right: recon-
structed walls still are well regularized and separate rooms correctly.

Fig. 14. Wall elements which are not connected at both ends to other walls are
currently not representable by our reconstruction.
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As a consequence, they are either missing (Fig. 14), or erroneously
connected to other wall elements. Also, since we only consider
planar wall surfaces and linear wall candidates, only piecewise
linear wall structures can be reconstructed.

9. Conclusion and future work

We presented the first automatic method for the reconstruction
of high-level parametric building models from indoor point clouds.
The feasibility of our approach was demonstrated on a variety of
complex real-world datasets which could be processed with little or
no parameter adjustments. In the future, a more thorough compar-
ison of reconstruction results with existing, manually generated
models would help to analyze reconstruction results quantitatively.
A generalization to multiple building stories poses specific challenges
but would enable the reconstruction of multi-story models without
the need to process stories separately. Also, the usage of different
capturing devices (e.g. mobile devices) and real-time handling of
streamed data are topics for future investigation.
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Abstract

In this work we study the interpolation problem in con-
touring methods such as Marching Cubes. Traditionally,
linear interpolation is used to define the position of an
isovertex along a zero-crossing edge, which is a suitable
approach if the underlying implicit function is (approxi-
mately) piecewise linear along each edge. Non-linear im-
plicit functions, however, are frequently encountered and
linear interpolation leads to inaccurate isosurfaces with
visible reconstruction artifacts. We instead utilize the gra-
dient of the implicit function to generate more accurate iso-
surfaces by means of Hermite interpolation techniques. We
propose and compare several interpolation methods and
demonstrate clear quality improvements by using higher or-
der interpolants. We further show the effectiveness of the
approach even when Hermite data is not available and gra-
dients are approximated using finite differences.

Copyright 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

1. Introduction
Implicit functions are a popular surface representation

for many reconstruction algorithms. As opposed to explicit
representations, implicit functions are agnostic to topology
and more easily support blending between shapes, boolean
queries, and morphological operations such as erosion and
dilation. Contouring of implicit functions, i.e., extracting
an explicit surface from the implicit representation, is an
important application in computer graphics.

An implicit function F : R3 ! R associates a scalar
value F (x) to every point in space x. The function implic-
itly defines a surface S as the level-set S = {x | F (x) = d}
with respect to the isovalue d. The surface is guaranteed
to be manifold if d is not a singular value of the function
(i.e., the gradient rF does not vanish on the level-set). The
level-set S is also called the isosurface of F . Without loss
of generality, we assume d = 0 and note that choosing a
different d is equivalent to subtracting d from F . A popu-
lar example for an implicit function is the signed distance
function (SDF), which describes for every point in space the
distance to the closest point on the shape, with the sign of
the function indicating whether the point is interior or exte-
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Figure 1. Marching Cubes: Four edges of the cube contain a sign
change (left), interpolation of isovertices (middle) and the final
polygonal surface (right).

rior to the surface. The surface is then defined as the zero
level-set of the implicit function.

An implicit function is often represented on a regular
lattice, i.e., sampled at uniformly spaced positions, and
Marching Cubes [15] is often the contouring algorithm of
choice. As a regular sampling of F is unsuitable for the
representation of large or multi-scale shapes, octrees and
tetrahedralizations have been used, and the isosurface is ob-
tained with more general algorithms [1, 19, 4, 24, 11].

For these representations, the implicit function is sam-
pled at discrete positions and the isovertex positions are de-
termined by interpolation along edges, and triangulations
connecting the isovertices are computed per cell, see Fig-
ure 1. Traditionally, this interpolation is performed using
linear approximation, i.e., by finding the zero-crossing of a
linear function along each edge. If the implicit function is
actually non-linear along the edges, the interpolated isover-
tex positions poorly estimate the actual position of the zero-
crossing along the edge, see Figure 2. Depending on the
type of implicit function, these inaccuracies often mani-
fest themselves in structured patterns on the final surface,
which can appear as ringing or undulating artifacts. This is
caused by alternating between over- and underestimation of
the correct zero-crossing.

A simple example of a non-linear implicit function for
the sphere with radius r is Fq(x) = x

2+y

2+z

2�r

2. Con-
touring Fq with linear interpolation leads to a larger recon-
struction error than contouring the signed distance function
F`(x) =

p
x

2 + y

2 + z

2 � r, although both functions have
the same zero level-set. Note that near the isosurface, the
signed distance function has small second derivatives and
is approximately linear. Figure 3 visualizes this reconstruc-
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Figure 2. For non-linear functions (black), the linear interpolant
(green) is often a poor fit (left). Interpolation with higher-order
functions leads to much higher accuracy (right).

Figure 3. Visualization of the reconstruction error of the quadratic
function Fq (left) and the signed distance function F` (right) on a
64⇥ 64⇥ 64 voxel grid. Red corresponds to a larger error.

tion error. While both reconstructions have high-frequency
errors due to discretization, reconstruction of Fq exhibits
considerably more pronounced low-frequency ringing arti-
facts around the axes of the coordinate system.

A piecewise linear approximation to a smooth function
has an approximation error that depends on the sampling
density of the function. The approximation error decreases
as O(h2) with the sample spacing h, i.e., if the sampling
spacing is halved, the approximation error is reduced by 1

/4.
This quadratic behavior suggests that increasing the sam-
pling density will be effective in reducing these artifacts.
However, even in the cases where the continuous implicit
function is available for re-sampling, such a refinement has
a dramatic impact on memory consumption and runtime.

In this work we argue that contouring non-linear implicit
functions requires additional data in order to obtain accu-
rate, artifact-free results for high quality reconstruction. We
advocate the use of Hermite data, i.e., utilizing the implicit
function gradient rF (x) in addition to the values F (x) at
the sampling positions x. Depending on the application,
rF can be analytically computed or estimated using finite
differences. We present several formulations for incorpo-
rating the derivatives in the interpolation scheme and eval-
uate the quality of the obtained results on higher-order im-
plicit functions. Further, we incorporate all interpolation
methods in Poisson Surface Reconstruction (PSR) [9, 10]
and the more recent Floating Scale Surface Reconstruction
(FSSR) [5], and analyze the impact of the different formula-
tions on the reconstruction accuracy. We demonstrate clear

surface quality improvements on synthetic and real-world
data compared to linear interpolation. This improvement
has motivated the incorporation of one Hermite interpola-
tion technique in the early PSR code [18]. This work is
the first to compare the different non-linear interpolation
techniques and evaluate the practical implications on sur-
face quality.

2. Related Work
The most popular method for contouring implicit func-

tions is the Marching Cubes algorithm [15] which uses lin-
ear interpolation to place isovertices along the zero-crossing
edges of a regular lattice and then defines a triangulation by
connecting the isovertices within each cell, see Figure 1.

Although initially proposed for regular hexahedral grids,
the Marching Cubes algorithm has been extended to adap-
tive space partitions including octrees [1, 19, 24, 23, 11]
and (graded) tetrahedralizations of space [4]. To define the
implicit surface, all these approaches require estimating the
position of the isovertex along a zero-crossing edge, and
linear interpolation is the technique most commonly used.

Many extensions of Marching Cubes have been proposed
[20], including the reconstruction of bicubic spline surfaces
[7] or continuous quadratic implicit functions for visualiza-
tion purposes [17]. In contrast, our method does not com-
pute a higher-order surface representation. It uses similar
ideas for the purpose of reducing reconstruction artifacts,
but is restricted to a one dimensional interpolation problem
along the zero-crossing edges.

Hermite data has been used in the dual contouring
method by Ju et al. [8], by Manson and Schaefer [16],
and the primal/dual hybrid approach by Kobbelt et al. [12].
They use Hermite data to construct planes that are tangent to
the surface and minimize a quadratic error function (QEF)
to solve for an isovertex position in the interior of the cell.
The minimizer is often a poor estimate of the actual func-
tion, and may require additional function evaluations [16].
There are numerical difficulties in solving the linear system
of equations induced by the QEFs, e.g., the minimizer is
not guaranteed to be in the interior of the cell (see [22, 8]
for more details). These methods are different in that they
focus on improving the reconstruction of sharp features and
edges in the implicit function, not on more accurate isosur-
face interpolation.

In Lempitsky’s work [14] a smooth implicit function
is reconstructed from a binary volume by solving a con-
strained optimization problem minimizing the function cur-
vature. This differs from our approach in that we do not
use binary input and perform more accurate interpolation
“on the fly” without having to solve a global optimization
problem. As in Lempitsky’s work, we also guarantee cor-
rectness in that we only place an isovertex along an edge
whose endpoints have opposite signs.



3. Hermite Interpolation
The interpolation problem in primal contouring methods

is one-dimensional because we are only interested in the
root of the implicit function F along an edge e. We call the
restriction of F to this one-dimensional subspace f = F

��
e.

To perform Hermite contouring, the values F and the gradi-
ent rF must be available at the sampling positions. For in-
terpolation, however, we are only interested in the derivative
f

0 = rF

��
e at the sampling positions along the direction of

the edge e. If the edges are axis-aligned, the derivative f

0

is just the corresponding component of the gradient rF .
Otherwise, the directional gradient along e can be obtained
with the dot product: f 0 = hrF, ei/kek2.

An edge e is represented by its two endpoints x0, x1,
which are the sampling positions of F . To formulate the
interpolation in a uniform setting, we scale the interval be-
tween x0, x1 to [0, 1]. This requires scaling the derivatives
rF by a factor of kx0�x1k. Given the function values and
derivatives

f(0) = v0 f

0(0) = d0

f(1) = v1 f

0(1) = d1
(1)

we describe several ways for using Hermite interpolation to
obtain a more accurate isovertex position along the edge e.
In particular, we investigate cubic interpolation as well as
two different types of quadratic interpolation.

3.1. Third Order Polynomial
A cubic function has four degrees of freedom, so it seems

natural to use the two value and two derivative constraints
to obtain a unique solution for the polynomial coefficients

p(x) = a0 + a1x+ a2x
2 + a3x

3

p

0(x) = a1 + 2a2x+ 3a3x
2
.

(2)

Substituting the constraints from (1) into (2) leads to the
linear system of equations (see, for example [13])
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with the unique solution

a0 = v0 a2 = 3v1 � 3v0 � 2d0 � d1

a1 = d0 a3 = 2v0 � 2v1 + d0 + d1.
(4)

Although straightforward, a cubic polynomial can have up
to three real roots whose location and count may be sensi-
tive to small perturbations of the function coefficients, see
Figure 4. To uniquely define the position of an isovertex,
we observe that there must be an odd number of roots along
a zero-crossing edge, and we always use the “middle” root.

Figure 4. Different cases for the roots of a cubic function: One root
(left), three roots counting multiplicity (middle), and three distinct
roots (right).

This corresponds to using the single root in the case of lin-
ear and quadratic interpolation, and is also well-defined for
higher-order interpolants.

3.2. Second Order Polynomials
Using a second order interpolant is the correct choice if

the implicit function is known to be quadratic. Examples
include PSR, where the implicit function is represented as
a linear combination of second-order B-splines (or if the
implicit function is regularized to have small third deriva-
tive). Since a quadratic function has three degrees of free-
dom, substituting the four constraints from (1) into (2) with
a3 = 0 yields an overdetermined linear system of equations
of form Ax = b

0
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CCA . (5)

The coefficient matrix A has full rank, so there is no exact
solution in general.

Least-Squares Solution: We can solve the linear system
in (5) in a least-squares fashion using the normal equation,
multiplying with A| on the left to get:

A|Ax = A|b ) x = (A|A)�1A|b. (6)

The matrix (A|A)�1A| can be precomputed and the coef-
ficients can be hard-coded as in (4). However, the least-
squares solution produces a polynomial p(x) where the con-
straints on the values are not exactly met. This can lead
to the situation where, although f(x) has a zero-crossing
along the edge, p(x) does not. For this reason we will not
further consider this solution.

Least-Squares Derivatives: Instead, to guarantee that
p(x) always has a root along the edge if f(x) also has a root,
the quadratic function must interpolate the values of the im-
plicit function p(0) = v0 and p(1) = v1. We now discuss a
solution that is least-squares optimal for the derivatives, and
interpolates the function values. For the value constraints,
we have according to (5):

a0 = v0

a0 + a1 + a2 = v1.
(7)



The derivatives give rise to the constraints which must be
met in a least-squares sense

a1 = d0

a1 + 2a2 = d1
(8)

which leads to the minimization problem

argmin
a1,a2

: (a1 � d0)
2 + (a1 + 2a2 � d1)

2
. (9)

From (7) we know that a2 = v1 � a1 � v0, and substituting
a2 in (9) yields a least-squares problem in a single variable:

argmin
a1

: (a1 � d0)
2 + (a1 � 2v1 + 2v0 + d1)

2 (10)

Setting the derivative of (10) to zero and solving for a1 leads
to the polynomial coefficients

a0 = v0

a1 =
d0 � d1

2
+ v1 � v0

a2 =
d1 � d0

2
.

(11)

Examining the coefficient a2, we see that the second order
term vanishes if the implicit function is locally linear, i.e.,
if d0 = d1.

Third Order Elimination: Finally, we discuss two pos-
sible second-order solutions that can be obtained from the
third order solution in (4) by eliminating the third order co-
efficient a3. This can be achieved by introducing an addi-
tional degree of freedom for the derivatives.

Scaling the derivatives by s and setting a3 to zero gives

2v0 � 2v1 + s · d0 + s · d1 = 0

s =
2v1 � 2v0
d0 + d1

.

(12)

If the derivatives d0 and d1 in (4) are scaled by s, the
cubic term vanishes. However, the solution in (12) be-
comes unstable if the derivatives cancel each other out, i.e.,
d0 + d1 ⇡ 0. Whether this instability causes actual prob-
lems depends on the properties of the implicit function. For
example, this is the method implemented in the PSR code
for interpolating the indicator function, which has a steep
gradient in the vicinity of the isosurface and is unlikely to
have partial derivatives with opposite signs.

An alternative approach to scaling is to introduce an ad-
ditive degree of freedom o

2v0 � 2v1 + (d0 + o) + (d1 + o) = 0

o =
1

2
(2v1 � 2v0 � d0 � d1).

(13)

This solution has an interesting property. When adding the
offset o to the derivatives d0 and d1 in (4), it can be shown
that this solution is equivalent to the solution in (11).

4. Algebraic Surfaces
We now compare the interpolation methods on synthe-

sized, non-linear implicit functions. A “ground truth” iso-
surface is generated by sampling a 512 ⇥ 512 ⇥ 512 voxel
grid and using linear interpolation to define the isovertex
positions on zero-crossing edges. The test meshes are then
extracted from a 64 ⇥ 64 ⇥ 64 voxel grid and compared to
the ground truth. The following interpolation methods are
evaluated:

• LINEAR: Linear interpolation without derivatives

• SCALING: The quadratic method in (12) that scales
the derivatives to eliminate the third order term

• LSDERIV: The quadratic method in (11) and (13) that
interpolates the function values and least-squares fits
the derivatives

• CUBIC: The cubic polynomial fit in (4)

For comparison to the ground truth, we use Metro [3], a tool
for measuring distances between triangle meshes. Color-
coding is used to visualize the distance between the ground
truth and the test mesh directly on the surface, with red in-
dicating larger distances. We also compare the impact of
using the analytically computed gradient rF with a central
differences approximation of rF . Note that, when using fi-
nite differences in conjunction with cubic interpolation, one
obtains the standard Catmull-Rom interpolant [2].

Smooth Box: The implicit function of the Smooth Box
dataset is given by

F (x) = x

4 + y

4 + z

4 � 1. (14)

This is a fourth-order function and cannot be exactly recon-
structed with any of the interpolation methods in Section 3.
Figure 5 visualizes the reconstruction error for all interpo-
lation methods. Table 1 lists the maximum, mean and root-
mean-square (RMS) distances to the ground truth mesh for
the analytic and finite differences gradient.

Genus-2: The implicit function for the Genus-2 dataset is
a fifth-order polynomial with mixed terms

F (x) = 2y(y2 � 3x2)(1� z

2)

+ (x2 + y

2)2 � (9z2 � 1)(1� z

2).
(15)

The error is visualized in Figure 6 and distances to the
ground truth are given in Table 2. For both datasets the re-
construction errors of the non-linear interpolants are barely
distinguishable and give nearly identical results regardless
of whether analytic gradients or finite-differences are used.



(a) (b) (c) (d) (e)

Figure 5. Smooth Box: (a) Ground truth, (b) LINEAR interpolation with color-coded reconstruction errors, (c) SCALING interpolation, (d)
LSDERIV interpolation, and (e) CUBIC interpolation. All gradients have been computed analytically.

(a) (b) (c) (d) (e)

Figure 6. Genus-2: (a) Ground truth, (b) LINEAR interpolation, (c) SCALING interpolation with analytic gradients, (d) LSDERIV inter-
polation with analytic gradients, and (e) LSDERIV interpolation with approximate finite differences gradients.

Analytic rF max mean RMS

LINEAR 5.200640 2.527520 2.655661
SCALING 4.576201 0.914086 1.225579
LSDERIV 4.576010 0.912602 1.224503
CUBIC 4.577743 0.912709 1.225184

Approx. rF max mean RMS

SCALING 4.576851 0.916040 1.227008
LSDERIV 4.575684 0.911629 1.223793
CUBIC 4.581211 0.912659 1.225978

Table 1. Smooth Box: Distances to the ground truth mesh with
analytic rF (top) and finite differences approximation (bottom).
The distances are scaled for readability (factor 104).

Analytic rF max mean RMS

LINEAR 2.0846366 0.4342808 0.5301991
SCALING 2.1002761 0.1964645 0.2915423
LSDERIV 2.0975643 0.1957446 0.2908659
CUBIC 2.0964227 0.1959128 0.2908642

Approx. rF max mean RMS

SCALING 2.0997145 0.1974943 0.2925005
LSDERIV 2.0943636 0.1953266 0.2904807
CUBIC 2.0925705 0.1961537 0.2905572

Table 2. Genus-2: Distances to the ground truth mesh with ana-
lytic rF (top) and finite differences approximation (bottom). The
distances are scaled for readability (factor 103).

5. Analytic and Discrete Surfaces
We implemented the interpolation methods in Poisson

Surface Reconstruction (PSR) [9, 10] and the more recent
Floating Scale Surface Reconstruction (FSSR) [5] to ana-
lyze the impact of Hermite interpolation on real surface re-
construction algorithms. Note that the SCALING method in
(12) is already implemented in the PSR code [18]. In both,
PSR and FSSR, the gradient of the implicit function can
be computed analytically. Because the original weighting
function in FSSR is not C1-continuous, we replace it with
the weighting function w(r) = 1

312 (r � 3)12 · (r + 1)4.
We first consider synthetic data for which the ground

truth is available and the reconstruction errors are easier to
measure and visualize. Then, we demonstrate Hermite in-
terpolation on real-word data from 3D scanners and Multi-
View Stereo. Finally, we show an application to isosurface
extraction from medical images.

5.1. Synthetic Data
We first evaluate the interpolation methods on two syn-

thetic datasets, namely the Sphere and the Blob. To this
end, we obtained high-resolution triangle meshes for both
datasets and use these as ground truth. A point set is gen-
erated by computing per-vertex normals and, in the case of
FSSR, also per-vertex scale values. The connectivity infor-
mation is then discarded and the resulting point sets are used
for reconstruction with PSR and FSSR.

Sphere Dataset: Because both PSR and FSSR use non-
linear basis functions, estimation of isovertex positions us-
ing linear interpolation leads to artifacts, see Figure 7. Ta-
ble 3 gives the distances of the reconstructed meshes from
the ground truth. PSR produces essentially the same quality
result for all non-linear interpolants while the FSSR error
improves for most metrics with cubic interpolation.



Ground Truth LINEAR SCALING LSDERIV CUBIC

Figure 7. Sphere: Visualization of the reconstruction error with PSR (top) and FSSR (bottom).

Ground Truth LINEAR SCALING LSDERIV CUBIC

Figure 8. Blob: Visualization of the reconstruction error with PSR (top) and FSSR (bottom).

PSR [9] max mean RMS

LINEAR 1.4475699 0.2142690 0.2911505
SCALING 0.8729671 0.1757755 0.2155248
LSDERIV 0.8729671 0.1757931 0.2155422
CUBIC 0.8729671 0.1758032 0.2155564

FSSR [5] max mean RMS

LINEAR 1.5472957 0.3554895 0.3957082
SCALING 0.7770098 0.3520047 0.3692734
LSDERIV 0.7552927 0.3527912 0.3668787
CUBIC 0.6887877 0.3547093 0.3637461

Table 3. Reconstruction error on the Sphere dataset. The statistic
shows the error between ground truth and the reconstruction using
PSR (top) and FSSR (bottom). The distances have been obtained
with Metro [3] and scaled for readability (factor 103).

PSR [9] max mean RMS

LINEAR 3.837804 0.321320 0.467301
SCALING 3.137207 0.282015 0.369597
LSDERIV 3.137207 0.282022 0.369603
CUBIC 3.137207 0.281913 0.369466

FSSR [5] max mean RMS

LINEAR 6.066898 0.659474 0.861424
SCALING 5.913879 0.485656 0.622890
LSDERIV 5.921924 0.434055 0.561907
CUBIC 6.012503 0.391485 0.513969

Table 4. Reconstruction error on the Blob dataset. The statistic
shows the error between ground truth and the reconstruction using
PSR (top) and FSSR (bottom). The distances have been obtained
with Metro [3] and scaled for readability (factor 104).



Figure 9. Stanford Bunny: Geometric difference between LINEAR
and CUBIC interpolation with PSR (left) and FSSR (right).

Blob Dataset: We also evaluate the different interpolation
approaches on the Blob dataset, which exhibits more inter-
esting curvature changes. The reconstruction errors are vi-
sualized in Figure 8. Similar to the Sphere dataset, linear
interpolation leads to strong ringing artifacts and larger er-
rors, see Table 4.

It is noteworthy that, with PSR, the quality improve-
ment from LINEAR to non-linear interpolation is substan-
tial. However, which higher-order interpolant is used barely
makes a difference. This is because PSR represents the
implicit function as the sum of second-order B-splines, so
all interpolants reproduce the quadratic function along the
edge. For FSSR, the CUBIC interpolation improves mean
and RMS error as well as the visual appearance, although
the maximum error can remain large.

5.2. Scanner and MVS Data
Next, we evaluate the interpolation methods on real-

world scanner and MVS data. Because a ground truth model
is not available for this data, we focus on a visual com-
parison between the LINEAR and the CUBIC interpolation.
Note that visually, all higher-order methods produce results
that are almost indistinguishable.

Stanford Bunny: We reconstructed the Stanford Bunny
using PSR and FSSR with both, LINEAR and the CUBIC
interpolation. The geometric difference between the two
methods is visualized in Figure 9. This difference is pre-
sumably caused by the improved fitting with the CUBIC in-
terpolant, and the ringing artifacts of the linear interpolation
method become clearly visible.

Miniature City: The miniature city is a Multi-View
Stereo dataset with 76 input images and has been recon-
structed with the publicly available Multi-View Environment
[6]. The resulting point cloud with 4,627,606 samples was
then used as input for PSR and FSSR with the LINEAR and

Figure 10. Miniature City: 2 out of 76 input images (top). Geo-
metric difference between LINEAR (middle) and CUBIC (bottom)
interpolation with PSR (left) and FSSR (right).

CUBIC interpolation method. The geometric improvement
is visualized in Figure 10 and clearly visible even without
color coding.

5.3. MRI Data
Brain: We compared the LINEAR and the CUBIC inter-
polation on an MRI scan of a brain obtained from the OA-
SIS MRI database [21] (resolution 182⇥ 218⇥ 182). Since
the dataset comes without gradients, finite differences are
used to estimate them. In Figure 11 we provide results in-
cluding contrast-enhanced renderings to highlight the arti-
facts caused by the linear method, which are otherwise hard
to visualize.

6. Conclusion
We presented Hermite interpolation for Marching

Cubes-like algorithms to eliminate the majority of the ar-
tifacts that occur when contouring non-linear implicit func-
tions with traditional linear interpolation. The extracted tri-
angle meshes are guaranteed to have the same connectivity
as the meshes extracted with traditional Marching-Cubes,
but the accuracy of the isovertex positions is improved.

The proposed interpolation methods, particularly the
quadratic ones, are simple to implement and can be applied
to a wide range of surface extraction algorithms. The com-
putational overhead of the quadratic methods is insignifi-
cant and in fact barely measurable. The cubic interpolation
increases the total surface extraction time by about 3% with
our implementation.

We have demonstrated the applicability of Hermite in-
terpolation on PSR and FSSR and show that when gradi-
ents cannot be computed analytically, the finite differences
approximation is still successful in removing the artifacts.
Any of the non-linear interpolation methods substantially



Figure 11. Brain: The brain isosurface with CUBIC interpolation
(top left) and the error distance compared to linear interpolation
(top right). High-contrast close-ups (bottom) of the linear method
(left) and the cubic method (right) show the ringing caused by lin-
ear method.

increases surface accuracy, but “the right” method depends
on the application: For example, in PSR, the quadratic
methods provide sufficient accuracy while in FSSR, cubic
interpolation leads to further improvement.
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