
Publications for Task 3.3 
Deliverable 3.31 
Date: 27.06.2016 

Grant Agreement number:  EU 323567 

Project acronym:  HARVEST4D 

Project title:  Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds 

  



 

 i  

Document Information 
Deliverable number  D3.31 

Deliverable name Publications for Task 3.3 

Version 0.1 

Date 2016-06-27 

WP Number 3 

Lead Beneficiary PARISTEC 

Nature R 

Dissemination level PU 

Status Draft 

Author(s) PARISTEC 

Revision History 
Rev. Date Author Org. Description 

0.1 2016-06-27 Tamy Boubekeur PARISTEC Initial Draft 

Statement of originality 
This deliverable contains original unpublished work except where clearly indicated otherwise. 

Acknowledgement of previously published material and of the work of others has been made 

through appropriate citation, quotation or both. 

  



 

 ii  

 

TABLE OF CONTENTS 

1 Executive Summary ..................................................................................................................... 1 

1.1 Introduction ....................................................................................................................... 1 

1.2 Publications ........................................................................................................................ 1 

2 Description of Publications ......................................................................................................... 3 

2.1 Overview ............................................................................................................................ 3 

2.2 Morton integrals for adaptive surface mesh downsampling ............................................. 3 

2.3 Progessive downsampling of the medial mesh .................................................................. 4 

2.4 Adaptive Resampling of volume meshes ........................................................................... 5 

2.5 Curve reconstruction from few samples ............................................................................ 5 

2.6 Real –time geometry resampling for lighting ..................................................................... 6 

2.7 Other related work ............................................................................................................. 6 

3 Appendix ..................................................................................................................................... 7 

 



 

Deliverable D3.31 1/7  

 

1 EXECUTIVE SUMMARY 

1.1 INTRODUCTION 

This deliverable describes the publications that resulted from Task 3.3, and how they fit into the 

work plan of the project. 

The objective of Task 3.3 is to provide the Harvest4D project with fast and scalable geometric 

operators. These operators may be the result of the research conducted in WP3 or linked the 

many applications scenarios targeted by the project. The main contributions for this task relate in 

particular to the computation of efficient level-of-details of the geometry to adapt the data to a 

number of computing capabilities, algorithm complexities and application needs. We developed 

new approaches to the fast adaptive resampling of geometric data, including fast simplification of 

surface and medial meshes, fast decimation of point clouds, fast remeshing of volume meshes 

and fast point-sampling of a 3D scene with application to global illumination approximation. Just 

such as extreme approximation was key to T3.2, fast simplification -- and the dual ability to still 

reconstruct data from fewer sample -- appeared to be a critical task at every step of global 

“process and analysis” pipelines such as the ones that Harvest4D aim at feeding. This research 

work has led to a number of publications and two awards: the second prize for the Wolfgang 

Strasser Award at the ACM SIGGRAPH/Eurographics HPG 2015 and the Best Paper Award at Shape 

Modeling International 2016. In the following, we give an overview of the main contributions. 

1.2 PUBLICATIONS 

So far, there are 3 publications that are mainly associated to Task 3.3, and these can be found in 

the appendix of this deliverable: 

 Noura Faraj, Jean-Marc Thiery, and Tamy Boubekeur 

Progressive Medial Axis Filtration 

Proceedings ACM SIGGRAPH Asia 2013, Technical Brief program 

 Beibei Wang, Jing Huang, bert Buchholz, Xiangxu Meng, and Tamy Boubekeur 

Factorized Point-Based Global Illumination 

Computer Graphics Forum (Proc. EGSR 2013) 

 Hélène Legrand and Tamy Boubekeur 

Morton Integrals for High Speed Geometry Simplification 

ACM SIGGRAPH/Eurographics High Performance Graphics, 2016, Second prize for the 

Wolfgang Strasser Award 

 Stefan Ohrhallinger, Scott A. Mitchell and Michael Wimmer  

Curve Reconstruction with Many Fewer Samples  

Computer Graphics Forum (Proc. SGP 2016) 

 Noura Faraj, Jean-Marc Thiery, and Tamy Boubekeur 



 

Deliverable D3.31 2/7  

 

Multi-Material Adaptive Volume Remesher 

Computer & Graphics Journal, Proceedings of the Shape Modeling International 2016, Best 

Paper Award 

 Gilles Laurent, Cyril Delalandre, Jean-Baptiste de La Rivière and Tamy Boubekeur 

Forward Light Cuts: a Scalable Approach to Real-time Global Illumination 

Computer Graphics Forum (Proc. EGSR 2016) 

 

Additionally, a number of other papers are primarily attached to other tasks and deliverables but 

exhibit contributions on scalable implementations of geometric algorithms: 

 Jean-Marc Thiery, Emilie Guy and Tamy Boubekeur 

Sphere-Meshes: Shape Approximation Using Spherical Quadric Error Metrics  

ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 2013 

 Christian Kehl, Tim Tutenel and Elmar Eisemann 

Smooth, interactive rendering techniques on large-scale, geospatial data in flood visualisations   

ICT Open 2013 

 Emilie Guy, Jean-Marc Thiery, Tamy Boubekeur 

SimSelect: similarity-based selection for 3D surfaces   

Computer Graphics Forum (Proc. EUROGRAPHICS 2014), 33(2):165-173, 2014 

 Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, Michael Wimmer 

Continuous Projection for Fast L1 Reconstruction  

ACM Transactions on Graphics (Proc. SIGGRAPH), 2014 

 Tamy Boubekeur 

ShellCam: Interactive Geometry-Aware Virtual Camera Control   

IEEE International Conference on Image Processing, to appear 

 Emilie Guy, Jean-Marc Thiery, Tamy Boubekeur 

SimSelect: similarity-based selection for 3D surfaces    

Computer Graphics Forum (Proc. of EUROGRAPHICS 2014), 33(2), p.165-173, 2014 

 Mohamed Radwan, Stefan Ohrhallinger, and Michael Wimmer 

Efficient collision detection while rendering dynamic point clouds 

Proceedings of Graphics Interface 2014 (GI '14), 2014 

 Sebastien Ochmann, Richard Vock, Raoul Wessel and Reinhard Klein 

Automatic Reconstruction of Parametric Building and Models from Indoor Point Clouds 

Proceedings of CAD/Graphics, 2015 

 Gianpaolo Palma, Paolo Cignoni, Tamy Boubekeur and Roberto Scopigno 

Detection of Geometric Temporal Changes in Point Clouds 

Computer Graphics Forum (Presented at EUROGRAPHCIS 2016) 

 Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery, Elmar Eisemann 

Geometry and Attribute Compression for Voxel Scenes 

Computer Graphics Forum (Proc. of EUROGRAPHCIS 2016) 

 Leonardo Scandolo, Pablo Bauszat, Elmar Eisemann 

Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows 

Computer Graphics Forum (Proc. of EUROGRAPHCIS 2016) 



 

Deliverable D3.31 3/7  

 

 Jean-Marc Thiery, Emilie Guy, Tamy Boubekeur and Elmar Eisemann 

Animated Mesh Approximation With Sphere-Meshes 

ACM Transactions on Graphics (presented at SIGGRAPH 2016) 

 

 

 

2 DESCRIPTION OF PUBLICATIONS 

2.1 OVERVIEW 

The main contributions of this task can be decomposed into two categories: application-oblivious 

fast methods for geometry processing and rendering-oriented geometric methods. While for the 

former, no assumption on the final application is made beyond the input parameters of the 

algorithms, the latter is motivated by the growing need of geometry/scene processing and 

analysis which are required to achieve high quality fast rendering. In the following, we first go 

over the different shape representations, from surface to volume through medial axis (which link 

both kinds of models) and summarize different fast down-/re-sampling strategies. Then, we 

explain how efficient algorithm can benefit from the geometric structure of the scene for both 

offline and real time approximation of global illumination. 

2.2 MORTON INTEGRALS FOR ADAPTIVE SURFACE MESH DOWNSAMPLING 

 

Figure 1 HSGS can reduce this model by a factor of 20 in about 103 ms on a single Nvidia GTX680, 43ms on a more 
recent GTX 980 ti one, without any preprocessing. 

Real time geometry processing has progressively reached a performance level that makes a 

number of signal-inspired primitives practical for on-line applications scenarios. This often comes 

through the joint design of operators, data structures and even dedicated hardware. Among the 

major classes of geometric operators, filtering and super-sampling (via tessellation) have been 

successfully expressed under high-performance constraints. The subsampling operator i.e., 

adaptive simplification, remains however a challenging case for non-trivial input models. With 

HSGS [Legrand and Boubekeur 2015], we build a fast geometry simplification algorithm over a 



 

Deliverable D3.31 4/7  

 

new concept: Morton Integrals. By summing up quadric error metric matrices along Morton-

ordered surface samples, we can extract concurrently the nodes of an adaptive cut in the so-

defined implicit hierarchy, and optimize all simplified vertices in parallel. This approach is inspired 

by integral images and exploits recent advances in high performance spatial hierarchy 

construction and traversal. As a result, our GPU implementation can down-sample a mesh made 

of several millions of polygons at interactive rates, while providing better quality than uniform 

simplification and preserving important salient features. We present results for surface meshes, 

polygon soups and point clouds, and discuss variations of our approach to account for per-sample 

attributes and alternatives error metrics. 

This work received the second prize for the Wolfgang Strasser Award at the ACM 

SIGGRAPH/EUROGRPHICS High Performance Graphics 2015 conference in Los Angeles, United 

States, and is used within the integrated prototype of Harvest4D and also part of the prototype 

deliverable D3.32 

2.3 PROGESSIVE DOWNSAMPLING OF THE MEDIAL MESH 

Between surface and volume models, the medial axis is a particular mesh structure that acts as an 

interface representation that allows characterizing globally a shape for subsequent processing 

and analysis (see T3.2). Again, simplification and abstraction of such a representation is often to 

key to its scalable use. 

 

The Scale Axis Transform provides a parametric simplification of the Medial Axis of a 3D shape 

which can be seen as a hierarchical description. However, this powerful shape analysis method 

has a significant computational cost, requiring several minutes for a single scale on a mesh of few 

thousands vertices. Moreover, the scale axis can be artificially complexified at large scales, 

introducing new topological structures in the simplified model. With P-MAT [Faraj 2013], we 

propose a progressive medial axis simplification method inspired from surface optimization 

techniques which retains the geometric intuition of the scale axis transform. We compute a 

hierarchy of simplified medial axes by means of successive edge-collapses of the input medial axis. 

These operations prevent the creation of artificial tunnels that can occur in the original scale axis 

transform. As a result, our progressive simplification approach allows to compute the complete 

hierarchy of scales in a few seconds on typical input medial axes. We show how this variation of 

the scale axis transform impacts the resulting medial structure. 



 

Deliverable D3.31 5/7  

 

2.4 ADAPTIVE RESAMPLING OF VOLUME MESHES 

When moving to full volumetric representation of models, tet-meshes are often acting as the core 

structures to approximate object composed of numerous materials for which a 3D cartography is 

key in simulation and visualization. Here, reducing the size of these models becomes even more 

important than for surface and medial representations.  

 

With MAD-Remesher [Faraj 2016], we propose a practical iterative remeshing algorithm for multi-

material tetrahedral meshes which is solely based on simple local topological operations, such as 

edge collapse, flip, split and vertex smoothing. To do so, we exploit an intermediate implicit 

feature complex which reconstructs piecewise smooth multi-material boundaries made of surface 

patches, feature edges and corner vertices. Futhermore, we design specific feature-aware local 

remeshing rules which, combined with a moving least square projection, result in high quality 

isotropic meshes representing the input mesh at a user defined resolution while preserving 

important features. Our algorithm uses only topology-aware local operations, which allows to 

process difficult input meshes such as self-intersecting ones. We evaluate our approach on a 

collection of examples and experimentally show that it is fast and scales well. 

This work received the Best Paper Award at the Shape Modeling International 2016 conference in 

Berlin, Germany.  

2.5 CURVE RECONSTRUCTION FROM FEW SAMPLES 

The previous work demonstrates that fast mechanisms can be design to properly sample complex 

objects with fewer element, in different dimension. Going back to the simpler 2D case, we 

conducted a more theoretical study on how very few samples can be enough to reconstruct a 

complex object.  

More precisely, we consider the problem of sampling points from a collection of smooth curves in 

the plane [Ohrhallinger 2016], such that the Crust family of proximity-based reconstruction 

algorithms can rebuild the curves. Reconstruction requires a dense sampling of local features, i.e., 

parts of the curve that are close in Euclidean distance but far apart geodesically. We show that 

epsilon<0.47-sampling is sufficient for our proposed HNN-CRUST variant, improving upon the 

state-of-the-art requirement of epsilon<1/3-sampling. Thus we may reconstruct curves with many 

fewer samples. We also present a new sampling scheme that reduces the required density even 

further than epsilon<0.47-sampling. We achieve this by better controlling the spacing between 

geodesically consecutive points. Our novel sampling condition is based on the reach, the 

minimum local feature size along intervals between samples. This is mathematically closer to the 



 

Deliverable D3.31 6/7  

 

reconstruction density requirements, particularly near sharp-angled features. We prove lower and 

upper bounds on reach rho-sampling density in terms of lfs epsilon-sampling and demonstrate 

that we typically reduce the required number of samples for reconstruction by more than half.  

This work is part of the prototype deliverable attached to this task (D3.32) and its source code is 

publically available.  

2.6 REAL –TIME GEOMETRY RESAMPLING FOR LIGHTING 

 

After studying how to factorize the search for light cuts in the hierarchical model of 3D scene 

[Wang 2013], we more recently studied how to transform the geometric stages of the modern 

graphics shader-based pipeline into a goal-driven resampling machinery, that aims at extract an 

hierarchy-less multiscale light cache directly from a raw, dense and dynamic geometry such as the 

ones we encounter in capture or CAD scenarios. With Forward Light Cuts [Laurent 2016], the 

global illumination of such complex scene can be approximated with a one-bounce diffuse instant 

radiosity solution in real time, using the geometry shader (resp. tessellation unit) to reduce (resp. 

increase) the sampling rate of the scene. 

2.7 OTHER RELATED WORK 

 

As listed previously, numerous publications have contributed to various degree to WP3 

production. In particular, one can notice that the Sphere-Mesh method, which contributed both 

to Harvest4D operators (T3.1) and algorithms (T3.2), was at the center of our more recent work 

on 3D+time data. With Animated Sphere-Meshes [Thiery 2016], we can now approximate at very 

coarse scale a performance (4D) capture data set using a small number of stable spheres, linked 



 

Deliverable D3.31 7/7  

 

together with a mesh structure onto which the final geometry of the approximation is obtained 

with a simple linear interpolation.  

This work is described more in details in WP8. 

3 APPENDIX 

The following pages contain all the publications that are directly associated with this deliverable. 

Other publications referenced in this deliverable can be found in the public Harvest4D webpage 

(for already published papers), or in the restricted section of the webpage (for papers under 

submission, conditionally accepted papers, etc.). 



Progressive Medial Axis Filtration

Noura Faraj Jean-Marc Thiery Tamy Boubekeur
Telecom ParisTech - CNRS LTCI - Institut Mines-Telecom

Medial Axis

s:1.85 s:3.36 s:5.34Input Surface

Medial Axis Hierarchy

Figure 1: Left – Dragon Model: Our progressive simplification of the medial axis filters the input shape at low scales (scale 1.85), and
provides an efficient ordering of its features at large scales (scales 3.36 and 5.34). Top row shows the filtered medial axis, bottom row shows
the polar (resp. interpolated) spheres in dark (resp. light) orange. Right: additional filtered medial axes.

Abstract

The Scale Axis Transform provides a parametric simplification of
the Medial Axis of a 3D shape which can be seen as a hierarchical
description. However, this powerful shape analysis method has a
significant computational cost, requiring several minutes for a sin-
gle scale on a mesh of few thousands vertices. Moreover, the scale
axis can be artificially complexified at large scales, introducing new
topological structures in the simplified model. In this paper, we
propose a progressive medial axis simplification method inspired
from surface optimization techniques which retains the geometric
intuition of the scale axis transform. We compute a hierarchy of
simplified medial axes by means of successive edge-collapses of
the input medial axis. These operations prevent the creation of arti-
ficial tunnels that can occur in the original scale axis transform.As
a result, our progressive simplification approach allows to compute
the complete hierarchy of scales in a few seconds on typical input
medial axes. We show how this variation of the scale axis transform
impacts the resulting medial structure.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations;

Keywords: medial axis, scale axis, shape filtering

1 Introduction

In computer graphics applications, a 3D shape is typically mod-
elled by its boundary, for which a number of representations exist
and can be classified in either explicit (e. g., meshes, splines, points)

or implicit (e. g., level sets, radial basis function) schemes. Medial
structures such as the Medial Axis Transform [Blum 1967] (MAT)
are located at the frontier between these two main classes of rep-
resentations: the shape boundary is described by an inner structure
together with a function conveying locally the volume of the shape.
Such medial representations are particularly useful for shape analy-
sis, see the work of Siddiqi et al. [Siddiqi and Pizer 2008] for more
details.

The MAT MS of a 3D surface S is probably the most popular
medial structure. This transform computes the set of “medial”
spheres, contained in S, with at least two contact points with S.
The spheres’ center form the medial axis, which is made of 2-
dimensional sheets, curves and single points, while a radius func-
tion describes, at each point, the maximally inscribed sphere. In this
paper, we focus on polygonal surface meshes for which each con-
nected component ofMS is composed of triangles and/or edges.

The lack of stability of the MAT (i. e., small changes in the surface
usually result in drastic changes in the medial axis), prevents from
using it directly in applications (e. g., shape matching) and a spe-
cific filtering step is usually necessary. One popular method for this
filtering operation is to simply remove spheres based on the angle
formed by their two closest boundary points w.r.t. their center [At-
tali and Montanvert 1996]. Alternatively, some methods rely on
the circumradius of the two closest boundary points to define the
importance of a sphere [Chazal and Lieutier 2005].

The Scale Axis Transform [Giesen et al. 2009] [Miklos et al. 2010]
(SAT) is a third approach targetting the filtering of the medial axis
and relies on a spatially-varying importance measure of the fea-
tures of the input shape. The SAT can be summarized as follow:
(i) computation of the medial axisMS of the input surface S; (ii)
scaling of the medial spheres of MS by a factor s (the main in-
put parameter); (iii) extraction of the corresponding surface S ′; (iv)
computation of the medial axisMS′ of S ′; (v) scaling of the me-
dial spheres ofMS′ by a factor 1/s. Intuitively, a sphere ofMS
is likely to be filtered during the scaling step if a significantly big-
ger sphere is close-by. The importance of a feature is then defined
relatively to the size of the nearby geometry. In practice, the SAT
generates simplified medial axes, with coarseness controlled by the
scale parameter s. The topological events that can occur during the
scaling step of the SAT are of two kinds: either a scaled sphere S1

with radius sr1 absorbs a smaller scaled sphere S2 of radius sr2
(Simplification, see Fig. 3 left), or two distincts spheres S1 and S2



Input surface

R
e
a
l-

ti
m

e
n
a
v
ig

a
ti

o
n

Medial Axis

MAT Progressive Medial Axis Filtration

Medial Axis Hierarchy

s=1.31 s=3.45 s=11.0

Edge
collapses

Edge
collapses

Figure 2: Overview: Starting from a closed input surface (left), its medial axis is extracted (middle left) and simplified progressively by
collapsing its edges iteratively (middle to right), constructing a medial axis hierarchy in a bottom-up fashion which can be quickly browsed.

Sphere absorbsion Tunnel creation

Figure 3: Left: Simplification. Scaling the spheres by a factor s
results in the absorbsion of S2. Right: Enrichment. The scaling
results here in the creation of a tunnel between S1 and S2.

create a tunnel in the reconstructed surface when they touch each
other (Enrichment, see Fig. 3 right). Formally, the various topolog-
ical events occuring during the computation of the scale axis cannot
be computed pair-wise only. Their exact computation involves all
spheres to detect precisely if a grown sphere is covered (even par-
tially) by the others, or if the point tangent to the two spheres at the
creation of the tunnel is covered by another sphere (in which case
no tunnel is created).

The main limitation of the SAT is threefold: first, computing a sin-
gle scale requires the construction of an entire surface and the ex-
traction of a specific medial axis, which prevents navigating easily
the derived hierarchy in a reasonable amount of time; second, tun-
nels are likely to appear when the scale factor is too large, thus
complexifying the topology of the medial axis instead of simplify-
ing it; third, SAT spheres are not a subset of the medial axis ones.

We address these three problems by proposing an efficient medial
axis simplification process which is based on the SAT importance
metric, but which decimates the medial axis iteratively using an
edge-collapse operator inspired from surface optimization [Garland
and Heckbert 1997], without requiring any intermediate surface re-
construction/MAT during the process. As a result, a full hierarchy
of nested medial structures can be generated in few seconds on typ-
ical inputs, and browsed interactively. As the edge-collapse is a
decimation operator, no tunnels are created and each level can be
expressed relatively to the next finer one and vise-versa (see Fig. 1).

2 Progressive Medial Axis Filtration

We summarize our approach in Fig. 2: starting from a closed sur-
face S, we extract its medial axisMS using the same strategy as
Miklos et al. [2010] and then simplify it progressively using of suc-
cessive edge-collapses. The medial axis is stored in the data struc-
ture proposed by De Floriani et al. [2004], that allows to collapse
edges of a non-manifold mesh efficiently. The resulting nested hi-
erarchy guarantees that each of its levels is a simplification of the
previous one and can be browsed interactively by the user.

The metric that guides the filtration focuses on the Simplification
events introduced in Sec. 1 and omits the Enrichment events.

In the following, vi denotes a vertex ofMS , and represents a me-
dial polar sphere with center pi and radius ri; eij denotes an edge
ofMS linking vi and vj . Our medial axis filtration algorithm is
listed in Alg. 1, and has practical runtime and memory complexities
of O(|MS | log(|MS |)).

Algorithm 1 Progressive Medial Axis Filtration.
Require: MS = {{vi}, {eij}} the medial axis of S
Require: Q a priority queue of edges
Require: R an empty ordered list of edge-collapses

for all edge eij do
Q ← eij with cost cij

end for
whileQ not empty do

eij ← Q.top() with ri < rj ; Q.pop()
if vi valid and vj valid then

collapse eij → vj

R← [R, [eij → vj ]]
mark vi as invalid
for all neighbor vk of vj do
Q ← ejk with cost ckj

end for
end if

end while
return R

One core idea of this paper is to define the cost that orders the edge
collapses by the scale at which the largest sphere absorbs the other
one:

cij =
|pi − pj |
|ri − rj |

After inserting all possible edge collapse in Q, we prune the ele-
ment with the smallest cost iteratively and collapse the correspond-
ing edge towards the largest sphere. Each time an edge is collapsed,
the neighborhood of the created vertex is updated, and correspond-
ing edge-collapses are inserted into the queue. Edges that were
incident to the deleted vertex are invalidated in Q by invalidating
the collapsed vertex. We stop when no edge remains inMS .

Similar to progressive meshes [Hoppe 1996], we record the set of
deleted triangles and edges at each step of the simplification, con-
structing the nested hierarchy as an ordered list R where a medial
axis at level k can be updated to level k+ 1 (resp. k− 1) using the
kth (resp. k − 1th) element ofR. As a result, the hierarchy can be
traversed in real time, in both directions, using R only to obtain a
specific scale s.



Chair Chair MA s:2.32 s:4.99 s:17.38

Lady Lady MA s:1.35 s:1.95 s:3.59

Amphora Amphora MA s:1.18 s:1.32 s:1.57

Plane

Plane MA

s:1.83

s:3.58

s:6.57

Figure 4: Medial axis hierarchy extracted from various 3D shapes, with the input in grey, the medial axis (MA) and three different scales (s)
obtained with our progressive simplication method. For illustration purpose, some medial axes are shown in wireframe.

INPUT SURFACE MEDIAL AXIS OURS – ALL OURS SAT
(#V / #T) (#V / #T / #E) SECS. SCALES (SECS.) SCALE H H (SECS.)

Chair (9935 / 19894) (1014760 / 2289594 / 0) 627.90 68.23 2.32 1.02 1.20 (51.22)
4.99 1.61 3.30 (13.1)

17.38 2.50 12.77 (0.33)
Lady (19990 / 39976) (243400 / 532503 / 0) 75.70 15.20 1.35 1.65 2.11 (16.18)

1.95 5.18 5.17 (5.39)
3.59 7.95 7.66 (0.43)

Amphora (14859 / 29734) (141918 / 309993 / 0) 42.87 11.15 1.18 1.39 3.15 (13.84)
1.32 3.72 4.52 (9.18)
1.57 6.05 6.77 (5.43)

Plane (6797 / 13590) (253578 / 562181 / 0) 71.78 15.10 1.83 0.52 1.32 (17.38)
3.58 2.46 3.59 (3.27)
6.57 9.54 9.90 (0.77)

Table 1: Timings for the computation of the complete simplification hierarchy, and Hausdorff distances (H) between surfaces reconstructed
from various scales to the input surface. Timings for the computation of the Scale Axis Transform and Hausdorff distance to the input surface
are given for each scale. Distances are expressed in percentages of the object’s bounding box diagonal. All timings are expressed in seconds.
The corresponding models are shown in Fig. 4.



s:1.13

s:2.21

s:3.69

s:8.9

s:1.69

s:4.35

s:5.62

s:7.85

Figure 5: Side by side visual comparison with the Scale Axis Trans-
form (in purple).

3 Results

Fig. 4 shows various medial axes simplified at several scales. Tim-
ings of computation of the whole hierarchy are reported in Tab. 1,
along with the timings of computation of the Scale Axis Transform
for the visualized scales. We also provide Hausdorff distances to
the input surface for both methods. Since our technique is meant to
filter large parts of the medial axis at large scales, these are given
not to assess the quality of the simplification but rather to describe
the size of the features that were removed.

The ability to navigate through the complete hierarchy in real-time
allows the user to identify the key scales at which large features
are filtered. Those values are impossible to predict beforehand, as
illustrated by their variability in the presented examples.

As shown in Tab. 1, the computation of our all-scales simplification
nested hierarchy is of the same order than the computation of a SAT
for a single scale. Traversing the hierarchy and updating the medial
axis simplification level is done in real-time on an Intel Core2 Duo
running at 2.5 GHz with 4GB of main memory: going from 1 to
100.000 spheres takes a few milliseconds.

In Fig. 5 we illustrate the main differences with the SAT. Our pro-
gressive medial axis filtration behaves similarly to the SAT at low
scales, but allows to filter features of the input medial axis at very
large scales (10-30), for which the SAT does not provide useful in-
formation on the input shape [Miklos et al. 2010]. Even at medium
scales, the SAT complexifies the shape instead of simplifying it
(e. g., unwanted tunnels in the Hand model in Fig. 5–2nd row).

The spheres contained in our simplified medial axes are a subset of
the polar spheres of the input medial axis. The primitives linking
them (triangles, edges) are however not part of the input medial
axis. Similarly to the SAT, our simplified medial axes can cross
the input surface at very large scales. Nonetheless, this behavior is
reduced with the proposed approach (see legs of the Raptor model
in Fig. 5 – scales 5.62 and 7.85). Last, on the contrary to the SAT,
our approach is free of computational parameters.

4 Conclusion

We have presented a technique for computing a progressive filtra-
tion of the medial axis, building upon the spatially-varying impor-
tance classification of the medial axis features introduced by the
Scale Axis Transform [Miklos et al. 2010]. Our simplification pro-
cess requires the computation of a single medial axis only, and pro-
gressively simplifies it using iterative edge-collapses, ordered by
this importance classification, until no edge remains. The output
of our technique is a nested hierarchy of medial structures that can
be browsed interactively. Compared to the scale axis transform, a
large number of level-of-detail medial structures can be quickly ex-
tracted, while we ensure the simplification of the medial axis at each
step. Last, the information carried out by large simplification scales
is pertinent and the algorithm is free of computational parameter.

Acknowledgements We thank Bálint Miklós for providing his
implementation of the SAT. The input models are provided by the
Max Planck Institute, Princeton and Aim-at-Shape. This work has
been partially funded by the European Commission under contract
FP7-323567 Harvest4D, by the Chaire MODIM of Telecom Paris-
Tech and by the ANSES “ACTE” project.

References

ATTALI, D., AND MONTANVERT, A. 1996. Modeling noise for
a better simplification of skeletons. In Image Processing, 1996.
Proceedings., International Conference on, vol. 3, IEEE, 13–16.

BLUM, H. 1967. A Transformation for Extracting New Descriptors
of Shape. In Models for the Perception of Speech and Visual
Form, W. Wathen-Dunn, Ed. MIT Press, Cambridge, 362–380.

CHAZAL, F., AND LIEUTIER, A. 2005. The λ-medial axis. Graph-
ical Models 67, 4, 304–331.

DE FLORIANI, L., MAGILLO, P., PUPPO, E., AND SOBRERO,
D. 2004. A multi-resolution topological representation for non-
manifold meshes. Computer-Aided Design 36, 2, 141–159.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 209–216.

GIESEN, J., MIKLOS, B., PAULY, M., AND WORMSER, C. 2009.
The scale axis transform. In Proceedings of the Symposium on
Computational geometry, 106–115.

HOPPE, H. 1996. Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques, ACM, 99–108.

MIKLOS, B., GIESEN, J., AND PAULY, M. 2010. Discrete scale
axis representations for 3d geometry. ACM Transactions on
Graphics (TOG) 29, 4, 101.

SIDDIQI, K., AND PIZER, S. M. 2008. Medial representations:
mathematics, algorithms and applications, vol. 37. Springer.



Author’s Draft. The final version will be presented at the Eurographics Symposium on Rendering
and published a spcial issue of the Computer Graphcis Forum journal. 2013

Volume 32 (2013), Number 4

Factorized Point Based Global Illumination

Beibei Wang+∗ Jing Huang∗ Bert Buchholz∗# Xiangxu Meng+ Tamy Boubekeur∗

∗Institut Mines-Telecom; Telecom ParisTech; CNRS LTCI +Shandong University #NYU Polytechnic Institute

Abstract
The Point-Based Global Illumination (PBGI) algorithm is composed of two major steps: a caching step and a
multiview rasterization step. At caching time, a dense point-sampling of the scene is shaded and organized in a
spatial hierarchy, with internal nodes approximating the radiance of their subtrees using spherical harmonics. At
rasterization time, a microbuffer is instantiated at the unprojected position of each image pixel (receiver). Then,
a view-adaptive level-of-detail of the scene is extracted in the form of a tree cut and rasterized in the receiver’s
microbuffer, solving for visibility using a local variant of the z-buffer. Finally, the pixel color is computed by
convolving its filled microbuffer with the surface BRDF. This noise-free indirect lighting method is widely used in
the industry and captures several critical lighting effects, including ambient occlusion, color bleeding, (indirect)
soft-shadows and environment lighting. However, we observe a large redundancy in this algorithm, both in cuts
and receivers’microbuffers, which stems from their relatively low resolution. In this paper, we propose an evolution
of PBGI which exploits spatial coherence to reduce these redundant computations. Starting from a similarity-based
variational clustering of the receivers, we compute a single tree cut and rasterize a single microbuffer for each
cluster. This per-cluster microbuffer provides a faithful approximation of the incident radiance for distant nodes
and is composited over a receiver-specific microbuffer rasterizing only the closest nodes of the cluster’s cut. This
factorized approach is easy to integrate in any existing PBGI implementation and offers a significant rendering
speed-up for a negligible and controllable approximation error.

1. Introduction

The visual impact of global illumination (GI) in a synthe-
sized picture is the sum of a number of lighting effects stem-
ming from indirect light bounces. Among them, one-bounce
diffuse effects, such as ambient occlusion, directional occlu-
sion, color bleeding and indirect soft shadows, carry a large
portion of the visual realism that typical GI solutions bring.
Point-based global illumination (PBGI) is a popular render-
ing technique which captures such a subset of GI effects for
a moderate amount of time and is intensively used in spe-
cial effects and computer animation productions. This GI
approximation model can be seen as a generalized forward
rendering method which combines a fast adaptive approxi-
mation of the scene with a multiview rasterization. The re-
sulting algorithm is noise-free, amenable to a parallel imple-
mentation and can even be extended to other GI effects (e.g.,
multiple bounces), although still away from a full GI solu-
tion, in particular when it comes to specular indirect phe-
nomena (i.e., caustics).

1.1. Basic Algorithm

PBGI [Chr08] runs in a two-step process: a caching step and
a multiview rasterization step. At caching time, the scene is
densely point-sampled (e.g., using Poisson disks), the points
are shaded from the light sources – accounting for direct
shadows only – and structured in a hierarchical data structure
(e.g., octree, BSH). This tree is constructed bottom-up from
the shaded points, with internal nodes carrying approxima-
tions of their related sub-trees (e.g., bounding sphere, normal
cone, low-degrees spherical harmonics modeling the outgo-
ing diffuse radiance).

At rasterization time, each pixel of the final picture is
shaded using a so-called microbuffer, which is a small hemi-
spherical RGBZ image instantiated at the unprojected po-
sition of the pixel (or receiver) in the scene. For each mi-
crobuffer, a specific level-of-detail (LoD) of the scene is ex-
tracted in the form of an adaptive cut in the PBGI tree. The
resulting nodes are rasterized in the microbuffer using a lo-
cal variant of the z-buffer algorithm to solve for visibility.
The filled microbuffer is finally convolved with the point’s
BRDF to shade the pixel.

c© 2013 The Author(s)
Draft version, final version pubished in Computer Graphics Forum (Eurographics Associ-
ation and Blackwell Publishing Ltd).



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

The two key ideas of this algorithm are (i) the point’s hi-
erarchy, which acts as an economic substitute to the actual
scene when it comes to the many adaptive LoDs which have
to be extracted; (ii) the microbuffers, which extend the con-
cept of rasterization to a per-pixel/receiver level.

1.2. Redundancy Issue

Looking back at the rasterization step, we observe that a
specific cut is computed from the entire scene for each sin-
gle receiver. However, the resolution of their microbuffers
is typically low (from 4x4 to 64x64 in practice) which im-
mediately translates into tree cuts having a large number of
coarse nodes, therefore being highly similar for nearby re-
ceivers. As we will show later, this abundant redundancy has
a significant impact on the overall rendering time.

1.3. Overview

We tackle this problem by exploiting the mi-
crobuffers’spatial coherence to factorize both cut com-
putations and rasterizations. Our factorized PBGI technique
(or FPBGI) works in three steps (see Fig. 1):

1. we cluster the receivers based on their similarity and se-
lect a per-cluster active receiver,

2. for each cluster, we compute a single (coarser) cut from
the active receiver and rasterize it in a microbuffer shared
by all receivers of the cluster

3. for any receiver, we start the tree traversal from its cluster
cut and rasterize only the newly added (i.e., closer) nodes
in a receiver-specific microbuffer, which is composited
with the cluster one before final BRDF convolution.

As a result, a large part of tree traversals and cut rasteriza-
tions are factorized among nearby receivers, which leads to
an overall rendering speed-up ranging from 2x to 4x on the
typical scenes illustrating this paper.

2. Previous Work

PBGI. PBGI was first introduced by Christensen [Chr08],
who proposed the idea of microbuffers and exploited
the notion of point-based substitutes introduced by Bun-
nell [Bun05] for real time ambient occlusion and indirect
illumination. Ritschel et al. [REG∗09] then replaced cube
microbuffers with 2D Lambert-warped ones, introducing im-
portance sampling to PBGI together with an efficient GPU
implementation. Holländer et al. [HREB11] later improved
on the fine-grained parallelism of the adaptive cut compu-
tation by pairing nodes and receivers in a low-scale GPU
data amplification mechanism. The cut definition itself has
been addressed by Maletz and Wang [MW11] who used an
importance-driven point projection based on an initial clus-
tering, by Wang et al. [WMXS11] who grouped together
close points with similar normals and computed average
cuts for a subset of the receivers, and by Tabellion [Tab12]

who recently exposed a set of cut picking algorithms suit-
able for HDR imaging. The PBGI accuracy entirely de-
pends on the density of the initial sampling and the re-
lated memory issue has been tackled by Kontkanen et al.
[KTO11], who proposed an out-of-core framework for PBGI
with cache-coherent tree construction and traversal. Buch-
holz and Boubekeur [BB12] proposed an in-core solution to
this problem, learning a reduced set of node data vectors in
high dimension and quantizing all tree nodes against the re-
sulting look-up table.

Coherence in rendering. Coherence through some form of
“reuse” mechanism has been widely studied in GI research.
Such techniques try to avoid redundancy at different levels
of the GI solution computation, including irradiance, radi-
ance, shading and even tree-cuts in a closer context to ours.
Ward et al. [WRC88] reused illumination computation by
computing scalar (diffuse) irradiance on a subset of pix-
els and interpolating for the others, eventually using gradi-
ents [WH92] for smoother results. Wang et al. [WWZ∗09]
used k-means to subsample receiving points and interpolate
irradiance, reaching interactive framerates but missing small
geometric details. Radiance Caching [KGPB05] overcomes
the limitation to diffuse reflectance by storing incoming ra-
diance as a directional function, interpolating it between pix-
els and convolving with the BRDF for every pixel. Closer to
PBGI methods, Holländer et al. [HREB11] proposed a time-
coherent cut update, together with a lazy scheme bounding
the amount of time dedicated to this update. Our approach is
inspired by this method, but acts in the spatial domain.

Near-far decomposition. The idea of near-far irradiance
decomposition has been previously studied in the context
of hardware ambient occlusion [SA07] and final gather-
ing [AFO05]. Acting in a PBGI context, our approach dif-
fers in the sense that the near-far split is entirely formulated
through the cluster/receiver cut, the far component being
shared by numerous receivers.

3. Factorized Point Based Global Illumination

3.1. Variational Receiver Clustering

Our basic assumption is that receivers with similar positions
and normals have similar cuts: we propose to model this po-
sition/normal similarity by computing a variational cluster-
ing of the receivers based on a specific metric D. To ease
parallel computation, we start by regularly tiling the image
space and work independently on each tile. Within a tile, we
group spatially coherent receivers in k clusters using a vari-
ant of the k-means algorithm:

1. we initialize k centers from randomly selected receivers
in the tile,

2. we cluster the tile’s receivers by associating each of them
to its closest center w.r.t. D

3. we update clusters’ centers and restart in (2).

c© 2013 The Author(s)



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

Far node Near node
Cluster cut 
Receiver-specific cut 

Cluster microbuffer 
Receiver-specific 
microbuffer 

Active Receiver
Other Receiver

Receiver 
shading

Figure 1: Principle. Starting from a tiled set of image pixels/receivers (left), we perform a variational clustering based on
positional and normal similarity (middle left). For a given cluster, we compute a shared cut (middle right, red) later reused by
each individual receiver to further refine their own cuts (middle right, green). The far nodes of the cluster are rasterized into a
shared cluster microbuffer (right, purple) and refined nodes (added on a per-receiver basis) are rasterized in a receiver-specific
microbuffer (right, orange), which is composited into one cluster for final BRDF convolution (pixel indirect shading).

We perform this procedure for a prescribed number of it-
erations and search, for each cluster, the closest receiver to
the resulting center: in the following, we call it the active
receiver of a cluster.

Following Cohen-Steiner et al. [CSAD04], we define our
position/normal metric D as a Sobolev summed metric:

D(x,c) = ||pc�px||2 +α||nc�nx||2

with x being a receiver, c a cluster center, p (resp. n) their
position (resp. normal) in R3. The weight α trades cluster
flatness for spatial extent. We typically set it to the length
of the tile’s receivers’ bounding box diagonal. Last, at each
iteration, the center position and normal of a cluster C are
updated as follows:

pc =
∑x∈C px

card(C) nc =
∑x∈C nx
||∑x∈C nx||

3.2. Cluster Cut and Microbuffer

Within a cluster C, the factorized workload among receivers
takes the form of a single shared cut and a single microbuffer
which are computed w.r.t. the active receiver xC .

In the next step of the rasterization phase, we start by
traversing the PBGI tree from the root for xC but stop early
to produce a cut which is coarser than required in the vicin-
ity of xC . Indeed, we assume that the significant difference
between two nearby microbuffers only appears at fine scale
(i.e., closer nodes) and deal with it later.

During the top-down PBGI tree traversal, we use a
far/near classification of the tree’s nodes based on a mea-
sure γ for each node/receiver pair: far nodes (γ > ε) are tra-
versed as usual, while near nodes (γ ≤ ε) stop the traversal
immediatly. The node/receiver measure is defined as γ = r

d
with r being the cluster’s radius r and d the distance between
the node and xC . The resulting cluster cut contains two types
of nodes: far nodes, which are rasterized in the shared clus-
ter microbuffer, and near nodes, which will be concurrently

refined for each individual receiver in the next step. At this
stage, the cluster microbuffer already carries the distant irra-
diance shared by all cluster receivers.

3.3. Receiver Cut, Microbuffer and Shading

In the last part of our algorithm, we process each individ-
ual receiver in parallel. For a given receiver, we compute
its specific cut starting from the cluster cut (instead of the
tree’s root) and traversing the hierarchy down to the clas-
sical microbuffer-dependent solid angle threshold. Only the
newly added nodes to the cut are marked as refined. Once the
cut is completed, we rasterize its refined and near nodes into
a receiver-specific microbuffer. Basically, only the closer
nodes are rasterized and we obtain a sparse microbuffer.

Last, we composite this receiver microbuffer with the cor-
responding cluster one, using the depth component of both
microbuffers to properly cull the microbuffer pixels which
are hidden by this combination. The resulting composited
microbuffer is finally convolved with the receiver’s BRDF
to shade the receiver/pixel.

4. Results

We implemented our technique in the Mitsuba Ren-
derer [Jak10], with the initial point set being generated using
Poisson Disk sampling. Comparisons are performed against
the original PBGI algorithm [Chr08] and performances are
measured on a 2.67GHz Intel i7 (8 cores) with 9GB of main
memory. Images are rendered with one-bounce indirect illu-
mination at a 1280× 1000 pixels resolution (except for the
Cornell Box, at 1024×1024) with 32×32 tiles.

In all comparisons, we measure numerical differences
with the Mean Squared Error (MSE) and visual differences
by counting the number of Perceptually Different Pixels
(PDP), as proposed by Yee [Yee04]. This perceptual error
metric acts in the Lab space and is plotted in black and blue.

c© 2013 The Author(s)



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

Scene Points Individual Timings Total Time Error
Clustering Cut Computation Micro-Rasterization Full Rendering

Time(s) PBGI FPBGI PBGI FPBGI PBGI FPBGI PDP MSE

CornellBox 88.88K 0.68s 2.46m 0.65m 1.73m 1.19m 5.72m 2.60m 103 8.79e-6
Bunny 1.00M 0.87s 2.38m 0.56m 1.55m 1.08m 4.49m 2.03m 61 1.31e-4

ItalianCity 8.38M 0.87s 3.65m 1.08m 1.23m 0.64m 5.52m 2.34m 235 8.15e-5
Sponza 16.19M 0.87s 19.71m 3.77m 5.40m 1.68m 26.72m 7.04m 15 2.51e-5

Table 1: Performance measures.

Direct only

PBGI  FPBGI DPBGI

Indirect only Indirect only Indirect only

Indirect only Indirect only

Indirect only Indirect only Indirect only

2.51e-5 / 15 3.10e-4 / 28697

1.31e-4 / 61 2.01*10e-4 / 24807

8.79e-6 / 103 4.85*10e-5 / 5408
Indirect only

Figure 2: Error analysis on the indirect lighting contribution for FPBGI and DPBGI against PBGI. Perceptual differ-
ences [Yee04] are plotted in black (no visible difference) and blue (visible difference). The MSE between RGB images and
the number of Perceptually Different Pixels [Yee04] (PDP) are indicated in the format <MSE>/<PDP> on top of difference
images.

In Fig. 2, we compare FPBGI with the original PBGI al-
gorithm on three different scenes. Overall, we observe a neg-
ligible error, both from a perceptual and numerical point of
view. The original PBGI algorithm can indeed be trivially
sped-up by reducing the resolution of the microbuffers (i.e.,
higher solid angle threshold in the tree traversal), which im-
mediately translates into coarser cuts for each receiver and
reduced rasterization time. Therefore, we also compare to
such a degraded PBGI setting (DPBGI), with microbuffer
resolution decreased so that the total rendering time is as
close as possible to our FPBGI. In this case, DPBGI pro-
duces significantly stronger errors, with noticeable aliasing
appearing.

In Table 1, we report timings and errors for the four differ-

ent examples shown in Fig. 2 and Fig. 3. Here, we can assess
the benefit of our factorized approach, with a speed-up ratio
for the total rendering time (including BRDF evaluation and
initial set up) ranging from 2.2 to 3.8 compared to the orig-
inal PBGI algorithm. Looking at the specific portion of the
algorithm that we target (rasterization), the speed-up ratio
ranges from 3.4 to 5.2 for the cut computation and from 1.4
to 3.2 for the micro-rasterization. In all cases the receiver
clustering time is negligible.

In Fig. 3, we provide a visual comparison of the final ren-
dering (direct+indirect illumination) between a fully path-
traced solution (PTS), PBGI and FPBGI. We can observe
that PBGI and FPBGI provide similarly good approxima-

c© 2013 The Author(s)



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

PTS PBGI FPBGI
C

or
ne

ll 
B

ox
B

un
ny

 a
nd

 B
ird

S
po

nz
a

Ita
lia

n 
C

ity

Full solutionFull solution Full solution

Direct

Figure 3: Visual comparison of final renderings.

tions of the PTS, which is typically an order of magnitude
slower than FPBGI.

We also analyze the influence of the two main parame-
ters of FPBGI: the number of clusters per-tile k and the far-
near threshold ε. In Fig. 4, we illustrate their influence on
the Sponza scene. We observe that the influence of k clearly
dominates on the approximation quality, as measured by nu-
merical and perceptual errors. However, looking closely at
the result, we can see that, under a very small k value, large
values of ε cause large visible artifacts. In Fig. 5, we plot
the speed-up evolution under variations of these two param-
eters. We empirically determine k = 100 and ε = 10e−2 as
good default values for all the scenes we experimented with.
Last, with visually invisible differences, FPBGI inherits the
temporal coherence of PBGI: we illustrate this behavior in

an accompanying video with three sequences showing ani-
mated lighting, camera and models.

Discussion. Alternatively to our approximation technique,
recent approaches [REG∗09,HREB11] propose to maximize
the fine-grained parallelism of the PBGI algorithm in or-
der to map it efficiently on GPU architectures. Clearly, our
approach is orthogonal to such methods, but preserves the
natural parallelism of PBGI. However, compared to such
methods, an additional specific preliminary pass would be
required to gather the shared microbuffers. As future work,
at least two alternative solutions may be further developed to
combine our factorization with an efficient GPU implemen-
tation: first, the typical number of clusters is large enough
to load the numerous GPU computing units with cluster
cuts computations using a naive implementation (i.e., one
thread per-cluster first, then one thread per-receiver); sec-

c© 2013 The Author(s)



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

1.86e-5 / 25 3.89e-5 / 330 4.69e-5 / 566 5.35e-5 / 788

2.50e-5 / 19 3.06e-5 / 47 3.19e-5 / 80 3.36e-5 / 95

2.51e-5 / 15 2.85e-5 / 12 2.88e-5 / 28 2.95e-5 / 34

K 
= 

10
K 

= 
50

K 
= 

10
0

Far Node Thres. 0.01 0.05 0.1 1.0

Figure 4: Parameter influence with <MSE>/<PDP> to the PBGI solution for each pair.

ond, a more evolved solution could use the two-layer GPU
computing model (blocks and threads) to make threads be-
longing to the same block define concurrently the cluster
cut and microbuffers in shared memory before synchroniz-
ing them and letting them processing their receiver-specific
components, using the ManyLoDs algorithm [HREB11] at
both stages.

Interestingly, Holländer et al. [HREB11] proposed an
acceleration exploiting temporal coherence only, the lazy
scheme which reuses cuts over consecutive frames, while
our factorized approach exploits spatial coherence. Combin-
ing both approaches could help exploiting spatio-temporal
coherence to its full extent.

Our approach has two main limitations. First, the cluster
cut may be over-conservative and the resulting per-receiver
cut can be too refined. Although this does not influence the
rendering quality, this remains sub-optimal. A solution could
be to allow receivers to “walk-up” the tree while refining
their cut. Second, the two main parameters of the algorithm
have fixed values. These values could be optimized dynam-
ically and vary spatially by using the PBGI tree to perform
a quick scene analysis. Last, our approach can be seen as a
simplified hierarchy of receivers. It would then be interest-

ing to determine how to reformulate the PBGI algorithm to
rasterize, adaptively, the PBGI tree against the receiver/pixel
one to reach a fully adaptive solution.

5. Conclusion

We have proposed a factorized evolution of the PBGI al-
gorithm which exploits spatial coherence to significantly
speed up the computation of indirect diffuse illumination ef-
fects. By combining an initial variational clustering with per-
cluster cuts and microbuffers, we showed that the individual
receiver workload boils down to a local geometry rasteriza-
tion followed by a microbuffer compositing. As a result, we
obtain a speed-up ranging from 2x to 4x, without any visi-
ble image degradation. Our approach is easy to implement
in any PBGI framework and has a reduced set of intuitive
control parameters.

Acknowledgements. This work has been partially sup-
ported by the China Scholarship Council and 863 Program
of China under Grant No. 2012AA01A306, the European
Commission under contract FP7-287723 REVERIE and the
ANR iSpace&Time project.

c© 2013 The Author(s)



B.Wang, J. Huang, B. Buchholz, X. Meng & T. Boubekeur / Factorized Point Based Global Illumination

0
2
4
6
8

10
12

0.01 0.05 0.1 1

Sp
ee

d 
U

p 
(×

) 

Far Node Threshold 

Tree Cut + Microbuffer Rasterization  
Performance 

k = 10

k = 50

k = 100

Figure 5: Parameters influence on the speed-up.

References

[AFO05] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Fast
and detailed approximate global illumination by irradiance de-
composition. In ACM SIGGRAPH 2005 (2005), pp. 1108–1114.
2

[BB12] BUCHHOLZ B., BOUBEKEUR T.: Quantized point-based
global illumination. Comp. Graph. Forum (Proc. EGSR 2012)
31, 4 (2012), 1399–1405. 2

[Bun05] BUNNELL M.: Dynamic ambient occlusion and indirect
lighting. GPU Gems 2 (2005), 223–233. 2

[Chr08] CHRISTENSEN P.: Point-based approximate color bleed-
ing. Tech. Rep. 08-01, Pixar Technical Notes, 2008. 1, 2, 3

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.:
Variational shape approximation. ACM Trans. Graph. 23, 3
(2004), 905–914. 3

[HREB11] HOLLÄNDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. Comp. Graph. Forum
(Proc. EGSR 2011) 30, 4 (2011), 1233–1240. 2, 5, 6

[Jak10] JAKOB W.: Mitsuba renderer. http://www.mitsuba-
renderer.org/, 2010. 3

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. IEEE TVCG 11, 5 (2005), 550–561. 2

[KTO11] KONTKANEN J., TABELLION E., OVERBECK R. S.:
Coherent out-of-core point-based global illumination. In Comp.
Graph. Forum (Proc. EGSR 2011) (2011), pp. 1353–1360. 2

[MW11] MALETZ D., WANG R.: Importance point projection for
GPU-based final gathering. Comp. Graph. Forum 30, 4 (2011),
1327–1336. 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering for
scalable, parallel final gathering. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia 2009) 28, 5 (2009). 2, 5

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In ACM I3D (2007),
pp. 73–80. 2

[Tab12] TABELLION E.: Point-based global illumination direc-
tional importance mapping. In ACM SIGGRAPH Talk (2012).
2

[WH92] WARD G. J., HECKBERT P.: Irradiance gradients. In
Eurographics Workshop on Rendering (1992). 2

[WMXS11] WANG B., MENG X., XU Y., SONG X.: Fast point
based global illumination. In Computer-Aided Design and Com-
puter Graphics (2011), pp. 93–98. 2

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. In ACM SIGGRAPH
Computer Graphics (1988), vol. 22, pp. 85–92. 2

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.:
An efficient GPU-based approach for interactive global illumina-
tion. In ACM Trans. Graph. (Proc. SIGGRAPH 2009) (2009),
pp. 91:1–91:8. 2

[Yee04] YEE H.: A perceptual metric for production testing.
Journal of Graphics Tools 9, 4 (2004), 33–40. 3, 4

c© 2013 The Author(s)



Morton Integrals for High Speed Geometry Simplification

Hélène Legrand & Tamy Boubekeur
Telecom ParisTech - CNRS LTCI - Institut Mines-Telecom

11M triangles 64k triangles

103 ms.

Figure 1: Adaptive simplification using our algorithm: even beyond 10M tri., our parallel approach remains nearly interactive.

Abstract

Real time geometry processing has progressively reached a perfor-
mance level that makes a number of signal-inspired primitives prac-
tical for on-line applications scenarios. This often comes through
the joint design of operators, data structure and even dedicated
hardware. Among the major classes of geometric operators, fil-
tering and super-sampling (via tessellation) have been successfully
expressed under high-performance constraints. The subsampling
operator i.e., adaptive simplification, remains however a challeng-
ing case for non-trivial input models. In this paper, we build a
fast geometry simplification algorithm over a new concept: Mor-
ton Integrals. By summing up quadric error metric matrices along
Morton-ordered surface samples, we can extract concurrently the
nodes of an adaptive cut in the so-defined implicit hierarchy, and
optimize all simplified vertices in parallel. This approach is in-
spired by integral images and exploits recent advances in high per-
formance spatial hierarchy construction and traversal. As a result,
our GPU implementation can downsample a mesh made of sev-
eral millions of polygons at interactive rates, while providing better
quality than uniform simplification and preserving important salient
features. We present results for surface meshes, polygon soups and
point clouds, and discuss variations of our approach to account for
per-sample attributes and alternatives error metrics.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry & Object Modeling—Geometric Algorithms I.3.5 [Com-
puter Graphics]: Computational Geometry & Object Modeling—
Hierarchy and Geometric Transformations; I.3.1 [Computer Graph-
ics]: Hardware Architecture—Parallel Processing; I.3.1 [Computer
Graphics]: Hardware Architecture—Graphics Processors;

Keywords: mesh simplification, GPU algorithms, adaptive clus-
tering, Morton code.

1 Introduction

Modern 3D capture pipelines allow acquiring real world geome-
try quickly and accurately. The increasing data generation speed
has motivated a large number of research projects, to provide vi-
sual computing systems with geometric operators able to process
this data in real time. In these constrained scenarios, approxima-
tions and a controlled loss of quality are preferable to exceeding
the time limit. This trend in high performance geometry process-
ing had a number of successes, with now solutions for performing
some of the most critical processing steps on-the-fly, for non-trivial
input and on commodity hardware. This includes for instance adap-
tive feature-preserving filtering [Adams et al. 2009] and adaptive
smooth tessellation [Pixar 2013] (i.e., upsampling) which are now
supported by high-performance data structures and even dedicated
hardware and programmable graphics stages.

The case of adaptive geometry simplification (e.g. mesh simplifi-
cation or point cloud subsampling) remains however challenging.
The key problem in this case lies in the data compaction mecha-
nism, which does not cope naturally with a fine-grained parallel
computing environment. Although two decades of research have
progressively led to simplification algorithms offering a control-
lable trade-off between output surface quality and computational
effort, we are still far from high quality, real time simplification for
non-trivial (e.g., multi-millions) sample sets, and current aggressive
simplification methods have a limited range of applications. How-
ever the interactive and real time scenarios we target may benefit
from higher quality simplifications, with applications such as in-
teractive display on mobile devices, dynamic multiview rendering
or live broadcast of 3D captured data (e.g., 3D camera). In such
applications, the resulting geometry may be discarded after a short
amount of time, required immediately after full resolution data gen-
eration or needed on-demand, in multiple versions under a wide va-
riety of simplification ratios. In this case, it is crucial to provide
instantly visually good simplifications.

Indeed, a key aspect of high performance mesh processing, largely
exploited for filtering and tessellation, is the parallel scalability of
the operators and their ability to run on the graphics processor unit
(GPU). In the context of adaptive simplification/downsampling, we
make two observations. First, fast adaptive sampling often relies
on an underlying hierarchical data structure which is costly to gen-
erate and maintain in a parallel environment. Second, with such a
hierarchy in hand, simplifying the mesh often means extracting a
particular, error-driven “cut” in the tree structure. This operation,
either with a bottom-up of a top-down approach, does not map triv-



ially on a fine-grained parallel architecture.

In this paper, we propose a step toward higher quality real time
surface optimization, in the form of a fast simplification method
which provides adaptive error-driven mesh samplings, while stay-
ing within the real time rates required by our target applications for
typical input/output sizes (see Fig. 1). We address the hierarchy
problem using the Morton order of the input surface samples, over
which we compute a one-dimensional sum of the geometric cost
associated with each surface sample. This intermediate representa-
tion allows for an efficient kd-tree construction and later for con-
current evaluation of all the geometric errors to be estimated on all
the nodes of the tree. It also enables the parallel processing of both
leaves and inner nodes, for a constant and predictable per-node cost.
We use the Quadric Error Metric [Garland and Heckbert 1997] as
our basic cost measure for two reasons: first, it remains the state-of-
the-art measure for general simplification. Second, quadrics have
the nice property to sum to quadrics, which allows us to address the
problem of multi-level error computation using the same principle
as integral images (a.k.a. summed area tables [Crow 1984]). The
hierarchy defined by the Morton codes of the samples requires a
single sort to be performed at the beginning of the algorithm. Al-
though the resulting space clustering is less accurate than a pure
error driven tree refinement/aggregation (e.g., BSP tree), it signifi-
cantly improves over uniform GPU clustering techniques. As a re-
sult, our algorithm can simplify large meshes, polygons soups and
even point clouds in real time, accounting for the geometric fea-
tures, but also for additional attributes on the surface. We present
experiments on a collection of models and discuss possible evolu-
tions of our approach.

2 Previous work

Most mesh simplification methods define an objective optimization
criterion, with a metric which measures the error caused by the sim-
plification in the form of some distance between the original object
and the simplified output. Simplification algorithms usually fall
into two categories : iterative simplification and vertex clustering.

Iterative methods [Hoppe et al. 1993; Garland and Heckbert 1997]
progressively reduce the number of primitives of the mesh by per-
forming, at each step, a local simplification operation causing the
smallest error according to the chosen metric. These methods usu-
ally lead to high quality output meshes but are difficult to parallelize
efficiently due to their sequential nature. They also usually require
a clean mesh connectivity which, in the context of instantaneous
capture and processing, can hardly be guaranteed. Although their
method does not reach real time rates, Grund et al. [2011] propose
a parallel simplification algorithm based on this approach.

We focus on clustering methods, which optimize for a simplified
mesh at a coarser grain, by defining a partition of the mesh, com-
puting a representative vertex/polygon for each cluster and meshing
the resulting (smaller) geometric set. The choice of a particular par-
titioning structure has a strong impact on the overall performance
of the process, with solutions including simple grids [Rossignac
and Borrel 1993; Lindstrom 2000], octrees [Schaefer and War-
ren 2003][Lindstrom 2003][Shaffer and Garland 2005], BSP-trees
[Shaffer and Garland 2001] and k-means partitions [Cohen-Steiner
et al. 2004]. The representative element is again chosen to optimize
a certain metric, for which popular choices include the Quadric Er-
ror Metric (QEM) [Garland and Heckbert 1997] which models the
simplification cost as the sum of the squared distances from the rep-
resentative point to the planes defined by the triangles of the cluster;
or the L2,1 [Cohen-Steiner et al. 2004] metric which uses the nor-
mal information to grow large flat clusters whenever possible. The
final meshing step is performed by either reindexing input triangles

0 1 2 3 4 5 6 7

6

0

3 4

1 2 5

0
0
0
0
1

0
0
0
1
0

0
0
1
0
0

0
0
1
0
1

1
0
0
1
1

1
1
0
0
0

1
1
0
0
1

1
1
1
1
0

Figure 2: Tree layout in the method of Karras. The yellow bars
represent the range of leaf nodes (in green, with their Morton code)
covered by the internal nodes (in orange). The red dots indicate the
binary split position.

intersecting three different clusters of the partition to the related
representatives [Rossignac and Borrel 1993; Boubekeur and Alexa
2009] or generating polygons tracking clusters boundaries.

Since each cluster is (mostly) processed independently, vertex clus-
tering methods are more adapted to parallel computing and GPU
architectures. In particular, Decoro and Tatarchuk [2007] have
proposed a GPU implementation of QEM-based grid simplifica-
tion [Lindstrom 2000] as well as a probabilistic octree structure
providing adaptivity.

Regarding the type of simplification obtained, our method falls
in the same category as [Schaefer and Warren 2003], [Lindstrom
2003] and [Shaffer and Garland 2005], with an axis aligned hier-
archy depending on a spatially coherent ordering of the primitives.
Most of our contribution is about providing very similar results in
terms of quality, while performing a fully parallel simplification at
interactive to real time rates.

Hierarchical space subdivision structures provide a good trade-
off between full adaptivity and grid clustering to create the ini-
tial partition. The efficient generation of such structures has been
mostly studied in the context of rendering applications. In par-
ticular, Morton curves (or z-order curves) have proved to provide
an efficient space parametrization supporting the hierarchy con-
struction [Lauterbach et al. 2009; Pantaleoni and Luebke 2010;
Garanzha et al. 2011]. More precisely, a Morton code is calculated
for each primitive by interleaving the bits of its binary coordinates.
Sorting them by their Morton code then groups the primitives in a
spatially coherent manner. This allows for the parallel construction
of a binary tree, level by level, starting from the root, each node
representing a contiguous range of primitives. A similar idea is
exploited by Zhou et al. [2010] to build octress in the context of
surface reconstruction.

Our underlying GPU structure is based on the work of Kar-
ras [2012], who maximize the tree construction parallelism reach-
ing real time performances on models beyond 1M polygons. In-
stead of generating one level of the tree at a time, all the nodes are
processed in parallel thanks to a particular tree layout which allows
finding the range covered by a node and its children independently
from the other nodes.

More precisely, the leaf nodes and the internal nodes are stored in
two distinct arrays: L (size n) and I (size n − 1). By assigning
the right indices to the internal nodes, Karras finds the range of leaf
nodes they cover and the indices of their children, without process-
ing their ancestors or descendants first. In practice, the index of the



0 1 2 3 4 5 6 7

6

0

3 4
Q4 = Qscan[7] - Qscan[3]

1 2 5
Q5 = Qscan[7] - Qscan[4]

cumulative sum

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

2 31 1 4 4 4 41 1 4 4 4 4

2 3

0

3 4

1 2

0 1 4 5 6 7

6

5

P

P

adaptive samplingtree constructionquadric initialization

V

Qscan [0] [1] [2] [3] [4] [5] [6] [7]

Cl 0 1 2 3 4 5 6 7

vertices

Q Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

sorted indices

inverse mapping

+

Sort by Morton code

Remove duplicates

representative

2 31 1 4 4 4 41 1 4 4 4 4P

x1

x2
x3

remeshing

vertices

vertex to leaf node
mapping

V'

Figure 3: Overview. We start by sorting the input vertices in the Morton order and generate a table of leaves (left) onto which we accumulate
per-leaf error quadrics in the Morton order. We then generate a kd-tree, using the Morton integral to compute the internal nodes in parallel
(middle left). Finally, an error-driven simplified geometry is generated by extracting an adaptive cut in the tree in parallel (middle right) and
meshing its representative vertices using the input connectivity (right).

root is set to 0. Then, for every internal node, the indices of its chil-
dren directly depend on the split position: if the range is split at the
position p, the index of the left child will be p (in L if it’s a leaf, in
I otherwise) and p + 1 for the right child. Consequently, the index
of a node corresponds to one end of the range of leaves it covers.
The other end of the range and the split position are found using a
binary search, detecting the first differing bit of the Morton code in
the range (see Fig. 2). We refer to [Karras 2012] for details on the
construction of the structure.

3 Algorithm

Overview Our algorithm (illustrated in Fig. 3) takes as input an
indexed triangle meshM with an error threshold θ and runs entirely
on GPU. It provides a simplified indexed meshM ′ as an output and
consists in several stages:

1. we sort the vertices of M by their Morton code and define a
list of leaf nodes with error quadrics,

2. we compute a Morton integral, which is a cumulative sum of
the quadrics in the Morton order,

3. we compute the internal nodes of a kd-tree K in a parallel,
non-hierarchical fashion using the Morton integral,

4. we gather the space partition S as the highest nodes of K
with an error lower than θ; the simplified mesh is formed by
the representative vertices of S computed using the per-node
quadric,

5. we re-index the input triangles shared among three different
clusters on their representative point [Rossignac and Borrel
1993] to define the simplified connectivity.

In the following, we describe the main steps of our algorithm, es-
sentially structured by the tree construction and traversal, and point
to relevant parallel primitives.

Morton sorting During the first step of our algorithm, we sort
the vertices by their Morton code. Instead of directly sorting the
vertex array (as well as eventual color or normal arrays), we sort
by key an array of integer indices, ranging from 0 to the number of
vertices of the input mesh, using the Morton code of the vertices
as key. We also maintain a look-up table of the inverse mapping
from the intial vertex order to the Morton one. Once sorted, we
eliminate the duplicates in the Morton order – caused by multiple
close-by vertices discretized to the same Morton code. As our array
is sorted, duplicates are contiguous and we can simply:

1. mark the first occurence of each Morton code,

2. perform a prefix sum over the marking, to generate the map-
ping from the sorted vertex array to the compact leaf node
array

3. allocate a compact array Cl and store the duplicate-free leaf
nodes in it.

As a result, we obtain a mapping from the initial vertex array V to
the leaf node array: V → Cl.

Quadrics initialization For every leaf node l, we compute a
4x4 symmetric quadric matrix Ql following Garland and Heck-
bert [1997]. To do so, we compute the face quadric Qt of each
triangle t of M and sum it to the leaf quadrics of the vertices of
t: Ql =

∑
t∈lQt. Assuming the Morton code is computed with

a fine enough discretization, performing this sum in parallel using
atomics induces only a low number of actual collisions between the
threads. Additionally, we store the mean vertex of each leaf node,
its number of vertices and, optionally, the color and/or the normal
vectors. As usual with quadric-based optimization, we consider that
Ql locally models the shape through its minimizer, a representative
point obtained by either inverting Ql, or falling back to the previ-
ously stored mean position when the determinant of Ql is below a
numerical stability threshold [DeCoro and Tatarchuk 2007].

Morton integrals Beyond the Morton-based hierarchy, one key
aspect of our approach lies in the ability to compute concurrently
the error and representative point for all internal node, regardless of
the current state of their descendants. We solve this issue by com-
puting a cumulative sum of attributes (quadric matrix, mean posi-
tion, etc) along the Morton ordered leaves, defining in particular an
additional node attribute Qscan summing all the quadrics stored in
the preceding nodes in the Morton order. The computation of this
sum is performed in parallel using an inclusive scan. Similar to in-
tegral images [Viola and Jones 2001], this “Morton integral” allows
to compute any sum of attributes for consecutive leaves with only
two memory accesses; for instance in the case of the quadric of a
node n covering leaves r1 to r2:

Qn = Qscan[r2]−Qscan[r1 − 1]

Parallel tree construction We build our kd-tree K by process-
ing internal nodes independently following Karras [2012], using
our Morton-ordered leaf node array Cl, enhanced by the Morton



integral. For each internal node n of K, we need to compute its
quadric matrix Qn and its average vertex (position, color, etc) to
figure out its own representative point xn and approximation error
En w.r.t. the original geometry ofM . Qn is the sum of the quadrics
associated with the children of n, which is equivalent to the sum of
the quadrics of all the leaves having n as an ancestor. Thanks to the
Morton ordering, they are all contiguous and by construction [Kar-
ras 2012] trivial to determine (from index rn1 to index rn2 ). As a
result of our Morton integration, this sum is available in constant
time, using 2 quadric accesses and one 4x4 matrix subtraction per
node. Therefore, it can be performed during the parallel generation
of the tree nodes, independently of the node’s children. From Qn,
we extract xn [Garland and Heckbert 1997; Lindstrom 2000] and
the quadric error:

En = (xn, 1)Qn(xn, 1)
T

Algorithm 1 Parallel tree traversal.
for each leaf node i in parallel do
c← 0
error ← +∞
while error > θ and c ∈ internal nodes do
r ← right[c]
l← left[c]
if i > l then
c← r

else
c← l

end if
error ← errorNode[c]

end while
P [i]← c

end for

Adaptive sampling and remeshing Our error-driven simplifi-
cation gathers an adaptive space partition of M as a cut in K,
formed by the highest nodes of K with an approximation error
lower than θ (see Alg. 1). In our parallel context, we formulate
this cut extraction as the computation of a mapping, associating
each element of Cl to its corresponding node in the target cut. To
do so, we initialize an array P , as large as Cl, filled with zeros i.e.,
the root index. Then, we launch a thread i for each element of Cl

that performs a top-down traversal of the tree toward the i-th leaf
cell in Cl. When passing a node with index P [i], if EP [i] < θ, we
stop the traversal. Otherwise, we set P [i] to one of its child nodes,
depending on the value of i: again, by construction, the index of
the child nodes correspond to the splitting position in the leaf node
array (see Fig. 3). Therefore if i is smaller or equal to the index
of the left child, we set P [i] to its value, otherwise we set it to the
index of the right child. Consequently, the traversal is always done
toward the element of Cl (or leaf node) of index i.

At the end of this procedure, any vertex x of V can be mapped to
a node of the target adaptive cut of K in constant time using our
V → Cl mapping, since it is equivalent to V → P . We collect in
parallel the representative vertices for the nodes of the cut to form
the vertex set V ′ ofM ′ by marking the nodes of the tree that appear
in the cut and scanning the marking array. This provides the size
to allocate for V ′ as well as for each node of the cut, the index
where its representative vertex should be written in V ′ (mapping
P → V ′).

Last, we generate the connectivity T ′ of the simplified vertex set by
classifying all input triangles of M in parallel according to P . We

mark the triangles shared by three different clusters and use a par-
allel prefix sum to allocate the output triangle array T ′. We fill this
array with the marked triangles, reindexed over the representative
vertices thanks to our V → P → V ′ mapping. At this stage, for
each triangle, we can optionally check if its normal orientation has
flipped and reorder its vertices if necessary.

Variations Our simplification method can account for per-vertex
attributes, alternative error metrics or input data in different for-
mats.

For instance, the per-vertex color value can be maintained for each
node similarly to quadric matrices. Indeed, it is often desirable
to weight color averages by the area of incident triangles. This
requires two additional arrays: one used to accumulate the weighted
color information (Col) and for accumulating areas (A). After the
Morton integral computation, the color for any node is given by:

Coln =
Colscan[r2]− Colscan[r1 − 1]

Ascan[r2]−Ascan[r1 − 1]

The exact same process can be used for other attributes, such as
normals. In the last part of the algorithm, this extra per-node value
influences the cut extraction by, for instance, bounding its standard
deviation in all cut nodes. In this case, one more array (Col2) is
needed, to accumulate the squared weighted color information. Af-
ter computing its Morton integral, the standard deviation for the
color of a node is:

Sn =

√
Col2scan[r2]− Col2scan[r1 − 1]

Ascan[r2]−Ascan[r1 − 1]
− [Coln]2

with Coln the mean color for the node.

Unorganized point clouds with normals can also be simplified with
our approach by (i) computing the quadric matrices directly from
point normals, (ii) propagating the normal for each node as we do
for color and (iii) omitting the final meshing step. Note however
that, unless per-sampled area/radius is provided, this method re-
quires data with relatively uniform sampling.

4 Implementation and results

We implemented our simplification algorithm in C++/CUDA, using
the Thrust library [Nvidia 2011] for the prefix sums and sort, and
measured performances on a PC equipped with a GeForce GTX 680
and a 3.6 GHz Intel Xeon E5-1620 CPU. We limited our Morton
codes to 30 bits as we store them as 32 bits integers in GPU mem-
ory. For comparison, we also implemented a GPU regular grid sim-
plification, similar to the method of Decoro and Tatarchuk [2007].
For quality check, we report high quality offline results obtained
with QSlim [Garland and Heckbert 1997].

In Table 1, we report the detailed timings of the different steps
of our algorithm for a collection of models. We can see that real
time performances are reached for meshes up to several millions
of polygons and remain interactive beyond 10 millions. While the
tree construction and sampling parts add up to a very small part of
the total time, the current bottleneck appears at the initial phase.
Note however that for application scenarios implying multiple sim-
plifications of the same model (e.g., many-users remote visualiza-
tion, view-dependent rendering), this stage is performed once for
all. In terms of visual quality, as we can see on the Lucy model
for instance (Fig. 4), our adaptive space partition preserves visually
important features, with small triangles around features and larger
ones in flatter parts.



Model #T Out #T Sort Dupl Leaves Scan Cons Sampl Mesh Total
Bunny 70K 4,300 0.8 0.2 1.3 1.0 1.8 0.1 1.2 6.4
Dragon 100K 9,300 1.1 0.4 3.9 1.2 2.8 0.1 1.5 11.0
Horse 225K 10,000 1.4 0.7 1.9 1.6 3.0 0.1 1.6 10.3
Buste 510K 19,200 1.7 0.3 5.4 1.6 3.5 0.5 1.9 14.9
Caesar 770K 18,500 2.3 0.7 5.6 2.5 4.4 0.9 2.1 18.6
Grog 1M 41,000 2.8 1.1 5.0 3.5 5.1 0.9 2.3 20.8
Gargoyle 1.7M 44,500 3.4 1.0 7.1 3.4 4.1 0.6 2.5 22.1
Raptor 2M 22,500 3.6 1.2 8.8 2.8 1.7 0.2 2.2 20.6
Neptune 4M 24,500 4.6 1.3 30.1 1.8 2.4 0.3 6.6 47.0
Crab 11M 64,200 12.8 3.3 69.8 2.4 6.0 0.9 11.4 106.5
Lucy 28M 116,500 29.7 5.6 151.2 6.1 5.5 0.8 23.9 222.7

Table 1: Performance measures in ms, without CPU-GPU mem-
ory transfer. Sort: Morton sorting, Dupl: duplicates removal.
Leaves: initialization of the leaves attributes (quadrics and mean).
Scan: Morton integration. Cons: parallel tree construction.
Sampl: error-driven tree traversal and cut extraction. Mesh: tri-
angles re-indexing.

Grid Ours QSlim

116.5 k tri.

28M tri. 121 ms. 222.7 ms. 234985 ms.

Input

Figure 4: Adaptive simplification of the Lucy model. Our ap-
proach approximates better features and singular structure than
uniform clustering, but still runs in split-second for this large
model.

Model model additional space used
size 27 bits MC 30 bits MC

Bunny 1 7 7
Dragon 2 8 9
Horse 5 19 20
Buste 11 32 37
Caesar 17 61 63
Grog 22 75 80
Gargoyle 39 98 120
Raptor 45 44 89
Neptune 91 83 138
Crab 259 217 275
Lucy 642 502 557

Table 2: Memory usage in Mb for 27 bits and 30 bits Morton
codes.

0.000

0.009

grid
3ms

our method
11ms

QSlim
865ms

Figure 5: Error visualization for the Stanford Dragon model
(100K triangles), simplified to 9300 triangles.

Model Method #T Out #T Time H M12 M21
Bunny Ours 70K 4,300 6.4 0.013802 0.000500 0.000499

QSlim 503 0.002425 0.000295 0.000288
Grid 2.5 0.012880 0.001327 0.001294

Dragon Ours 100K 9,300 11.0 0.008810 0.000671 0.000585
QSlim 865 0.009327 0.000370 0.000251
Grid 3 0.013838 0.001142 0.001039

Horse Ours 225K 10,000 10.3 0.004485 0.000280 0.000280
QSlim 1,728 0.001862 0.000104 0.000101
Grid 4 0.009340 0.000588 0.000555

Buste Ours 510K 19,200 14.9 0.003257 0.000237 0.000236
QSlim 4,419 0.001365 0.000095 0.000094
Grid 6 0.007113 0.000505 0.000490

Caesar Ours 770K 18,500 18.6 0.013818 0.000220 0.000209
QSlim 7,544 0.013894 0.000130 0.000124
Grid 8 0.014448 0.000431 0.000413

Grog Ours 1M 41,000 20.8 0.005253 0.000255 0.000249
QSlim 9,101 0.003686 0.000128 0.000124
Grid 9 0.007022 0.000531 0.000482

Gargoyle Ours 1,7M 44,500 22.1 0.006374 0.000236 0.000237
QSlim 15,668 0.004018 0.000120 0.000118
Grid 13 0.006929 0.000496 0.000469

Raptor Ours 2M 22,500 20.6 0.012457 0.000280 0.000277
QSlim 19,057 0.011525 0.000143 0.000137
Grid 15 0,012629 0.000423 0.000423

Neptune Ours 4M 24,500 47.0 0.005375 0.000272 0.000282
QSlim 43,941 0.001851 0.000089 0.000082
Grid 27 0.008222 0.000487 0.000450

Crab Ours 11M 64,200 106.5 0.005439 0.000233 0.000244
QSlim 92,933 0.002617 0.000057 0.000055
Grid 53 0.004677 0.000319 0.000315

Lucy Ours 28M 116,500 222.7 0.008423 0.000185 0.000179
QSlim 234,985 0.000894 0.000035 0.000033
Grid 121 0.003576 0.000211 0.000203

Table 3: Quality and time comparison with H the Hausdorff dis-
tance between the original model and the simplification, M12 the
mean distance from the original model to its simplification and M21
the mean distance from the simplification to the original model.
Timings are given in ms.

In Table 2, we present the memory usage for the same set of models.
The storage space needed on the GPU only depends on the number
of vertices in the input geometry and on the desired Morton code
precision. In the worst case scenario, if the Morton code is chosen
precise enough to be different for every single input vertex (for ex-
ample with the bunny model), there will be as many leaf nodes, and
thus as many quadrics, average vertices , colors... However, as the
size of the model increases, there will be more and more duplicated
morton codes, and consequently not as many leaf nodes. For this
reason, the GPU memory used by the algorithm does not increase
as quickly as the number of triangles in the input model.

We compare our method with GPU grid clustering, which is very
fast but not adaptive: for a comparable number of triangles, our
method preserves visually important features that disappear with
regular clustering while, although slower, keeping timings in a sim-
ilar range. We also compare our results with QSlim, which favors
quality over performances. We report timings and objective error
measures in Table 3, with in particular mean and Hausdorff dis-
tances between the original and simplified meshes. Measures are
performed using the Metro tool [Cignoni et al. 1998]. We plot vi-
sually the simplification error for the three approaches in Fig. 5.
While for grid clustering, the error is concentrated around details,
our method gives a globally lower error, with lower damages on fea-
tures. This reflects in the error measures, with an improved Haus-
dorff distance and a significantly better mean distance to the origi-
nal model. Of course, the quality of the approximation provided by
our algorithm cannot compete with the QEM-based progressive re-
duction of QSlim. However, as illustrated in the Fig. 11, the visual
quality remains overall good, for an execution time which is three
orders of magnitude faster.



4.1M pts.

36.5 ms.

133k pts.

Figure 6: Point-based simplification using our approach.

without normals with normals

40K tri.1M tri. / 22Mb
21 ms / 75Mb 27 ms / 98Mb

Input

Figure 7: Influence of the normals on the visual aspect, timings
and GPU memory usage. On the Grog model, small clustering ar-
tifacts disappear when the normals are maintained, for example
under the beard, on the leg or on the shoulder.

In Fig. 6, we show an example of point cloud simplification using
our approach on the Michaelangelo David’s head model. Again,
while the geometric resolution is drastically reduced, the important
features, in particular the sharp edges, are captured in the simpli-
fied point sampling. The generation time is comparable to the mesh
case, as the triangle reindexing step is not a bottleneck of our ap-
proach. In Fig. 7 and Fig. 8, we show examples of simplifications
preserving the normal and color information. As we can observe
on the Grog model, maintaining normals improves the visual as-
pect of the approximation by helping preserving details and visu-
ally reducing small clustering artefacts. We also show an exam-
ple of simplification accounting for the color information provided
on a per-vertex basis in the input. Visually important features that
mostly exist through the color distribution are better preserved in
this case. This is particularly useful for stereovision data, which of-
ten exhibits more features in the color than in the geometry. Since
no significant change to the algorithm is needed to preserve an addi-
tional attribute (we just maintain it along with the quadrics, means,
etc), the cost in time and GPU memory is relatively small.

In Fig. 9, we provide an example of simplification for a scene ex-
hibiting a strongly varying vertex density. We can observe a proper
behavior of our approach, with large polygons remaining intact with
small ones being correctly simplified. Last, in Fig. 10, we show ex-
periments performed on animated data. In particular, we focus on
performance capture data [de Aguiar et al. ; Beeler et al. 2011], both
for full body (medium resolution) and face (high resolution) mod-
els. We illustrate the range of possible applications for our method
with on one side a rather simple body model (40k triangles) sim-
plified by a factor of 5, and on the other side a high resolution face
model (2.3M triangles) simplified by a factor 100. We show in this
case the resulting mesh structure, obtained in real time as well.

Limitations Although adaptive, our approach falls in the cluster-
ing category, which induces at least two main limitations. First,
such methods lack guarantees on the topology preservation At
coarse scale, under extreme simplification rates, the input topol-

Input

459K tri. / 52Mb
to 40K tri.

geometry based
simplification

geometry + color
based simplification

24 ms / 61Mb 26 ms / 64Mb

Figure 8: Influence of the color, used to drive the simplification
(on the right) or not (on the left), on the visual aspect, timings and
amount of GPU memory used by the algorithm.

7.8M triangles 320K triangles

Figure 9: Simplification of a 7.8M triangles model with strongly
varying vertex density in 54ms using our approach.

ogy frequently changes, collapsing nearby layers. Although this is
not always a weakness [Cohen-Steiner et al. 2004], more control on
this behavior would be desirable. Second, we do not provide an ab-
solute (polygon-wise) control over the output model size: although
the user can set the desired level of simplification by ruling θ, guar-
anteeing an exact number of polygons is tedious. Our Morton inte-
gration is also bounded by the machine precision: when computing
cumulative sums on very large arrays, imprecisions accumulate and
can cause inaccurate quadric matrices, which can lead to instability
in the output mesh. We reduce the impact of this stability problem
by scaling the input mesh to the unit cube (scaling back the output),
and by using double precision when computing cumulative sums.
However, the error may still be significant when processing very
large (giga polygons) models. Such data requires a different class
of simplification algorithms (out-of-core/streaming), at least as a
first pass. Once the model has reached a first appropriate (dense yet
in-core) simplification, it is possible to chain one or several other
in-core algorithms. Addressing these issues while preserving high
performances is clearly one of the main direction for future work.

5 Conclusions

We have introduced a high performance adaptive geometry simpli-
fication algorithm which can process objects made of millions of
polygons in real time and on commodity hardware. We achieve
such a performance level by introducing Morton integrals, which
are cumulative sums of samples attributes or error measures per-
formed along their Morton enumeration. This intermediate object
enables the parallel construction of a hierarchical approximation
structure and its error-driven parallel traversal to extract a cut of
nodes tailoring the simplified geometry. As a result, we obtain
adaptive simplified meshes on-the-fly, with better quality than state-



4.5 ms per frame-mesh

Input
40k tri. per 
frame-mesh

5x
Simplification

Input
2.3M tri. per 
frame-mesh

100x
Simplification

23 to 28 ms per frame-mesh

Figure 10: Adaptive simplification of performance capture data. Left: 500 frames are processed independently at about 200 Hz. Right: the
three orders of magnitude downsampling is performed in real time on this dense face model.

of-the-art high performance methods. We also showed that our
method can be extended to account for surface attributes and mesh-
less input. Our approach completes the high performance GPU ge-
ometry processing pipeline, which now features live and adaptive
filtering, refinement and simplification. Beyond alternative met-
rics and additional surface attributes, we believe that the concept
of Morton integration can be useful to other kinds of applications,
providing a parallel scalable support for various flavors of multi-
resolution geometry processing and analysis methods.

Acknowledgments. Animated meshes are courtesy DRZ and
MPI. This work has been partially supported by the European
Commission under contracts FP7-323567 HARVEST4D and FP7-
287723 REVERIE, and by the ANR iSpace&Time project.

References

ADAMS, A., GELFAND, N., DOLSON, J., AND LEVOY, M. 2009.
Gaussian kd-trees for fast high-dimensional filtering. Trans.
Graph. 28, 3, 21:1–21:12.

BEELER, T., HAHN, F., BRADLEY, D., BICKEL, B., BEARDS-
LEY, P., GOTSMAN, C., SUMNER, R. W., AND GROSS, M.
2011. High-quality passive facial performance capture using an-
chor frames. Trans. Graph. 30, 75:1–75:10.

BOUBEKEUR, T., AND ALEXA, M. 2009. Mesh simplification
by stochastic sampling and topological clustering. Computer &
Graphics (Proc. Shape Modeling International) 33, 3, 241–249.

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro:
measuring error on simplified surfaces. Computer Graphics Fo-
rum 17, 2, 167–174.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. Trans. Graph. 23, 3, 905–914.

CROW, F. C. 1984. Summed-area tables for texture mapping. In
SIGGRAPH, 207–212.

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., AND
SEIDEL, H. Performance capture from sparse multi-view video.
Trans. Graph. 27, 3, Art. 98.

DECORO, C., AND TATARCHUK, N. 2007. Real-time mesh sim-
plification using the GPU. In ACM I3D, 161–166.

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011.
Simpler and faster HLBVH with work queues. In HPG, 59–64.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifica-
tion using quadric error metrics. SIGGRAPH, 209–216.

GRUND, N., DERZAPF, E., AND GUTHE, M. 2011. Instant level-
of-detail. In Vision, Modeling and Visualization, 293–299.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1993. Mesh optimization. In SIGGRAPH, 19–
26.

KARRAS, T. 2012. Maximizing parallelism in the construction
of bvhs, octrees, and k-d trees. In High Performance Graphics,
33–37.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs.
Computer Graphics Forum 28, 2 (Apr.), 375–384.

LINDSTROM, P. 2000. Out-of-core simplification of large polygo-
nal models. SIGGRAPH, 259–262.

LINDSTROM, P. 2003. Out-of-core construction and visualization
of multiresolution surfaces. In I3D, 93–102.

NVIDIA, 2011. Thrust. https://developer.nvidia.com/Thrust.

PANTALEONI, J., AND LUEBKE, D. 2010. HLBVH: hierarchical
LBVH construction for real-time ray tracing of dynamic geome-
try. In High Performance Graphics, 87–95.

PIXAR, 2013. Opensubdiv.

ROSSIGNAC, J., AND BORREL, P. 1993. Multi-resolution 3d
approximations for rendering complex scenes. In Modeling in
Computer Graphics, 455–465.

SCHAEFER, S., AND WARREN, J. 2003. Adaptive vertex cluster-
ing using octrees. In Geom. Design & Computing, 491–500.

SHAFFER, E., AND GARLAND, M. 2001. Efficient adaptive sim-
plification of massive meshes. In Visualization, 127–551.

SHAFFER, E., AND GARLAND, M. 2005. A multiresolution rep-
resentation for massive meshes. TVCG 11, 2, 139–148.

VIOLA, P. A., AND JONES, M. J. 2001. Robust real-time face
detection. In ICCV, 747.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2010. Data-
Parallel Octrees for Surface Reconstruction. TVCG 17, 5, 669–
681.



Grid Ours QSlim

18.5k tri.

1.7M tri.

770k tri.

1M tri.

2M tri.

4M tri.

8 ms. 18.6 ms. 7544 ms.

Input

41k tri.
9 ms. 20.8 ms. 9101 ms.

44.5k tri.
13 ms. 22.1 ms. 15668 ms.

22.5k tri.
15 ms. 20.6 ms. 19057 ms.

24.5k tri.
27 ms. 47 ms. 43941 ms.

Caesar

Grog

Gargoyle

Raptor

Neptune

Figure 11: Examples.



Eurographics Symposium on Geometry Processing 2016
Maks Ovsjanikov and Daniele Panozzo
(Guest Editors)

Volume 35 (2016), Number 5

Curve Reconstruction with Many Fewer Samples

S. Ohrhallinger1, S.A. Mitchell2 and M. Wimmer1

1Institut für Computergraphik und Algorithmen, TU Wien, Austria
2Center for Computing Research, Sandia National Laboratories, U.S.A.

(a) State of the art [DK99], ε < 1
3 : 61 points. (b) We prove ε < 0.47 to reduce to 43 points. (c) Our reach-based ρ < 0.9 needs just 26 points.

Figure 1: A smooth curve (black) with the relevant subset of its medial axis and its reconstruction (red) with the proposed HNN-CRUST

algorithm. We first tighten the state-of-the-art sampling condition (a) from ε < 1
3 to ε < 0.47 (b). Then we show that our new sampling

condition based on the reach reduces samples even further (c). For the shown example, the state-of-the-art sampling condition requires 135%
more samples than ours, which are irrelevant for homeomorphic reconstruction.

Abstract
We consider the problem of sampling points from a collection of smooth curves in the plane, such that the CRUST family of
proximity-based reconstruction algorithms can rebuild the curves. Reconstruction requires a dense sampling of local features,
i.e., parts of the curve that are close in Euclidean distance but far apart geodesically. We show that ε < 0.47-sampling is
sufficient for our proposed HNN-CRUST variant, improving upon the state-of-the-art requirement of ε < 1

3 -sampling. Thus we
may reconstruct curves with many fewer samples. We also present a new sampling scheme that reduces the required density
even further than ε < 0.47-sampling. We achieve this by better controlling the spacing between geodesically consecutive points.
Our novel sampling condition is based on the reach, the minimum local feature size along intervals between samples. This is
mathematically closer to the reconstruction density requirements, particularly near sharp-angled features. We prove lower and
upper bounds on reach ρ-sampling density in terms of lfs ε-sampling and demonstrate that we typically reduce the required
number of samples for reconstruction by more than half.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

The connect-the-dots game without numbers on the dots corre-
sponds to the problem of reconstructing the connectivity of a planar
curve from a set of unstructured points sampled on that curve.

More formally, our problem is to sample points from a curve,
throw away the curve, then connect points to those nearby. For the
reconstruction to be correct, the points should be connected in the
same order as on the curve. A sparser sampling is valuable when-

ever placing points, storing them, or reconnecting them is expen-
sive. But it must not be too sparse because the connectivity must be
restorable from just the points.

The samples capture the essential shape information, topologi-
cal and geometric. The Human Visual System is able to complete
the connectivity based on the Gestalt principles of Proximity and
Continuity. Familiar examples are planting flower bulbs to form a
shape, or animating patterns in the night sky by lit drones. Recon-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

struction algorithms are also built on these proximity and conti-
nuity principles. Potential applications include generating efficient
shape descriptors based on points (as opposed to curve-based de-
scriptions), and compressing or progressively streaming point sets.
These can be used to decide whether to request additional samples
from a sensor, or that the sample set is of sufficient quality.

If the curve is sampled densely, connecting nearby points will re-
construct the correct curve. The less dense the sampling, the more
challenging it is to reconstruct the curve, especially at features
where two intervals of the curve come close to each other, or where
the curvature is high. Reconstruction algorithms require some sam-
pling conditions on the input in order to guarantee a correct output.
The particular algorithm determines the required density.

Sampling algorithms also guarantee some sampling conditions
on the output. However, these are rarely of exactly the same form,
and it is non-trivial to describe the reconstruction algorithm’s re-
quirements in terms of the sampling algorithm’s guarantees. This
leads to a mismatch between the minimum local density required
for reconstruction, and the maximum local density a sampling al-
gorithm produces. Typically we choose some local measure of a
curve, and sample density is guaranteed to be some parameterized
fraction of that measure. The closer the guarantees match the re-
quirements, and the tighter we can describe the necessary and suf-
ficient parameter values, the more efficient we can make our sam-
pling. This leads to our goal: to sample curve features as sparsely as
possible, yet still guarantee that the reconstructed curve is correct.

We describe the reconstruction algorithm HNN-CRUST, a vari-
ant of NN-CRUST [DK99]. Many sampling algorithms use the
ε-sampling condition, which is based on comparing ε times the
local feature size (lfs) at a point to the distance to its nearest
sample [ABE98]. The known parameter bounds for this combina-
tion, ε < 1/3-sampling, appear weak, and we show a better one,
ε< 0.47-sampling. Furthermore, we provide a better sampling con-
dition based on a different measure of the curve, the reach, ρ. The
reach is bounded by the minimum local feature size at all points be-
tween two samples. The reach is more suitable for HNN-CRUST,
and we believe for proximity-based reconstruction in general.

Our first contribution is the tightening of ε < 1/3-sampling to
ε < 0.47-sampling.

Our second and main contribution is the new reach-based ρ-
sampling condition, with the following properties:

• ρ-sampling is simple, with a single parameter like ε-sampling.
• ρ < 0.9-sampling guarantees that HNN-CRUST correctly recon-

structs the curve.
• The polygonal reconstruction geometrically approximates the

original curve, similar to ε < 0.47-sampling.
• ρ < 0.9-sampling has only half the samples when lfs is constant,

and never more than ε < 0.47-sampling.
• The same condition holds when limiting the Hausdorff distance

from the polygonal reconstruction to the original curve.
• Thus, ρ< 0.9-sampling permits much sharper angles: up to 73◦,

compared to 120◦ for ε < 1
3 -sampling.

Programs for sampling smooth curves under both sampling con-
ditions are provided online as open source. One can explore varying
ε and ρ parameters, as well as Hausdorff distance limits.

2. Related Work

We briefly review curve reconstruction algorithms and their associ-
ated sampling conditions. Early methods guaranteed curve recon-
struction from uniformly dense samples, where the maximum dis-
tance between consecutive samples is a global constant [EKS83,
KR85,FMG94,Att97]. However, since the sampling density is con-
stant, it depends on the maximum curvature, which is inefficient
for flat parts of the curve. Those methods work well for curves
whose curvature is limited above by a global constant, such as for
r-regular sets [DT14, DT15], for which guarantees are given for
non-noisy [Ste08] and noisy point sets [ST09].

Sampling framework: To get rid of this over-sampling, the
seminal paper by [ABE98] proposed the CRUST algorithm. It
filters edges from the Delaunay triangulation. Sampling density
varies according to both curvature and Euclidean distance be-
tween geodesically-far curve intervals. They also introduced a non-
uniform sampling condition based on local feature size, called ε-
sampling, and proved that CRUST reconstructs a manifold bound-
ary; [Dey06] proved ε < 0.2 is sufficient. Many subsequent meth-
ods use this sampling framework. [Gol99] optimized and simplified
CRUST to a single-step algorithm. This family of algorithms con-
strain their output to edges of the Delaunay triangulation.

Proximity-based algorithms: [DK99] introduced the simple
proximity-based algorithm NN-CRUST for general dimensions. It
guarantees reconstruction of closed curves for ε < 1/3. [Alt01]
improved the condition to ε < 0.5, but required α > 151◦. [Len06]
claims a better bound for NN-CRUST: ε < 0.4, or ε < 0.48 with ad-
ditional angle restrictions, but does not show proof. He also noted
shortcomings of ε-sampling, e.g. for sharp corners, as open prob-
lems. These investigations show that there is still room for improve-
ment. Without angle restrictions, the best proven bound is ε < 1/3-
sampling, and this is not tight.

Extensions: NN-CRUST was extended to CONSERVATIVE-
CRUST [DMR99] to handle open curves, and later to Gath-
anG [DW02], which modified the sampling condition to handle
sharp corners, but requires α > 150◦ otherwise. [FR01] introduced
the notion of curve reconstruction as requiring a homeomorphism
between the polygonal reconstruction and the curve, but not ge-
ometric closeness. They also presented their own sampling con-
dition, requiring several parameters, in order to reconstruct col-
lections of open and closed curves with sharp corners. Other ap-
proaches proposed a sampling condition using a vision function
based on human perception and some empirically established pa-
rameters [ZNYL08,NZ08]. [OM13] presented a three-step method
which is able to reconstruct very sparsely-sampled features, for
closed curves, by considering it as a global problem. The first step
guarantees reconstruction for ε < 0.5, but in order to handle the
sharp angles of 0◦–60◦ it requires an additional constraint, slowly
varying density as a maximum ratio between adjacent edge lengths.

Sampling: [LKvK∗14] generate connect-the-dot puzzles from
curves which vary in the criterion of connectivity, using differ-
ent sampling criteria. Their variant connect-the-closest-dot corre-
sponds closely to our problem, but our sampling condition neither
requires encoding of topology indicators nor a minimum distance
between points.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

3. Overview

We describe a variant of NN-CRUST [DK99] that we call HNN-
CRUST, which permits reconstruction of angles sharper than < 90◦,
as small as 60◦. While it improves the reconstruction, it is mostly a
vehicle to compare our ρ-sampling condition to the widely used ε-
sampling condition [ABE98]. We consider only these two sampling
conditions for comparison because the others are highly tailored to
specific reconstruction algorithms and require careful adjustment
of many parameters.

The HNN-CRUST reconstruction algorithm implies that two
edges meet at an angle of at least 60◦. The reconstruction is correct
for ε < 0.47. The angle between consecutive edges is related to cur-
vature and sampling density: the flatter the curve and the denser the
sampling, the larger the angle. (In the limit, for an infinite sampling
of a regular curve, we get 180◦.)

The essence of our paper is a new sampling condition that sam-
ples more sparsely where possible, closer to the minimum toler-
ated by the reconstruction. The weakness of ε-lfs sampling is that,
in essence, the sampling condition’s output guarantee is that the
maximum distance between consecutive samples is limited by the
lfs at a point half way between them. The sampling condition is
less sensitive to the lfs at other points, and the lfs at the samples
themselves are completely irrelevant. In contrast, the reconstruc-
tion algorithm’s input requirements are sensitive to small lfs at the
samples themselves. This mismatch leads one to select an ε small
enough that the algorithm is correct even when the lfs changes
rapidly between the midpoint and the sample. The sampling den-
sity is driven by this worst case, and is much denser than necessary
when the lfs is not changing rapidly. The strength of our new mea-
sure, the reach, is that it is sensitive to small lfs at the samples, and
so the sampling condition is more closely matched to the recon-
struction requirements.

The rest of the paper is organized as follows. In Section 4 we
introduce the required background and definitions. We explain the
reconstruction algorithm in Section 5 together with some proper-
ties. In Section 6 we give our improved ρ < 0.9-sampling condition
based on the reach rather than local feature size. In Section 7 we
prove that ρ < 0.9-sampling suffices. We also prove bounds relat-
ing ρ-sampling to ε-sampling, which indirectly proves ε < 0.47-
sampling suffices. We compare the results of our reconstruction
algorithm and sample density for our sampling condition in Sec-
tion 8. In Section 9 we give our conclusions along with potential
extensions.

4. Definitions

We give the following definitions, most of which have been intro-
duced by [ABE98]:

The domain is a collection of smooth curves C, by which we
mean bounded 1-manifolds embedded in R2, which are twice-
differentiable everywhere except perhaps at boundaries. This per-
mits C to consist of multiple connected components, such as a cir-
cle and a closed segment, but without crossings, T-intersections or
sharp angles. The boundary of a closed segment consists of two
terminus points. Note that each connected component of C induces

a natural geodesic ordering of its points, which can be traversed
in one of the two possible directions. Based on such a directed or-
dering, we say that a curve point lies before or after another, or
between two curve points. The interval I(p) ≡ [s0,s1] is the set of
points p ∈ C between s0 and s1. A chord is the straight edge be-
tween two points of an interval.

The set of samples is S. Samples s0 and s1 are adjacent or con-
secutive if there is no other sample on their interval. Let ‖−→n ‖ de-
note the Euclidean L2-norm. We measure distances in the Euclidean
metric, except where we specifically denote geodesic distance.

The nearest neighbor s0 to sample point s1 is
argmins j∈S\s1

‖s1,s j‖. The half neighbor s2 is the closest
sample in the half-space H which is partitioned by the per-
pendicular bisector of the edge s0s1 and does not contain s0:
argmins j∈S\s1,s j∈H ‖s1,s j‖. We often order all neighbors by
Euclidean distance: let ni be the i-th nearest sample to s1.

We define the manifold boundary B as the correct piece-wise lin-
ear reconstruction of C, which connects the samples of each con-
nected component in the same order as on C and adds no other
edges.

The medial axis M of C is the closure of all points in R2 with
two or more closest points in C [Blu67].

We define the local feature size lfs(p) for a point p ∈ C as the
Euclidean distance from p to its closest point m of M. This defi-
nition is loosely based on [Rup93], but simplified because we are
only considering smooth curves. Note lfs(p) is slowly varying, 1-
Lipschitz continuous with |lfs(p0)− lfs(p1)| ≤ ‖p0, p1‖.

Definition 1 is the widely used lfs sampling condition [ABE98]:

Definition 1 A smooth curve C is ε-sampled by point set S if every
point p ∈ C is closer to a sample than an ε-fraction of its local
feature size: ∀p ∈C,∃s ∈ S : ‖p,s‖< ε lfs(p).

In contrast, the reach [Fed59] for a set S is the largest “radius”
r such that points closer than r to S have a unique closest point
of S. The reach is similar to the smallest distance to the medial
axis. This inspires our definition of the reach of a curve interval I
as inf lfs(p) : p ∈ I, where the lfs is defined by all of C.

5. Our Improved Reconstruction Algorithm HNN-CRUST

HNN-CRUST simply connects each sample s ∈ S to its nearest and
half neighbor. (If s is a terminus of a curve, then only the nearest
neighbor gets an edge. If the terminus is not specifically marked,
then the reconstruction will have an extra edge.) Let h be the per-
pendicular bisector of the nearest neighbor edge, and H its half-
space containing s. Then the half neighbor lives in H but outside
the nearest-neighbor radius around s; see Figure 2. In Figure 3 we
show how CRUST and HNN-CRUST compare when consecutive
samples make sharp angles.

5.1. HNN-CRUST Mimics the Human Vision System

Three Gestalt principles are implicitly present in HNN-CRUST.
(Since our algorithm does not attempt to reproduce the Human Vi-
sion System, some reconstructions will not match typical human

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

Figure 2: HNN-CRUST reconstruction of an edge-pair for a sam-
ple s. Edge e0 connects s to its nearest neighbor n0. The other edge
e1 is the shortest edge connecting s with a vertex in halfspace H.
Further, observe that this vertex (here n3) must lie inside the white
shaded area of H, since no sample is closer to s than n0. This im-
plies the two edges meet at an angle of at least 60◦.

perception.) These principles can be observed in Figure 3, and are
as follows:

• Proximity is enforced by always connecting the nearest neighbor,
and for the second neighbor choosing the nearest neighbor inside
the restricted halfspace.
• Good Continuity arises from requiring angles between incident

edges to be more than 60◦.
• Closure means we close the curve, unless excessive distance be-

tween points implies a hole or an open curve.

6. An Improved Sampling Condition

We will show that HNN-CRUST reconstructs a smooth curve for
an ε-sampling with ε < 0.47. For higher values of ε, [ABE98]
observed some interesting properties. Theorem 12 noted that for
ε < 1, the reconstruction B ⊂ DT (Delaunay Triangulation). The-
orem 13 showed that the distance from any point p ∈ C to the
polygonal reconstruction B is bounded above by ε

2lfs(p)/2. How-
ever, we have not seen any attempts to guarantee reconstruction for
0.47≤ ε < 1, so we will investigate why this is hard.

6.1. Large ε Do Not Keep Geodesically Distant Intervals Away

Lfs ε-sampling (Definition 1) just requires a sample to be within
an ε-fraction of the lfs at that point. Thus, as p ∈ C approaches
a sample point, lfs(p) may be arbitrarily small, and the sampling
condition is still satisfied. The only thing keeping geodesically dis-
tant curves sections separate is the ε-lfs condition at points farther
away, such as the point x ∈C midway between samples often used
in proofs. Therefore, for an ε-sampling with 0.47 ≤ ε < 1, HNN-
CRUST may connect non-adjacent samples and fail.

6.2. The Solution for Keeping Them at the Proper Distance

To sample more sparsely where samples are not needed, but still
ensure samples are dense enough where the curve approaches itself,

we must have a sampling condition that depends more strongly on
the lfs near samples. Our sampling condition replaces lfs(p) by the
reach, the minimum lfs on an interval.

Definition 2 The reach [Fed59] of interval I is infp∈I lfs(p).

Definition 3 A smooth curve C is ρ-sampled by point set S if every
point p ∈ C is closer to a sample than a ρ-fraction of the reach of
the interval I(s0,s1) of consecutive samples containing it. That is,
∀p ∈ I = [s0,s1] with s0,s1 ∈ S : ‖p,s0‖ < ρ reach(I) or ‖p,s1‖ <
ρ reach(I).

7. Correctness of HNN-CRUST for ρ < 0.9 and ε < 0.47.

The goal of this section is to show reconstruction provides correct
output for certain ρ. Indeed, we will show that every ε-sample is
also a ρ-sample, so this implies correctness for certain ε. The idea
is to show that consecutive samples are close together, that geodesi-
cally close samples are farther, and geodesically distant samples are
farther as well. We establish a series of geometric preliminaries re-
lating distances between samples, the curve, and its medial axis.
Most are similar to previous observations, but in some cases we
provide stronger results or more elegant proofs.

The first lemma is useful for geodesically close samples. Theo-
rem 2 in [OM13] shows, amongst other things, that Euclidean chord
length increases monotonically with geodesic distance, as long as
chords do not intersect M. In particular, for I = [p0, p2], as x ad-
vances on C from p0 to p2, chord length ‖p0x‖ is strictly increas-
ing, and has no local maxima. Here we show something stronger,
with a more elegant proof.

Lemma 1 Let p0, p2 ∈C. If the chord h≡ p0 p2 does not cross the
medial axis M of C, the interval I = [p0, p2] lies inside the smallest
circle O02 containing p0 p2. Moreover, for t ∈ I, distances ‖p0t‖
and ‖p2t‖ are strictly monotonic in t’s ordering on I.

Proof See Figure 5 left. For each point x on segment h, consider
the largest radius disk O centered at x with no points of C in its
interior. Let t be a point of C on the boundary of O. Then we have
the function T (x) = t with t ∈ C and x ∈ h. Note T (p0) = p0 and
T (p2) = p2, with radius zero. If T is discontinuous (multivalued) at
some x, then O touches C at two or more points, and x ∈M. Hence
T (x) must be continuous. Thus {t} must lie on a single connected
component of C, an interval, and h is a chord. Since O can never
contain p0 or p2 in its interior, O lies inside the diameter disk, and
hence so must all t. Observe O has strictly higher curvature (i.e.
smaller radius) than O02.
The continuity and curvature limit of T implies I can not be perpen-
dicular to h: if it were, then t⊥ = T ({x}) for some continuous range
of x. Continuity of T at the boundary of this range implies the cur-
vature of I at t⊥ is at most that of O02, a contradiction. Hence the
{x}where T (x) = t is a single point for all t. Hence T is monotonic.
This leads to the range of T being I. For curves that are topologi-
cal circles, the range might instead be I′, where I′ = [p2, p0]. Since
here the orientation of I is arbitrary, we will label the enclosed in-
terval “I”.
Besides t = T (x) being monotonically ordered on I, the distance
‖p0t‖ is also monotonic. It two points t1 and t2 of I are equidistant
from p0, then they lie on a circle Op0 centered at p0. Let t1 be the

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

(a) CROCODILE point set. (b) CRUST reconstruction. (c) HNN-CRUST reconstruction.

Figure 3: CRUST only guarantees correct reconstruction for flat angles: consecutive samples must make angles > 90◦. In contrast, HNN-
CRUST succeeds for sharper angles, requiring only angles > 60◦.

Figure 4: Open and closed curves. Left: Sample points. Center:
CRUST reconstruction. Right: HNN-CRUST reconstruction.

Figure 5: If a chord does not cross a medial axis point, then the
curve interval must lie in the diameter disk. Left, tangent point t
varies continuously and monotonically with circle center x along
p0 p1. Right, distance from p0 to t is strictly increasing, else t2 is
unreachable.

one closer to h. (They cannot be equidistant because T is single-
valued.) Then any circle in O touching t2 has t1 in its interior, a
contradiction. By symmetry, ‖p1t‖ is also monotonic in x.

The next two lemmas quantify the fact that consecutive sam-
ples are close. We exploit the principle that an ε-sampling en-
sures that an adjacent sample s2 is close to s1 in terms of lfs.
From [ABE98] Lemma 1’s proof:

Lemma 2 Let s1,s2 be adjacent samples in C. For an ε-sampled
curve ∃y ∈ I[s1,s2] such that

‖s1s2‖ ≤ 2‖s2y‖= 2‖s1y‖< 2εlfs(y)

lfs(s1)/(1+ ε)< lfs(y)< lfs(s1)/(1− ε)

Proof ε-sampling ensures 2‖s1y‖ < 2εlfs(y) and the triangle
inequality provides ‖s1s2‖ ≤ 2‖s1y‖. Since lfs is 1-Lipschitz,
lfs(y) ≤ lfs(s1) + ‖s1y‖ replaced with above inequality for ‖s1y‖
yields lfs(y)< lfs(s1)/(1− ε). Also from the 1-Lipschitz property,
lfs(y) ≥ lfs(s1)−‖s1y‖ replaced with ‖s1y‖ from above provides
lfs(y)> lfs(s1)/(1+ ε).

Lemma 3 For adjacent samples s0,s1,s2, let x ∈ I[s0,s1] with
‖s0x‖= ‖s1x‖ and y ∈ I[s1,s2] with ‖s2y‖= ‖s1y‖. Then,

lfs(x)>
1− ε

1+ ε
lfs(y).

For the reach, the situation is considerably simpler.

Lemma 4 For a ρ-sampled curve with consecutive samples s0 and
s1, ‖s0s1‖< 2ρ reach(I01)≤ 2ρ lfs(s1). Moreover, for midpoint x,

lfs(s1)/(1+ρ)< lfs(x)< (1+ρ)lfs(s1).

Proof ∃x ∈ I[s0,s1] such that ‖s0,x‖ = ‖x,s1‖ < ρ reach(I01) ≤
ρ lfs(s1). The bound on lfs(x) follows from reach(I01)≥ lfs(x) and
1-Lipschitz.

The next two lemmas show that geodesically distant samples are
also far in Euclidean distance. We then relate ρ- and ε-sampling.
Finally we provide additional restrictions on the interval between
consecutive samples, quantifying how close it must be to a straight
line, and additional lower bounds on Euclidean distance.

We call a disk with no point of C in its interior “C-free”,
and a disk with no point of M in its interior “M-free” Recall
[ABE98] Lemma 7:

Lemma 5 A disk tangent to a smooth curve C at a point p with
radius at most lfs(p) is C-free.

We generalize Lemma 5 to the following.

Lemma 6 A rolling tangent circle Rty with center interior to circle
O(y, lfs(y)) touches C at a single point p in interval O(y, lfs(y))∩C.

Proof By definition, O(y, lfs(y)) is M-free. Following the proof of
Lemma 5, growing a tangent disk at y with continuously increasing
radius cannot intersect another point of C before the radius reaches
lfs(y), else the center would be a point of M. By the same argument,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

s1

x

z

H

s0

z

z

(a) ‖x, s1‖ < 0.5lfs(x)

s1

x

z

H

s0
z

z

(b) ‖x, s1‖ < lfs(x)

Figure 6: Forbidden regions: the red circles are C-free except for
I = [s0,s1], and I lies in their lune-shaped intersection and x ∈ I on
the green line inside that lune. The lunes bound the extreme cases
of constant curvature, where lfs = reach = lfs(x). In (a), the black
lines have length 0.5lfs and the blue lines lfs. In (b), the black lines
have length lfs and the blue triangles are equilateral.

s1

x

s0 s2

yα
θ ρ

(a) ∠s0s1s2 bound.

H

H

s1x

s0

y

s2

(b) s2 ∈ H

Figure 7: Ranges for x,y,s1,s2, angles and H for ρ-sampling. The
red circles are tangent to C at s1 with radius lfs(s1), and are C-
free and exclude x,y,s1, and s2 from their interior. In (b), the green
circle is O(s1, lfs(s1)), and contains x and y. Sample s0 lies in the
union of the three purple sectors and one green sector to the left of
s1. Hence H contains the purple and green right sectors and s2.

we may now continuously vary the center within O(y, lfs(y)), keep-
ing a continuous tangent at p in an interval around y.

Combining the idea of growing a tangent ball at y with the fact
that local curvature is less than 1/lfs(y) results in the forbidden
regions from [ABE98]. We summarize the properties we use in the
following lemma.

Lemma 7 The two circles through consecutive samples s0 and s1
with the maximum curvature allowed by the sampling condition
are C-free except for I = [s0,s1]. Moreover, I lies in the lune of
intersection of the two circles. See Figure 6.

In the following sense, our ρ-sampling is at least as good (i.e. as
sparse) as ε-sampling:

Theorem 1 Any ε < r-sampling is also a ρ < r/(1− r)-sampling,
for r < 1. E.g. an ε < 0.5-sampling is also a ρ < 1-sampling, and
an ε < 1/3-sampling is also a ρ < 0.5-sampling.

Proof The proof is the same as the proof of Lemma 2, com-
bined with using Lemma 1 to show distances are monotonic along
I = [s0s1]. For any ε-sampled interval I = [s0,s1], we first show
reach(I) ≥ (1− ε)lfs(x), then show the condition holds ∀p ∈ I.

Let x ∈ I be equidistant from s0 and s1. From Lemma 1, ‖xp‖ ≤
‖xs0‖. By 1-Lipschitz, lfs(p) ≥ lfs(x) − ‖xp‖ > (1 − ε)lfs(x).
Thus reach = infp lfs(p) ≥ (1 − ε)lfs(x). Again by Lemma 1,
∀p ∈ [s0,x],‖ps0‖ ≤ ‖xs0‖ ≤ ε/(1− ε)reach. The argument for
p ∈ [x,s1] is the same. Thus, for r < 1, any ε < r-sampling is also
a ρ < r/(1− r)-sampling.

Corollary 1 ρ < r/(1−r)-sampling does not require more samples
than ε < r-sampling.

Lemma 8 For a ρ < 1-sampling, ∠s0s1s2 ≥ π− 4arcsinρ/2 and
∠xs1y≥ π−2arcsinρ/2. This is tight for constant curvature.

Proof Consider the C-free tangent disk to s1 of radius lfs(s1). The
reach on each interval containing s1 is at most lfs(s1). In Fig-
ure 7(a), this leads to ‖xs1‖ ≤ ρ lfs(s1), then θ = 2arcsin(ρ/2) and
∠s0s1s2 ≥ 2α = π−2θ.

Lemma 9 For an ε-sampled curve, with ε < 0.5, the angle spanned
by three adjacent samples is at least π−4arcsin(ε/(2−2ε)).

Proof Combine Lemma 8 with Theorem 1.

Lemma 8 is a restatement of Lemma 10 from [ABE98], with ε

replaced by ρ. This is weaker, but, to our knowledge, Lemma 10
from [ABE98] remains unproven. Our corollary, Lemma 9, is an
improvement over the bound of ∠s0s1s2 ≥ π− 2arcsin(ε/(1− ε))
in [Dey06]: here ε < 0.5 gives angles at least 60◦, whereas [Dey06]
does not provide a lower bound on the angle.

To bound the distance between the reconstruction and the curve,
Lemma 13 from [ABE98] applies, which we reformulate:

Lemma 10 For a ρ-sampling of a curve in R2, with ρ < 1, the
distance from a point p to a point on the correct polygonal recon-
struction of the samples is at most (ρ2/2)lfs(p).

Theorem 2 For a ρ < 0.9-sampled smooth curve C, the reconstruc-
tion algorithm HNN-CRUST outputs the manifold boundary B.

Proof Consider consecutive samples s0, s1 and s2. We wish to show
that edges s0s1 and s1s2 are formed. Without loss of generality, let
s0 be the closer of the two samples to s1. We further consider a sam-
ple z 6= s0,s1,s2 to investigate the existence of a counter-example.
We first show that s0 is the nearest neighbor to s1. We have two
cases, depending on whether s1z intersects M. If it does not, then
by Lemma 1, z lies on interval I with s0 (or s2) between z and s1,
and s0 (or s2) is strictly closer to s1 than z is. Hence z is not a nearest
neighbor.
The second case is s1z intersects M. Let q be the closest point of
I02 = [s0,s2] to z. Suppose q ∈ I12 = [s1,s2]. If q is s2, then z is
closer to s2 than s1, and Lemma 7 demonstrates z is farther from
s1 than s2. Otherwise q is an interior point of I and segment zq is
perpendicular to I at q. By Lemma 5 it passes through the diameter
of a disk tangent to q with diameter 2lfs(q). Then ‖zs1‖ ≥ ‖zq‖ ≥
2lfs(q). But lfs(q) ≥ reach(I2) and by Lemma 4 2ρ reach(I2) >
‖s1s2‖. Hence ‖zs1‖ > ‖s1s2‖∀ρ ≤ 1. Using the same arguments,
if q ∈ [s0,s1] then ‖zs1‖> ‖s0s1‖.
We have now shown that s0 is the nearest neighbor to s1, and it
remains to show that s2 is the half neighbor. From Figure 7(b), the
admissible region for s1 leads to s2 ∈ H as follows. As s0 varies
along the boundary of a red circle, H rotates around the center of
the circle, but never contains the admissible region for s2. As s0

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

moves off a red circle, H just retreats farther from s2’s admissible
region.
Thus, we need only show that no other sample z in H is closer.
While showing that s0 was the nearest neighbor, we already es-
tablished that any z was farther than ‖s1s2‖ except perhaps when
zs1 ∩M 6= ∅ and its closest point of I is q ∈ [s0,s1]. For ρ < 0.5,
the remainder is trivial because ‖zs1‖ ≥ lfs(s1) > 2ρ‖s1s2‖. For
larger ρ, the main idea of the proof is to use rolling tangent
balls to cover the part of O(s1,‖s1s2‖) in H. From Lemma 7,
I = [s0,s2] is restricted to lie in the union of two lunes, which pro-
vides a lower bound on the radii of the rolling tangent balls from
Lemma 6. Hence the balls are large and cover the portion of the
circle O(s1,‖s1s2‖) in H. Unfortunately, we do not have a closed-
form algebraic description of this fact. Instead, we have a computer
assisted proof. We consider the possible ranges of positions, with
ratio=‖x,s1‖/‖s1,y‖ ∈ [0,1] and the tangent angles between xs1
and s1y ∈ [0◦,53.5◦] (Lemma 8). We divide each of these three
ranges into small intervals. For all feasible combinations of inter-
vals, we take the worst case value for each quantity independently
when used. For all ranges we construct a collection of rolling tan-
gent circles that covers O(s1,‖s1s2‖). Figure 8 provides a few rep-
resentative examples. These figures and all other feasible combina-
tions can be reproduced with a matlab script available online.

Theorem 3 For an ε-sampled smooth curve C, with ε < 0.47,
HNN-CRUST outputs the manifold boundary B.

Proof This follows immediately from Theorems 1 and 2.

8. Results

8.1. Comparison of HNN-CRUST

Figure 4 shows that unlike the CRUST [ABE98], our pro-
posed algorithm reconstructs sharp corners up to 60◦ and han-
dles close curves well. Our reconstruction algorithm is local
and therefore scales well to large point sets. HNN-CRUST also
handles open curves gracefully. It only outputs edges which
are reconstructed bijectively, i.e. are consistent from both end
points, in order to avoid catastrophic failure. We provide open
source code for this algorithm that reproduces figures and tables
of this paper: https://github.com/stefango74/hnn-
crust-sgp16.

8.2. Comparison of ρ < 0.9-sampling

Algorithm Sampling condition Bound min α circle par.

GATHANG ‖p, s[0|1]‖ < ε lfs(p) ε < 0.5 > 150◦ 12 2
CRUST ∃s : ‖p, s‖ < ε lfs(p) ε < 0.2 > 157◦ 15.7 5
NN-CRUST ∃s : ‖p, s‖ < ε lfs(p) ε < 1

3 > 142◦ 9.4 3
NN-CRUST* ∃s : ‖p, s‖ < ε lfs(p) ε < 0.4 > 134◦ 7.8 2.5
[Len06]* —”— ε < 0.48 > 124◦ 6.5 2.1
HNN-CRUST —”— ε < 0.47 > 126◦ 6.6 2.1
HNN-CRUST ∃s : ‖p, s‖ < ρ reach(I(p)) ρ < 0.9 > 73◦ 3.4 1.1

Table 1: Bounds for differing sampling conditions (*=not proven),
guaranteed minimum angles spanned between three adjacent sam-
ples for constant curvature and based on those the averaged num-
ber of points required to sample a circle and parallel lines with
length equal to their distance. Here, p ∈ C is in the curve interval
I(p) between adjacent samples s0 and s1, and s is any sample.

(a) ratio=1, α = β = 27◦ (b) ratio=1/3, α = β = 27◦

(c) ratio=1/
√

(2), α = β = 27◦ (d) ratio=1/
√

(2), α = 27◦, β = 0◦

(e) ratio=1/
√

(2), α = 13◦, β = 0◦ (f) ratio=1/
√

(2), α = β = 0◦

(g) ratio=0, α = β = 0◦ (h) ratio=1, α = 0◦, β = 27◦

Figure 8: For ρ-sampling with ρ = 0.9, s2 is the half neighbor
because rolling tangent balls cover O(s1,‖s1s2‖) ∩H (red disk
right of red line in quadrant II). Their radii are bounded below
by the curve (or its lower bound approximation, the x-axis). Here
ratio=‖x,s1‖/‖s1,y‖ ∈ [0,1] and α,β ∈ [0◦,27◦]. We assign the
tangent of C at s1 as the x-axis, with α its angle with s1x and β its
angle with s1y.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

(a) PARALLEL LINES.

(b) BUNNY clipart consisting of cubic bezier curves.

(c) CAT clipart consisting of cubic bezier curves.

Figure 9: Curves with polygonal reconstruction (red). Left: An ε <
1
3 -sampling. Right: ρ < 0.9 permits much sparser sampling.

In Table 1 we compare sampling conditions w.r.t. their minimum
angle and how many samples this represents on a circle or on paral-
lel lines. Note that we derive the minimum angle for all conditions
from the given bounds, except for GATHANG [DW02], which re-
lies on additional conditions to handle sharp corners. Note espe-
cially that for constant curvature (circular arcs, parallel lines), our
proposed ρ < 0.9-sampling requires just little more than a third of
the samples than ε < 1

3 -sampling.

We implemented a sampling algorithm which can apply both ε-
sampling and ρ-sampling and outputs a number of samples on the
input curve. The parameters ε,ρ and d (the Hausdorff distance be-
tween original curve and polygonal reconstruction) can be varied.
To verify whether the edges in the reconstruction are correct, they
are output as well (see Figures 9, 10 and 11). As input curves we
use cubic Bezier curves and subsample them very densely to ap-
proximate the needed lfs closely at these curve points. The imple-
mentation is also available as open source online.

Figure 9 visualizes sampling different curves with ε < 1
3 -

sampling and ρ < 0.9-sampling. The number of respective samples
together with ε < 0.47-sampling are shown in Table 2.

Figure 10 shows the advantage of ρ < 0.9-sampling over ε < 1
3 -

sampling when the sampling must also ensure that the recon-
structed polygon lies within Hausdorff distance d of the original
curve.

Table 2 shows that a ρ < 0.9-sampling requires many fewer sam-

Model ρ < 0.9 ε < 0.47 ε < 1
3

PARALLEL 20 35 (75%) 48 (140%)
TEASER 26 43 (65%) 61 (135%)
BUNNY 58 94 (62%) 131 (126%)
CAT 180 254 (41%) 356 (98%)

Table 2: Number of samples required for the given sampling con-
ditions (* = in the limit) for example curves and the % of redundant
samples compared with ρ < 0.9 in brackets (see Figures 1 and 9).

ples than an ε< 0.47-sampling, while still guaranteeing reconstruc-
tion with HNN-CRUST, approaching half of what ε < 1

3 -sampling
produces. Since for curve intervals of constant local feature size the
reach is equal to this lfs, circular arcs or parallel lines require only
exactly half the samples in the limit. The lower bound of ρ < 0.9-
sampling is therefore ε < 0.9-sampling, the upper bound ε < 0.47-
sampling as shown in Corollary 1.

The more drastically the lfs changes, the more samples have to
be placed, approximating the limit of ε < 0.47-sampling.

Hausdorff distance ρ < 0.9 ε < 0.47 ε < 1
3

∞ 58 94 (62%) 131 (126%)
1% 60 94 (57%) 131 (118%)

0.3% 73 99 (36%) 133 (82%)
0.1% 105 123 (17%) 148 (41%)

0.03% 173 186 (8%) 204 (18%)

Table 3: Number of samples required for the given sampling con-
ditions for the BUNNY curve and given Hausdorff distance limit in
terms of maximum point set dimension, the % of redundant samples
compared with ρ < 0.9 in brackets.

Table 3 shows how sample redundancy for ε-samplings de-
creases as the required Hausdorff distance between the reconstruc-
tion and original curve becomes smaller than the feature size. Note
that for the BUNNY in Figure 9(b), the ρ < 0.9-sampling requires
just adding 2 samples to achieve the 1% reconstruction error (see
Figure 10).

The limits of HNN-CRUST are shown in the lower half of Fig-
ure 11, where the sampling condition is violated by too close curves
or too sharp corners, while its top half shows that GathanG yields
for such cases rather arbitrary results due to a lack of an intu-
itively understandable sampling condition. Those can be handled
by specialized algorithms such as GATHANG [DW02], which rely
on heuristics or global data structures such as Delaunay triangula-
tion. Their disadvantage is that due to the heuristic criteria, they
cannot give as good guarantees w.r.t. angles as ours. Also the re-
quired global data structures cannot be well partitioned for local
construction, such as is possible for the kd-tree we use for deter-
mining nearest neighbors.

9. Conclusion and Future Work

Both improving the existing bound for ε-sampling from ε < 1
3 to

ε < 0.47 and introducing a new condition for sampling smooth

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

(a) ε < 1
3 requires 131 samples. (b) ρ < 0.9 needs just 60 samples.

Figure 10: Sampling the original curve and limiting its reconstruction to a Hausdorff distance of 1% of its total extent: Here, ε < 1
3 requires

more than double the samples than ρ < 0.9, which are redundant since not contributing to the reconstructed geometry within the specified
error.

(a) GATHANG (b) HNN-CRUST

(c) GATHANG (d) HNN-CRUST

Figure 11: Top left: GATHANG connects some edges seemingly
arbitrary compared to Local HNN-CRUST on the right. Bottom
left: GATHANG handles very sharp corners and undersampling by
exploiting the global context. Right: Local HNN-CRUST indicates
(by producing leaf vertices on an assumed closed curve) where ρ <
0.9 is violated.

curves, ρ-sampling, has enabled us to prove a much tighter bound
in terms of local sampling density. That new bound, ρ < 0.9, per-
mits reconstruction of smooth curves with our proposed simple and
fast algorithm HNN-CRUST. We believe that 0.9 is close to tight,
based on Figure 8(d). The bound allows for much more sparse
sampling while keeping the geometric approximation of the recon-
structed polygon to the original curve. The improved ε-sampling
bound already requires up to 45% fewer samples (in the limit, for
constant curvature). Additionally, based on that new sampling con-
dition, smooth curves can be reconstructed from even fewer points,
typically half of the state-of-the-art bound, in the limit roughly one
third. We are currently working on framing conditions to enhance
our sampling framework to support non-smooth curves, as [OM13]
shows they can be reconstructed for extremely sparse sampling.

Further we believe that it can be extended to handle noisy sam-
ples with outliers in the sense of [DS06]. Another work in progress
is the extension of the reconstruction algorithm into R3 for surface
reconstruction with a similar condition for the sampling required on
a smooth boundary, together with the above enhancements. While
the edge-pairs reconstructed at points in R2 correspond to closed
triangle fans in R3, the output of the reconstruction algorithm does
not match, as shown in [OMW13]. Flat tetrahedra can lie parallel
to the surface (slivers) and so an additional condition is required to
yield a unique triangulation.

Acknowledgements

We thank Tamal Dey and Marshall Bern for helpful discussions
about edge angles. This work has been funded by FWF grant
P24600-N23 and FP7-ICT project 323567 (HARVEST4D). San-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Ohrhallinger & S.A.Mitchell & M. Wimmer / Fewer Sampled Curves

dia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

References

[ABE98] AMENTA N., BERN M. W., EPPSTEIN D.: The crust and the
beta-skeleton: Combinatorial curve reconstruction. Graphical Models
and Image Processing 60, 2 (1998), 125–135. 2, 3, 4, 5, 6, 7

[Alt01] ALTHAUS E.: Curve Reconstruction and the Traveling Salesman
Problem. Doctoral dissertation, Universität des Saarlandes, 2001. 2

[Att97] ATTALI D.: r-regular shape reconstruction from unorganized
points. In Symp. on Computational Geometry (1997), pp. 248–253. 2

[Blu67] BLUM H.: A Transformation for Extracting New Descriptors of
Shape. In Models for the Perception of Speech and Visual Form, Wathen-
Dunn W., (Ed.). MIT Press, Cambridge, 1967, pp. 362–380. 3

[Dey06] DEY T. K.: Curve and surface reconstruction: algorithms with
mathematical analysis, vol. 23. Cambridge University Press, 2006. 2, 6

[DK99] DEY T. K., KUMAR P.: A simple provable algorithm for curve
reconstruction. In Proc. 10th ACM-SIAM SODA ’99 (1999), pp. 893–
894. 1, 2, 3

[DMR99] DEY T. K., MEHLHORN K., RAMOS E. A.: Curve recon-
struction: Connecting dots with good reason. In Proc. 15th ACM Symp.
Comp. Geom 15 (1999), 229–244. 2

[DS06] DEY T. K., SUN J.: Normal and feature approximations from
noisy point clouds. In Proceedings of the 26th int’l. conference on
Foundations of Software Technology and Theoretical Computer Science
(Berlin, Heidelberg, 2006), FSTTCS’06, Springer-Verlag, pp. 21–32. 9

[DT14] DUARTE P., TORRES M. J.: Smoothness of boundaries of regular
sets. Journal of mathematical imaging and vision (2014), 1–8. 2

[DT15] DUARTE P., TORRES M. J.: r-regularity. Journal of Mathemati-
cal Imaging and Vision 51, 3 (2015), 451–464. 2

[DW02] DEY T. K., WENGER R.: Fast reconstruction of curves with
sharp corners. Int. J. Comp. Geom. Appl. 12, 5 (2002), 353 – 400. 2, 8

[EKS83] EDELSBRUNNER H., KIRKPATRICK D. G., SEIDEL R.: On
the shape of a set of points in the plane. IEEE Trans. Inf. Theor. IT-29, 4
(1983), 551–559. 2

[Fed59] FEDERER H.: Curvature measures. Transactions of the Ameri-
can Mathematical Society 93, 3 (1959), pp. 418–491. 3, 4

[FMG94] FIGUEIREDO L. H. D., MIRANDAS GOMES J. D.: Computa-
tional morphology of curves. Vis. Comp. 11, 2 (1994), 105–112. 2

[FR01] FUNKE S., RAMOS E. A.: Reconstructing a collection of curves
with corners and endpoints. In Proceedings of the twelfth annual ACM-
SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2001),
SODA ’01, Society for Industrial and Applied Math., pp. 344–353. 2

[Gol99] GOLD C.: Crust and anti-crust: a one-step boundary and skeleton
extraction algorithm. In Proc. of the 15th ann. Symp. on Computational
geometry (New York, NY, USA, 1999), SCG ’99, ACM, pp. 189–196. 2

[KR85] KIRKPATRICK D. G., RADKE J. D.: A framework for computa-
tional morphology. Computational Geometry (1985), 217–248. 2

[Len06] LENZ T.: How to sample and reconstruct curves with unusual
features. In Proceedings of the 22nd European Workshop on Computa-
tional Geometry (EWCG) (Delphi, Greece, March 2006). 2, 7

[LKvK∗14] LÖFFLER M., KAISER M., VAN KAPEL T., KLAPPE G.,
VAN KREVELD M., STAALS F.: The Connect-The-Dots family of puz-
zles: design and automatic generation. ACM Transactions on Graphics
33, 4 (July 2014), 72:1–72:10. 2

[NZ08] NGUYEN T. A., ZENG Y.: Vicur: A human-vision-based algo-
rithm for curve reconstruction. Robotics and Computer-Integrated Man-
ufacturing 24, 6 (2008), 824 – 834. FAIM 2007, 17th International Con-
ference on Flexible Automation and Intelligent Manufacturing. 2

[OM13] OHRHALLINGER S., MUDUR S.: An efficient algorithm for de-
termining an aesthetic shape connecting unorganized 2d points. In Comp.
Graph. Forum (2013), vol. 32, Wiley Online Library, pp. 72–88. 2, 4, 9

[OMW13] OHRHALLINGER S., MUDUR S., WIMMER M.: Minimizing
edge length to connect sparsely sampled unstructured point sets. Com-
puters & Graphics (2013). 9

[Rup93] RUPPERT J.: A new and simple algorithm for quality 2-
dimensional mesh generation. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms (Philadelphia, PA, USA,
1993), SODA ’93, Soc. for Industr. and Appl. Math., pp. 83–92. 3

[ST09] STELLDINGER P., TCHERNIAVSKI L.: Provably correct recon-
struction of surfaces from sparse noisy samples. Pattern Recognition 42,
8 (2009), 1650–1659. 2

[Ste08] STELLDINGER P.: Topologically correct surface reconstruction
using alpha shapes and relations to ball-pivoting. In Pattern Recognition,
2008. ICPR 2008. 19th Int’l Conference on (2008), IEEE, pp. 1–4. 2

[ZNYL08] ZENG Y., NGUYEN T. A., YAN B., LI S.: A distance-based
parameter free algorithm for curve reconstruction. Comput. Aided Des.
40, 2 (2008), 210–222. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Multi-Material Adaptive Volume Remesher

Noura Faraja, Jean-Marc Thierya, Tamy Boubekeura

aLTCI, CNRS, Télécom-ParisTech, Université Paris-Saclay

Abstract

We propose a practical iterative remeshing algorithm for multi-material tetrahedral meshes which is solely based on simple local
topological operations, such as edge collapse, flip, split and vertex smoothing. To do so, we exploit an intermediate implicit feature
complex which reconstructs piecewise smooth multi-material boundaries made of surface patches, feature edges and corner vertices.
Futhermore, we design specific feature-aware local remeshing rules which, combined with a moving least square projection, result
in high quality isotropic meshes representing the input mesh at a user defined resolution while preserving important features. Our
algorithm uses only topology-aware local operations, which allows to process difficult input meshes such as self-intersecting ones.
We evaluate our approach on a collection of examples and experimentally show that it is fast and scales well.

Keywords: Multi-material tetrahedral mesh ; volume remeshing ; feature preservation

1. Introduction

Multi-material volumetric datasets are widely used to study
physical phenomena, model physically-plausible shapes or fab-
ricate/print real objects from digital ones. For instance, a broad
range of medical simulations steam from the increasing num-
ber of available 3D anatomical images. Those datasets are typ-
ically composed of voxel grids acquired using Magnetic Res-
onance Imaging (MRI) or scanners and accurately labeled by
professionals - i.e., each voxel is assigned with a label repre-
senting a single material (e.g., organ). The union of these com-
ponents forms the simulation domain, where each material is
represented by a single subdomain. However, in practice, simu-
lations are often designed to run on a mesh of the input domain,
using Finite Elements Methods (FEM). Employing large poly-
hedra - typically tetrahedra - for constant material regions re-
duces drastically the computation costs while preserving a good
approximations. Indeed, the result of a simulation depends on
the domain representation accuracy and the quality on the input
mesh since its stability usually depends on the size and shape of
its tetrahedra [1]. For instance, tetrahedra with small dihedral
angles cause negative volumes under small perturbations, while
large angles strongly increase the simulation errors.

As the material is supposed constant within a subdomain,
the critical features to preserve during the meshing process re-
side at the interfaces between labels since they indicate the
shape boundaries and the junctions between subdomains. These
features can take three forms [2]: (i) the surfaces patches be-
tween two labels (2-junctions), (ii) the edges between three
or more labels (1-junctions) and (iii) the corner vertices be-
tween four or more labels (0-junctions). Generating tetrahe-
dral meshes at the suitable resolution for simulation while ac-
curately capturing such features is a tedious task. Ideally, one
could generate high-quality meshes at several resolutions, ex-
ploiting each time the previously finer meshes to generate the

coarser and trading feature preservation for regularization. In-
deed, a regularization process is unavoidable, as smooth bound-
aries are mandatory for visualization and stability purpose. As
the seminal discretization (e.g., from the input image) can fail
at meeting these constraints, a remeshing step (i. e. optimization
and/or simplification) is often necessary.

Contributions. We propose a simple and practical iterative re-
meshing algorithm for 3D triangulations, which provides high-
quality meshes at a chosen resolution while preserving features
such as multi-material boundaries. The user can efficiently reach
the desired resolution by adjusting the target edge length: in
particular, the mesh is processed iteratively until the size con-
straint is met without starting over from the input mesh, which
is essential during fine-tuning remeshing sessions. Our algo-
rithm allows generating uniform as well as adaptive meshes,
for which the spatially-varying resolution is driven by a sizing
(scalar) field that can be user-defined, e. g. to generate a dense
mesh in regions of interest, or based on a distance field. In
particular, such a field may be generated from the subdomain
boundaries, yelding elements with increasing size when located
away from the boundaries, therefore resulting in an isotropic
adaptive mesh. This is especially effective to minimize the
number of tetrahedra while preserving accurate boundaries.

In order to provide our algorithm with a structured decom-
position of the multi-material domain, we use a feature com-
plex, similar to the one proposed by Dey et al. [3], but equipped
with a Moving Least Square (MLS) geometric definition de-
rived from Hermite Point Set Surfaces [4]. Doing so, we decorel-
late the structured geometry of the domain from the mesh and
can perform feature-dependent topological operations coupled
with a hierarchical MLS smoothing. We can preserve additional
features which are either provided by the user, as a set of poly-
lines, or detected on the domain boundary (e.g., surface sharp
features). On the contrary to Delaunay-based methods, ours al-

Preprint submitted to Computers & Graphics May 9, 2016

boubek
Barrer 

boubek
Barrer 

boubek
Barrer 

boubek
Barrer 

boubek
Barrer 



Figure 1: Our method remeshes complex multi-material tetrahedral meshes, with high geometric quality and exact topology preservation.

lows to efficiently generate meshes at any resolution by only
changing the target edge length since the MLS representation
of the feature complex enables us to mesh the domain geome-
try directly, even at low meshing resolution.

By using only topology-aware local operations, our tech-
nique can process difficult input meshes such as self-intersecting
ones, whereas Delaunay-based techniques will necessarily glue
intersecting parts. Last, our remeshing method can be used as a
complement to any existing meshing method in order to gener-
ate a mesh suited to the users needs. Therefore any structured
mesh can be processed with our algorithm. For instance, we
apply our method on trivial high-resolution tetrahedral mesh
generated from segmented voxel grids.

2. Background

The generation, simplification and refinement of high-quality
tetrahedral meshes are very active research fields. Here, we give
a non exhaustive overview of the existing methods and focus on
the ones that are able to handle multi-material inputs.

Meshing. We can group the meshing methods in three main
categories: Delaunay-based, lattice-based and variational.

Delaunay-based methods start by distributing a set of points
over the input domain. Then a Delaunay refinement process [5,
6, 7] is used to add Steiner points to the triangulation until the
input approximation, elements shape and quality criteria are
met. This process has first been proposed for domains bounded
by a smooth surface [8, 9] and further extended for piecewise
smooth boundaries [10]. In order to handle the input domain
sharp features, the authors propose to build a Piecewise Smooth
Complex (PSC), which is composed of surface patches, curves
(intersections of surface patches) and points (intersections of
curves). Protecting balls of varying size are defined around
the edges to preserve the features of this complex during the
refinement process [11, 12]. Building upon such a complex,
Tournois et al. [13] propose a method coupling refinement and
optimization strategies to guide the insertion of Steiner points
and directly obtain high-quality meshes. These principles are
extended to handle multi-material domains [14] and preserve
their 1- and 0-junctions using similar protecting balls [2]. More
recently, Dey et al. [3] propose a PSC composed of multi-mate-
rial junctions, and we use a similar complex to identify the
features to preserve. While those methods allow generating
high-quality meshes, the implementation of the protecting ball
paradigm remains highly non trivial in a multi-material setting.

Lattice-based meshing approaches are inspired by the March-
ing Cubes algorithm [15] applied to multi-material boundaries
[16]. An initial high resolution regular mesh is generated from
the volume data and the elements are split according to precom-
puted boundary configurations until the input domain is well
represented. Those methods tend to produce dense meshes and
ill-shaped tetrahedra near the boundaries. Furthermore, their
resolution depends on the input grid one. The isosurface stuff-
ing method [17] uses a similar paradigm to represent single ma-
terial domains but guarantees theoretical bounds on the tetra-
hedra’ dihedral angles. Inspired by this strategy, Bronson et
al. [18] offer similar guarantees for labeled volume data.

Variational approaches [19, 20, 21, 22] insert particles or an
initial mesh in the input domain and use a non-linear energy op-
timization to tailor the feature-aware point distribution. These
methods provide high-quality results but are strongly dependent
of the initial setting and are computationally expensive.

Poorly-shaped elements. Fig. 2 presents a common classifica-
tion of tetrahedral degenerencies. In 2D, the quality of the tri-
angle shape is defined as the ratio of the shortest and longest
edge because it relates to the minimum angle, but this property
is no longer true in 3D. A poorly-shaped tetrahedron can have
edges with similar length, e. g. for slivers, which are almost flat
tetrahedra. A tetrahedron’s quality is thus better described by
its minimal dihedral angle and its radius-ratio (the ratio between
the inscribed and circumscribed spheres’ radii). Note that a reg-
ular tetrahedron has dihedral angles equal to 70.5 degrees.

Remeshing and quality improvement. Since feature preserva-
tion and quality constraints are tedious to combine, ill-shaped
tetrahedra are likely to be generated during the meshing pro-
cess. For instance, Delaunay-based refinement processes do not
prevent the apparition of slivers - tetrahedra meeting the Delau-
nay constraints but with poor quality - and induce an unavoid-
able post-processing step. A first solution, called sliver exuda-
tion [23], turns the triangulation into a weighted Delaunay trian-
gulation to address this problem. An alternative approach is to

SliverCapWedgeNeedleSpindle

Figure 2: Ill-shaped tetrahedra: needles and wedges (large longest to shortest
edge ratio), caps (small radius-ratio and three large dihedral angle) and slivers
(almost flat but with edges of similar length).

2

boubek
Barrer 

boubek
Texte de remplacement 
algorithm



perturb slivers through vertex relocation and Delaunay connec-
tivity update [24]. In a more general setting, the quality can be
improved using optimization based-smoothing and local topo-
logical operations such as edge flip or removal [25]. This ap-
proach was further improved by Klingner et al. [26] through ad-
ditional operations such as vertex insertion, multi-face removal
and a roll back mechanism.

To cover a large range of resolutions and define more densely
meshed regions of interest, both simplification and refinement
schemes - generating high-quality meshes - are necessary when
remeshing. For visualization purposes, the simplification of
tetrahedral meshes is widely used through edge contraction [27,
28], similar to surface simplification techniques [29, 30] or point
sampling [31, 32]. Mesh adaptation is widely used to increase
simulation accuracy by improving the mesh quality to better
capture the studied physical phenomena. Local operations are
used in order to modify the mesh and satisfy a given mesh
metric field [33, 34, 35]. Unfortunately, only a limited num-
ber of methods are generalized to handle multi-material meshes
and 1- and 0-junctions. Cutler et al. [36] propose a method to
generate high-quality segmented meshes at different resolutions
by performing local topological operations to meet the quality
and edge length criteria. While this method allows preserving
boundary surfaces using a volume based error metric, 1- and 0-
junctions are not taken into account. To the best of our knowl-
edge, only the following ones account for 1- and 0-junctions
[37, 38]. The authors propose link conditions defining if an
edge can be collapsed without changing the topology of the fea-
tures of different degrees.

Similar issues are tackled for the remeshing of triangular
surface meshes. In particular, following [39, 40], Botsch and
Kobbelt [41] propose an iterative remeshing method to gener-
ate isotropic high-quality triangular meshes using simple local
operations performed in a predefined order.

As discussed in this section, no existing method allows gen-
erating high-quality meshes at various resolutions efficiently
while preserving multi-material features. Most existing mesh-
ing processes allow generating a mesh within several minutes or
hours, and in some cases to refine this mesh (Delaunay triangu-
lation), but not to simplify it. Simplification methods can pre-
serve these features but do not meet the quality requirements.

Beyond the contributions listed earlier, our volume remesh-
ing method builds upon several previous ideas. First, the core
of our approach is inspired from the surface remeshing method
of Botsch and Kobbelt [41], using local connectivity modifica-
tions only [39, 40] which have proved to be highly efficient in
the surface case. Second, we avoid self-intersections robustly
by adding imaginary tetrahedra to the triangulation [42]. Third,
to unify the local remeshing rules sustaining our algorithm, we
perform all operations on an extended complex by linking the
outer facets of the triangulation to a dummy vertex.

3. Our algorithm

3.1. Overview
Given a target edge length l, our remeshing method for multi-

domain tetrahedral meshes can be summarized as follows:

Preprocess detect the boundaries and features to preserve,
add imaginary tetrahedra to prevent self-intersections.

1 split any edge longer than emax,

2 collapse any edge shorter than emin,

3 flip edges to minimize the average valence and to opti-
mize locally the dihedral angle distribution,

4 filter to relocate vertices, taking features into account,

5 go to 1 unless the target resolution is reached,

Postprocess remove slivers and improve mesh quality.

For a target edge length, we use constant values emax = 4l/3
and emin = 4l/5. These thresholds avoid looping, and splitting
an edge verifying |emax − l| > | 12 emax − l| and collapsing an edge
verifying |emin − l| > | 32 emin − l| reduces the deviation from the
target length, see [43] for more details. Optionally, we can tailor
l in a spatially-varying fashion w.r.t. a sizing field capturing
either the distance to the boundary or user-defined regions of
interest. In the particular case of an input mesh having already
the aimed resolution and processed solely for regularization and
quality improvement purposes, the target length is set to a value
which is slightly lower than the current average edge length, to
introduce perturbations in the optimization [41].

3.2. Representation

We note the set of labels associated with either an input
multi-material 3D triangulation as L = {ln}n∈IL ⊂ Z. By con-
vention, null values represent the background, i.e., the parts of
the data that do not belong to the represented domain.

3.2.1. Labeled tetrahedral mesh
The mesh is noted M = {V, E,T } with V = {vi}i∈IV ⊂ R3 its

vertices, E = {ei j} its edges connecting adjacent vertices vi and
v j and T = {tk}k∈IT , its tetrahedra indexed over V . We call the
triangular faces of the tetrahedra facets. We note T1(vi) (resp.
F1(vi)) the set of tetrahedra (resp. facets) incident to a vertex
vi and T1(ei j) (resp. F1(ei j)) the set of tetrahedra (resp. facets)
around an edge ei j.

The input mesh is typically composed of n subdomains,
with L(tk) = li denoting the label associated with a given tetra-
hedron tk. We add a special imaginary subdomain to ensure
that the remeshing process will not introduce self-intersections
of the represented domain [42]. The additional imaginary tetra-
hedra have a null label L(tk) = 0 (i.e., background) and will
be processed like any other subdomain. As illustrated in Fig. 3,

Imaginary tetrahedra Unwanted 1-junctionsConvex Hull

Figure 3: Directly filling the space delimited by the convex hull and the mesh
boundaries with imaginary tetrahedra can create unwanted features.

3

boubek
Barrer 

boubek
Texte de remplacement 
[37, 38].



Convex hull

Imaginary tetrahedra

Offseted 
convex hull Dummy tetrahedra

Dummy 
vertex

Figure 4: Pre-processing. Addition of a layer of imaginary tetrahedra and
extension of the complex by connecting the outer facets to the dummy vertex.

naively filling the convex hull of the input vertices generates un-
wanted features. To tackle this issue, the input mesh is embed-
ded into an inflated convex hull to ensure that the input domain
is surrounded by at least one layer of tetrahedra (see Fig. 4).
To do so, we duplicate the elements of V laying on the convex
hull and displace them in their outer normal direction before
triangulating them, using a Restricted Delaunay Triangulation
preserving the original mesh outer boundary. The displace-
ment factor is typically set to 4% of the domain’s bounding
box. To process the outer boundary like any other, i. e. unifying
the representation of inter-domain boundaries and 3D surfaces,
we connect the outer boundary facets (i.e., of the offseted con-
vex hull) to a dummy vertex creating dummy tetrahedra marked
with a negative label.

3.3. Elements notations

Here, we define the simplices notations used in the remain-
der of the document (see Fig. 5). Facets shared by two tetra-
hedra that belong to different subdomains are boundary facets.
The vertices (resp. edges) of those facets are boundary vertices
(resp. boundary edges). For each vertex vi, we note S (vi) ⊂ L
the set of labels incident to vi:

S (vi) = {L(tk)tk∈T1(vi)}.

Similarly, we define S (ei j) for an edge. Volume (resp. bound-
ary) vertices verify |S (vi)| = 1 (resp. |S (vi)| > 1), except for the
dummy vertex. As shown in Fig. 5, we identify four types of
edges:

• volume edges connect two volume vertices (green, red),

• mixed edges connect a volume and a boundary vertex
(gray),

• boundary edges connect two boundary vertices and have
incident boundary facets (pink and blue),

• all other edges are critical edges (yellow).

Figure 5: Classification. (Left) Vertex types, (Center) Boundary and volume
edges and (Right) Mixed and critical edges.

Boundary facet Feature edge Corner Vertex

Figure 6: Feature elements of various dimension detected using solely incident
subdomain indices.

3.4. Feature detection

In order to conform to the input boundaries and perform
feature-aware operations, we identify feature elements of dif-
ferent dimensions that together form a feature complex similar
to a point-sampled cell complex [44] or a PSC [3].

Feature elements. The boundary facets, which are facets be-
tween tetrahedra of different labels, are the complex elements
of dimension 2. The feature edges, which are boundary edges
at the intersection of three or more labels (|S (ei j)| > 2) are the
elements of dimension 1. Vertices with three or more incident
labels (|S (vi)| > 3) and at least three feature edges in their one-
ring are corner vertices (see Fig. 6) and are 0-dimensional ele-
ments.

The input domain’s n-junctions - with n the dimension in
the feature complex - are represented in the mesh (see Fig. 7)
as follows:

• 2-junctions are sets of connected boundary facets located
at the interface between two subdomains. Each 2-junction
forms a triangle surface patch, where its orientation is de-
duced from one of its incident subdomains and delimited
by 1-junctions (if present in the data).

• 1-junctions are sets of connected feature edges sharing
the same set of incident subdomains. Each 1-junction
forms a polyline at the intersection of 2-junctions with
different subdomains pairs.

• 0-junctions are corner vertices and are located at the in-
tersection of 1-junctions.

We refer to boundary vertices that lie on 2-junctions but which
do not belong to a 1- or 0-junction as surface vertices. The
vertices that lie on 1-junctions and that are not corner vertices
are referred to as feature vertices. Additionally, boundary edges
linking two surface vertices are called surface edges. We do
not need to build the feature complex since the elements of the
feature complex are already present in the input mesh.

0-junction

2-junction

1-junction

Feature 
detection

Figure 7: Feature detection. The surface patches represent 2-junctions, the
polylines 1-junctions and the spheres 0-junctions.

4



3.5. Smooth Modeling

We model piecewise smooth boundaries by fitting 2-junctions
with MLS surfaces. These implicit, meshless surfaces are de-
fined through a local operator allowing to project a 3D point on
a local surface reconstructed from unorganized point samples.
We use a classical Point Set Surface (PSS) definition, proposed
by Alexa et al. [45], to represent aliased boundaries and an Her-
mite Point Set Surfaces (HPSS) definition, proposed by Alexa
and Adamson which avoids shrinking of the input model [4],
otherwise. Any other definition can be used without any change
to our methodology. For instance, in the case of input meshes
with limited noise and relevant features, one might prefer a rep-
resentation handling sharp features [46]. We refer to [47] for
an excellent survey on MLS surfaces. We define the MLS sur-
face associated with each 2-junction using a dense, area-based,
consistently-oriented point sampling of it.

The MLS representation of the 2-junctions allows us to fil-
ter noise and acts as a regularizer at each step of our remeshing
algorithm. Storing it also allows us to recover fine geomet-
ric details, when navigating from a low-resolution to a high-
resolution version of the mesh during the remeshing session.

4. Operations

Special care needs to be taken when processing boundaries
since the used local operations, described in this section, do not
result in the preservation of the feature’s topology. Therefore,
following [36] and [37, 38], we define feature-aware rules and
conditions depending on the feature complex hierarchy. Indeed,
our rules assign a priority when processing the mesh elements
based on their type which defines a so-called hierarchy.

4.1. Classification

The main idea is that only interior vertices should be al-
lowed to be relocated freely in the volume, while n-junction
vertices should be moved along their n-junction, in order to
preserve the latter (the same idea was used in 2D for the tan-
gential Laplacian [43], resulting in the preservation of the sur-
face features). To fit these constraints, we define three different
conditions between the pairs of connected vertices leading to
different rules: similarity, inclusion and exclusion (see table 1).

• The similarity condition is met for vi and v j, that are not
corner vertices, if |S (vi)| = |S (v j)| and |S (ei j)| = |S (vi)|
- i.e., for volume vertices, surface vertices linked by a
surface edge, feature vertices linked by a surface edge
and feature vertices linked by a feature edge.

• The inclusion condition if |S (vi)| > |S (v j)| and |S (ei j)| =
|S (v j)| and v j is not a corner vertex - i.e., for mixed edges,
edges linking a surface vertex and a feature or corner ver-
tex and feature edges linking a feature and a corner ver-
tex.

• Otherwise, the exclusion condition is met - i.e., critical
edges, edges between feature or corner vertices not be-
longing to the same 1-junction or linking two 0-junctions.

Boundary facet
Feature edges Topology 

Change
Collapse

Topology 
Change

Collapse

Boundary edge

Figure 8: Topology exceptions. Additional tests to preserve the topology of
the 1- and 2-junctions in small tubular regions.

The pair of vertices meeting the similarity condition affect each
other. For the ones meeting the inclusion condition, only the
vertex with the highest dimensionality in the feature complex,
or the one not belonging to it, will be affected. And finally, for
the exclusion condition, none of the vertices will be affected
since it would create undesired merging of vertices that belong
to different 2- or 1-junctions and fail to preserve small local
features of the subdomains. Table 1 summarizes the conditions
and the derived rules. In practice, except for corner vertices, a
vertex vi will only be affected by the vertices v j of its one-ring
if |S (vi)| ≥ |S (v j)| and |S (ei j)| = |S (v j)|.

Unfortunately, these conditions do not prevent a change of
topology in the same tubular regions as illustrated in Fig. 8. The
three edges around the red facet meet the similarity condition
but a collapse operation would change the topology of the sub-
domains, creating a pinched boundary. Similarly, the collapse
of any of the three feature edges around the blue facet would
change the topology of the 1-junction. Therefore, we perform
two additional topology tests for boundary and feature edges
to detect these configurations and prevent the collapse in these
cases. A boundary edge is not collapsed if one of its incident
facets is not a boundary one but is composed of three boundary
edges. Similarly, a feature edge is not collapsed if one of its in-
cident facets is composed of three feature edges. Now that we
have defined the feature-aware rules, we describe our remesh-
ing process in the following.

4.2. Split edges
In the first step of our iterative procedure, all the edges with

a length superior to emax are split, i.e., a vertex vk is added at
their mid-point, dividing every tetrahedron around the edge into
two. Note that the two new tetrahedra are assigned with the
same label as the one they are subdividing. The set of labels of
the added vertex vk is the set of labels of the tetrahedra around
the current edge, i.e., S (vk) = S (ei j). As only insertions are
performed at this step, no feature preservation rule is required.

4.3. Collapse edges
Now that the long edges have been split, we remove short

edges in order to get a uniform edge length close to the tar-
get one. To do so, we collect all the edges to collapse with a
length smaller than emin, and proceed to perform the possible
collapses. At this point, our thorough classification becomes
instrumental, as not all edges can be collapsed without modi-
fying the topology of the subdomains, inverting tetrahedra or
even resulting in an invalid data structure [29, 48].

5



Condition Type of vi Type of v j Type of ei j |S (vi)| |S (v j)| |S (ei j)| # fi # f j Update vi Update v j

Similarity volume volume volume 1 1 1 n/a n/a yes yes

Similarity surface surface surface 2 2 2 - - yes yes
Similarity feature feature feature ni > 2 = ni = ni < 3 < 3 yes yes

Inclusion volume boundary mixed 1 > 1 1 - - yes no

Inclusion surface feature or corner surface 2 > 2 2 - - yes no
Inclusion feature corner feature ni > 2 n j > ni ni < 3 - yes no

Exclusion boundary boundary critical ni n j , min(ni, n j) - - no no
Exclusion feature feature or corner surface - - - > 2 - no no
Exclusion corner corner - - - - - > 2 no no

Table 1: Conditions and rules ensuring the preservation of the subdomains’ topology. All operations depend on the type of the edge and its vertices. We can
easily detect if the vertices will be affected during the current operation depending on their number of incident subdomains and of incident feature edges noted # fi,
i.e., on their dimension in the feature complex.

Feature preserving collapse. We start by evaluating which con-
dition the current edge meets in order to define which type of
collapse to perform, according to table 1:

• similarity: mid-point collapse (both vertices are affected),

• inclusion: toward the vertex with the highest number of
subdomains, i.e., with the lowest dimension in the feature
complex,

• exclusion: no collapse, since a contraction would change
the topology of the subdomains.

The tetrahedra incident to the affected vertex, or vertices, are
set to be updated, except the ones incident to the current edge,
which are set to be removed. In order to ensure the validity of
the operation, we perform the following tests:

1. all the updated tetrahedra have a positive volume,
2. all the new edges are shorter than emax,
3. no incident non boundary facet has three boundary edges,
4. no incident boundary facet has three feature edges.

The third (resp. fourth) topology test is performed for bound-
ary (resp. feature) edges. The operation is performed if these
four constraints are met. Some of the new edges, incident to the
remaining vertex, may be shorter than emin. Therefore, we eval-
uate their length and set the ones that do not respect the length
criteria to be collapsed. This process is repeated until all edges
are either smaller than emin or impossible to collapse.

Following Botsch and Kobbelt [41], once the overall edge
length is close enough to the target one, the local connectivity
is changed in order to minimize the average valence and opti-
mize locally the dihedral angle distribution, using an edge flip
operation described in the following.

4.4. Flip edges

Flipping an edge in a tetrahedral mesh induces far more
changes than for a triangular mesh. Indeed, the operation changes
the number of tetrahedra adjacent to the edge, except when
there are exactly two or four adjacent tetrahedra. It removes an

edge and replaces it with facets. The flip operation, also called
edge removal, has been first proposed in [49] and further stud-
ied in [25, 26], as a mesh improvement strategy. For each edge
ei j, we explore the space of possible flip operations and per-
form the one that offers the best quality for T1(ei j). Specifically,
it should maximize the worst dihedral angle for volume edges
and average the boundary vertices valences, i. e. minimize the
average boundary vertices valence’s deviation from 6 for sur-
face vertices and 4 for feature vertices. In the mean time, the
operation generating inverted tetrahedra or edges that already
exist are discarded. Recalling that boundary edges have exactly
two incident boundary facets, we preserve the 2-junctions by
flipping the edges towards one of the two boundary vertices of
these facets, enforcing a boundary edge in the new configura-
tion. Last, feature edges are not flipped since processing them
would fail to preserve 1-junctions.

4.5. Filtering
Once the connectivity has been updated to locally optimize

the dihedral angle distribution, we relocate the vertices to im-
prove their distribution (see Fig. 9). Each vertex is relocated
by averaging the subset of its one-ring vertices that meet the
similarity or inclusion condition (according to table 1) and, for
boundary vertices, that verify the topology tests. To prevent
the inversion of tetrahedra, first we smooth the feature vertices,
then the surface ones and finally the volume vertices.

Feature vertices. The feature vertices lie at the intersection of
three or more 2-junctions. For each adjacent 2-junction, we
perform a tangential Laplacian smoothing using the positions

Figure 9: Feature preserving smoothing. Using the feature complex, a feature
preserving hierarchical smoothing is performed.

6



3-2 flip

3-2 flip

Face flip

Cap Sliver

Figure 10: Sliver removal. Optimization step to remove the remaining few
poorly-shaped tetrahedra: (Left) face flip, for cap tetrahedra, or (Right) edge
removal for other kinds of degeneracy.

of its neighbors on the related 1-junction and the vertex normal
corresponding to the current 2-junction, then project the result
on its MLS surface. The smoothed position is then obtained by
averaging the projected points.

Surface vertices. We perform a tangential Laplacian smooth-
ing by considering (i) the surface, updated feature and corner
vertices of its one ring, that verify the similarity or inclusion
condition and the topology tests, and (ii) the corresponding ver-
tex normals, which are computed using its adjacent boundary
facets. The smoothed position is then projected onto the MLS
surface modeling the related 2-junction.

Volume vertices. Finally, the vertices that do not belong to the
feature complex are smoothed by performing a Laplacian smoo-
thing using all its adjacent vertices, since they all verify the sim-
ilarity and inclusion conditions.

4.6. Quality improvement

After a few iterations (typically 5 to 10), the target resolu-
tion is usually reached and the overall mesh quality is improved.
However, we observed that performing a few cycles of smooth
and flip operations drastically improves the final quality.

A final optimization process might be necessary to remove
slivers or poorly-shaped tetrahedra. For each tetrahedron not
meeting the quality criteria, we identify its type of degeneracy
(see Fig. 2) and we perform the operation that improves the
local quality while respecting the previously prescribed rules.

First, needles or wedges, which have a large longest to short-
est edge ratio in addition to a small radius-ratio, are removed
by collapsing their first collapsable shorter edge improving the
local quality. Note that, since our method equalizes the edge
length, these types of elements are unlikely to appear. Then
the caps, which have a small radius-ratio and three large dihe-
dral angles, are removed by flipping the face opposite to the
three largest dihedral angles. Finally, for slivers, which have
two large and two small dihedral angles, we perform the flip of
one of the two edges, shared by the pairs of facets forming the
larger dihedral angles, that best improves the local quality (see
Fig. 10). Usually, a small number of tetrahedra do not meet the
quality criteria, and only a few iterations are required.

4.7. Adaptive sizing field

Our algorithm supports spatially-varying edge length tar-
gets. We present in this section results based on sizing fields

Boundary 
segmentation

Tetrahedra 
segmentation

Remeshing

New features

Figure 11: Closed surface features are detected on the outer boundary of the
represented domain, and are added to the feature complex by segmenting the
imaginary tetrahedra.

that we derive automatically from the input geometry. In partic-
ular, in order to get graded meshes of reduced size, we propose
to compute the sizing field based on a distance field from the
boundaries. This distance field is computed by first discretizing
the space inside the triangulation’s offseted bounding box, re-
sulting in a voxel grid of a user-defined resolution. In a second
step, each voxel is assigned the smallest distance from its center
to the set of boundary facets of the input model. These distances
are efficiently computed using an acceleration structure detailed
in section 5. Finally, the grid values are normalized. Given a
target length for the boundary edges lB and one for the volume
edges lV , the target length li j for the current edge ei j is given by:

li j = (lV − lB)D(mi j) + lB

with mi j the edge mid-point and D : R3 → R+ the normalized
distance field from the boundaries. Note that any user-defined
sizing field can be used to tailor the edge length and produce
dense meshes in regions of interests.

4.8. Additional feature preservation
The preserved 1- and 0- features stem from the multi-material

junctions. Nevertheless, the input domain’s sharp features are
not taken into account. In the following, we explain how to
preserve additional features by either segmenting the imagi-
nary tetrahedra, hence creating multi-material junctions, or by
explicitly tagging features edges and corner vertices to be pre-
served during the remeshing process.

Closed features. We propose to detect closed features on the
outer boundary of the represented domain, and to add them to
the feature complex by segmenting the imaginary tetrahedra.
To do so, the outer boundary facets - with one incident imagi-
nary tetrahedron - are clustered in surface patches with similar
normals delimited by closed feature lines using the Variational
Shape Approximation (VSA) method [50].

Detected feature lines represent sharp creases of the input
domain. In order to preserve them during the remeshing pro-
cess, we add them to the feature complex by propagating the
facet’s segmentation to the imaginary tetrahedra. The imagi-
nary tetrahedra are therefore labeled implicitly, creating 1-junc-
tions where the detected close features lie (see Fig. 11 for an il-
lustraton). In concave regions, facets belonging to two different
regions might be connected by critical edges (see Fig. 12). In
that case, performing a straightforward flood-filling, propagat-
ing the facet segmentation to the imaginary tetrahedra, induces
unconnected components, conflict regions and sparse 1- and 0-
junctions created on the boundaries (see Fig. 12). To overcome
this problem, we split imaginary critical edges as a pre-process.

7



Figure 12: To overcome conflicts that can occur in concave regions, the imagi-
nary critical edges are split as a pre-process.

Marked features. The described feature detection and preser-
vation method is limited to closed junctions. However, not all
relevant feature lines (e.g., surface curvature-based ones) are
closed. Hence, we propose to preserve user-prescribed poly-
lines by adding (i) each polyline as a distinct 1-junction to the
feature complex and (ii) their end points and intersections as
corner vertices. The features are explicitly tagged and not im-
plicitly defined by the multi-material junctions. Hence when
splitting a feature edge, the two new edges and the inserted ver-
tex are tagged as features. Consequently, our conditions defini-
tions (see Table 1) still hold. Table 2 summarizes the specific
rules for this case: if the user wants to preserve the exact input
feature vertices, we set the feature polylines being smoothed by
the remeshing process as corner vertices.

Condition # fi # f j Is ei j feat. Update vi Update v j

Similarity 2 2 yes yes yes

Inclusion 0 >= 1 no yes no
Inclusion 2 1 or > 2 yes yes no

Exclusion > 0 > 0 no no no
Exclusion 1 or > 2 1 or > 2 - no no

Table 2: Feature-aware rules for tagged features.

5. Results and comparisons

Performances were measured on an Intel Core2 Duo (single
thread) at 2.4 GHz with 8GB of main memory. We used the
Computational Geometry Algorithms Library (CGAL) 3D tri-
angulation code as an underlying mesh structure and its Axis-
Aligned Bounding Box (AABB) tree implementation to effi-
ciently compute the adaptive sizing field. This tree is built using
the input mesh’s boundary facets and is used as an acceleration
structure to compute the distance field. Since the conditions are
evaluated using local adjacency information, we do not need to
build the feature complex explicitly in contrast to [3]. We only
store the list of labels incident to each vertex and construct the
MLS representation of the 2-junctions. Note that we tagged the
elements of the user-provided features. Our implementation is
robust to poorly-shaped tetrahedra with zero or negative vol-
ume. Furthermore, any type of triangulation can be remeshed
by our method, allowing us to process a wide range of input.
We demonstrate the validity of our approach on both synthetic
and acquired segmented voxel grids. We apply our method on
naive meshes generated from a segmented 3D voxel grid de-
fined through a five-cells decomposition of all the voxels con-
tained in the bounding box of the domain while unifying in-

Figure 13: Parameter space exploration. High-quality meshes generated for
each target length, in 5 iterations plus 2-3 flip and smooth cycles, with dihedral
angles between [21.1, 147.2], [21.8, 154.8] and [21.0, 148.5] for step 1, 2 and 3
respectively.

ternal and external boundaries. The resulting high-resolution
mesh reproduces the grid topology with aliased boundaries. As
explained in the previous section, our rules depend of the el-
ement’s dimension in the feature complex. For instance, we
start by flipping the boundary edges that improve the average
valence of the boundary vertices and then flip the volume edge
that locally maximizes the minimal dihedral angle. The MLS
representation of the surface patches allows smoothing noisy
boundaries and features. Furthermore, it allows refining as well
as simplifying the input mesh while preserving the boundaries’
shape, since the representation is independent from the current
mesh state. To evaluate the quality of the resulting meshes, we
report the dihedral angle distributions using green histograms
and the distributions of radius-ratio (multiplied by 3 for nor-
malization) using orange ones. Fig. 13 illustrates an interaction
session where the user navigates between different resolutions.
High-quality meshes are generated, within seconds, for three
different target lengths, in 5 iterations plus 2-3 flip and smooth
cycles. Even though no sliver removal step was performed, the
resulting meshes all have dihedral angles above 21 degrees.

Our approach is targeted but not limited to multi-material
input domains, and we evaluate our approach on single mate-
rial input meshes as well (see Fig. 1, 14, 15 and 16). We can
observe the good angle distribution and assess visually the over-
all mesh quality. We compare our method with state-of-the-art
single-material meshing techniques. In Fig. 15, the meshes of
the first row are generated from the same Sphere surface mesh
using the same size and quality parameters. The first mesh is
generated by a Delaunay Refinement process and the second
by using DelPSC [11]. The meshes of the second row are gen-
erated using the Refinement mesh as an input. We performed
our remeshing process, using 5 iterations and 3 flip-smooth cy-
cles, in 20 seconds and performed an ODT [51, 52] optimiza-
tion with the same time limit. We can see that our method does
not produce slivers since the smallest dihedral angle is 23.2 de-
grees, whereas other methods need an additional optimization

Figure 14: Kitten. High-quality isotropic and adaptive remeshing.

8



Figure 15: Comparison. First row: Mesh generated from the same Sphere surface mesh using the same size and quality parameters. The first mesh is generated by
using DelPSC [11] and the second by a Delaunay Refinement process. Second row: Meshes generated using the Refinement mesh as an input.

Figure 16: Self intersecting mesh processing. Note that Delaunay-based techniques, such as ODT can not process self-intersecting surfaces. The green histograms
show the dihedral angle distributions.

9



Model Input. sB − sV Output In complex Timing
#tet #tet #tet.

Spheres 3 999 1 20 062 6 165 8s
1-5 23 588 2 000 10s

0.6-5 44 784 10 669 31s

4 labels 750 000 2 85 853 30 834 1m24s
sphere 6 3 192 1 153 6s

4-5 5 470 2 074 20s

Hepatic 4 757 904 1.1-8 679 580 187 616 20m
Vessel 2.5-8 61 170 16 546 3m20s

Hand 4 158 720 2.4 - 8 3 717 750 88 167 8m38s
1.1 - 8 617 920 219 739 7m30s

Kitten 371 183 7.6 9 439 3 393 57s
7.6-8 6 291 856 2s
3.6 299 669 31 322 53s

1.1-13 784 717 244 424 14m08s

Table 3: Performances. The results are obtained by setting two scalars values
sB and sV for adaptive meshes, or a single scalar sB = sV for isotropic meshes,
defining the target edge lengths as lB = sB∗l0 for the boundaries and lV = sv∗lB
for the volume, l0 denoting the average input boundary edge length. Output
#tet is the number of tetrahedra in the triangulation and in complex and #tet
displays the number of tetrahedra that belong to the input domain, i. e. that are
not imaginary. Note that further increased performance is to be expected, if one
desires to ignore imaginary tetrahedra in the mesh.

step. Note that on a similar example, NODT [13] performs bet-
ter than ODT but also produces slivers. Our method prevents
the apparition of degenerated tetrahedra with a large longest to
shortest edge ratio, such as needles and wedges. Since the edge
lengths are equalized, most of the slivers and spindles are re-
moved on account of the angle-based flip and the remaining
few are taken out as a final process, along with the cap tetrahe-
dra (see Fig. 2). Note that this final step is often unnecessary.

Since only local topological operators are used, our method
allows processing self-intersecting volumes meshes. In Fig. 16,
we show (i) on the left results of a Delaunay-based meshing
method of a self-intersecting input domain creating holes in the
output mesh, (ii) in the middle the tetrahedral meshes gener-
ated by the method proposed by Sacht et al. [53] and (iii) on the
right our remeshing resulting using the later meshes as an input.
Note that the output of Sacht et al. [53] (Fig. 16) have been op-
timized in a different pose: they smooth the input surface until
intersections are resolved, triangulate the resulting smoothed
surface and only then put the triangulation in a geometric state
that is compatible with the input geometry of the surface. On
the contrary, we optimize the mesh in its input pose directly.

Last, we present additional synthetic results (see Fig. 17)
and apply our method on segmented medical images (see Fig. 1
and 17). Note that the extremely low dihedral angles (bot-
tom left mesh in Fig. 17) correspond to isolated tetrahedra or
small features w.r.t. the target edge length in the input. Our
method optimizes the geometry under the hard constraint of ex-
act feature preservation. Table 3 shows the performances for the
remeshing of the presented various input data sets. Note that
the performances strongly depend on the input and the edge
aimed length. Timings are obtained using the mesh resulting
from the previous remeshing session as an input, in order to
emphasize the dependance to the current state instead of the

input state. We made sure to present sessions where the reso-
lution was changed smoothly and others where the resolution
was changed arbitrarily, to balance illustration and fairness of
comparison with existing previous work.

6. Limitations & Future Work

Our feature-aware operations strictly preserve the input topol-
ogy, and this property may cause problems for noisy datasets.
Indeed, poorly-shaped tetrahedra are generated when the target
edge length is significantly larger than the size of the feature to
preserve. To tackle this issue, part of these feature-preserving
conditions could be relaxed or the target edge length could be
changed during a post-processing stage. Additionally, when
starting from a segmented voxel grid, a pre-processing step can
be performed to remove isolated voxels and small features as
well as merge corner vertices being too close [3]. More gen-
erally, groups of poorly-shaped tetrahedra could be removed
using a feature preserving version of the vertex insertion strat-
egy proposed in a single material setting [26]. These processes
can be combined with a roll back mechanism in order to cancel
the operations that did not improve the quality. Since we use
local topological operations only, our remeshing method can
be applied on a portion of the mesh using only local neighbor-
hood information. Therefore, based on the streaming algorithm
for compressing tetrahedral volume meshes proposed [28], an
extension of our method to model data that do not fit in main
memory seems foreseeable.

7. Conclusion

We have proposed a new efficient multi-domain adaptive
remesher for tetrahedral meshes. Our approach is based on lo-
cal operations which simultaneously refine or simplifying the
tetrahedra while improving the quality through local topology
changes and point relocations. Additionally, our framework
allows to preserve features detected on the outer boundary of
the domain as well as user-defined features. By decorrelating
the piecewise smooth boundary model from the mesh resolu-
tion using an MLS approach, our method provides high-quality
meshes at different resolutions using well known simple lo-
cal topological operators and is general enough to be applied
to any structured mesh. As a result, our high-quality adaptive
remesher can compete with state-of-the-art methods [3] but is
free from the computation of a Delaunay triangulation/Voronoi
diagram of multi-material domains, requires only to build a
PSC instead, has lower memory cost, can process self-intersec-
ting meshes, and is significantly easier to implement.
[1] Shewchuk JR. What is a good linear element? - interpolation, condition-

ing, and quality measures. In: 11th International Meshing Roundtable.
2002, p. 115–26.

[2] Boltcheva D, Yvinec M, Boissonnat JD. Feature preserving Delaunay
mesh generation from 3d multi-material images. In: Symposium on Ge-
ometry Processing. 2009, p. 1455–64.

[3] Dey TK, Janoos F, Levine JA. Meshing interfaces of multi-label data with
Delaunay refinement. Engineering with Computers 2012;28:71–82.

[4] Alexa M, Adamson A. Interpolatory point set surfaces-convexity and her-
mite data. ACM Transactions on Graphics (TOG) 2009;28:20:1–20:10.

10

boubek
Texte inséré 
"\paragraph*{Acknowledgements} This work has been partially supported by the EuropeanCommission under contracts FP7-323567 HARVEST4D\section*{References}



Figure 17: Remeshing synthetic and medical data at different resolutions. The last row of the synthetic data illustrates the addition of closed features to the
feature complex which are detected on the mesh outer boundary. The green histograms show the dihedral angle distributions and the orange ones display the
radius-ratio distributions.

11



[5] Chew LP. Guaranteed-quality mesh generation for curved surfaces. In:
Symp. on Computational geometry. 1993, p. 274–80.

[6] Ruppert J. A delaunay refinement algorithm for quality 2-dimensional
mesh generation. J Algorithms 1995;18:548–85.

[7] Shewchuk JR. Tetrahedral mesh generation by Delaunay refinement. In:
Fourteenth annual symposium on Computational geometry. 1998, p. 86–
95.

[8] Boissonnat JD, Oudot S. Provably good sampling and meshing of sur-
faces. Graphical Models 2005;67:405 –51.

[9] Cheng SW, Dey TK. Quality meshing with weighted Delaunay refine-
ment. SIAM Journal on Computing 2003;33:69–93.

[10] Cheng SW, Dey TK, Levine A. A practical Delaunay meshing algorithm
for a large class of domains. In: Proceedings of the 16th International
Meshing Roundtable. 2007, p. 477–94.

[11] Cheng Sw, Dey TK, Ramos EA. Delaunay refinement for piecewise
smooth complexes. In: 18th Annual ACM-SIAM Symposium Discrete
Algorithms. 2007, p. 1096–105.

[12] Dey T, Levine J. Delaunay meshing of piecewise smooth complexes with-
out expensive predicates. Algorithms 2009;2:1327–49.

[13] Tournois J, Wormser C, Alliez P, Desbrun M. Interleaving delaunay re-
finement and optimization for practical isotropic tetrahedron mesh gener-
ation. ACM Transactions on Graphics (TOG) 2009;28(3):Art–No.

[14] Pons JP, Ségonne F, Boissonnat JD, Rineau L, Yvinec M, Keriven R.
High-quality consistent meshing of multi-label datasets. In: 20th interna-
tional conference on Information processing in medical imaging. 2007, p.
198–210.

[15] Lorensen WE, Cline HE. Marching cubes: A high resolution 3d surface
construction algorithm. ACM Siggraph Computer Graphics 1987;21(4).

[16] Wu Z, Sullivan JM. Multiple material marching cubes algorithm. Interna-
tional Journal for Numerical Methods in Engineering 2003;58:189–207.

[17] Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with
good dihedral angles. ACM Transactions on Graphics (TOG) 2007;26.

[18] Bronson J, Levine J, Whitaker R. Lattice cleaving: Conforming tetrahe-
dral meshes of multimaterial domains with bounded quality. In: Jiao X,
Weill JC, editors. 21st International Meshing Roundtable. 2013, p. 191–
209.

[19] Crossno P, Angel E. Isosurface extraction using particle systems. In:
IEEE Visualization. 1997, p. 495–8.

[20] Meyer M, Whitaker R, Kirby R, Ledergerber C, Pfister H. Particle-based
sampling and meshing of surfaces in multimaterial volumes. Visualiza-
tion and Computer Graphics, IEEE Transactions on 2008;14:1539 –46.

[21] Dardenne J, Valette S, Siauve N, Burais N, Prost R. Variational tetrahe-
dral mesh generation from discrete volume data. The Visual Computer
2009;25:401–10.

[22] Goksel O, Salcudean S. Image-based variational meshing. Medical Imag-
ing, IEEE Transactions on 2011;30:11 –21.

[23] Cheng SW, Dey TK, Edelsbrunner H, Facello MA, Teng SH. Silver exu-
dation. J ACM 2000;47:883–904.

[24] Tournois J, Srinivasan R, Alliez P. Perturbing Slivers in 3D Delaunay
Meshes. In: 18th International Meshing Roundtable. 2009, p. 157–73.

[25] Freitag LA, Ollivier-gooch C. Tetrahedral mesh improvement using
swapping and smoothing. International Journal for Numerical Mthods
In Engineering 1997;40:3979–4002.

[26] Klingner BM, Shewchuk JR. Agressive tetrahedral mesh improvement.
In: Proceedings of the 16th International Meshing Roundtable. 2007, p.
3–23.

[27] Garland M, Zhou Y. Quadric-based simplification in any dimension.
ACM Transactions on Graphics (TOG) 2005;24:209–39.

[28] Isenburg M, Lindstrom P, Gumhold S, Shewchuk J. Streaming compres-
sion of tetrahedral volume meshes. In: Proceedings of Graphics Interface
2006. Canadian Information Processing Society; 2006, p. 115–21.

[29] Hoppe H. Progressive meshes. In: 23rd annual conference on Computer
graphics and interactive techniques. 1996, p. 99–108.

[30] Garland M, Heckbert PS. Surface simplification using quadric error met-
rics. In: 24th annual conference on Computer graphics and interactive
techniques. 1997, p. 209–16.

[31] Uesu D, Bavoil L, Fleishman S, Shepherd J, Silva CT. Simplification of
unstructured tetrahedral meshes by point sampling. 2005.

[32] Farias R, Mitchell J, Silva C, Wylie B. Time-critical rendering of irregular
grids. In: Computer Graphics and Image Processing. 2000, p. 243 –50.

[33] Alauzet F, Li X, Seol ES, Shephard MS. Parallel anisotropic 3d

mesh adaptation by mesh modification. Engineering with Computers
2006;21(3):247–58.

[34] Loseille A, Löhner R. Robust boundary layer mesh generation. In: Pro-
ceedings of the 21st International Meshing Roundtable. Springer; 2013,
p. 493–511.

[35] Dapogny C, Dobrzynski C, Frey P. Three-dimensional adaptive domain
remeshing, implicit domain meshing, and applications to free and moving
boundary problems. Journal of Computational Physics 2014;262:358–78.

[36] Cutler B, Dorsey J, McMillan L. Simplification and improvement of
tetrahedral models for simulation. In: Proc. Symposium on Geometry
Processing. 2004, p. 93–102.

[37] Thomas DM, Natarajan V, Bonneau GP. Link Conditions for Simplifying
Meshes with Embedded Structures. Transactions on Visualization and
Computer Graphics 2010;:1007–19.

[38] Vivodtzev F, Bonneau GP, Hahmann S, Hagen H. Substructure topology
preserving simplification of tetrahedral meshes. In: Topological Methods
in Data Analysis and Visualization. 2011, p. 55–66.

[39] Kobbelt L, Bareuther T, peter Seidel H. Multiresolution shape deforma-
tions for meshes with dynamic vertex connectivity. 2000.

[40] Vorsatz J, Rössl C, peter Seidel H. Dynamic remeshing and applications.
In: Department, Stony Brook University. Her. 2003, p. 167–75.

[41] Botsch M, Kobbelt L. A remeshing approach to multiresolution modeling.
In: Symposium on Geometry Processing. 2004, p. 185–92.

[42] Kraus M, Ertl T. Simplification of nonconvex tetrahedral meshes. In:
Hierarchical and Geometrical Methods in Scientific Visualization. 2002,
p. 185–96.

[43] Botsch M. High quality surface generation and efficient multiresolution
editing based on triangle meshes. Ph.D. thesis; 2005.

[44] Adamson A, Alexa M. Point-sampled cell complexes. In: ACM Transac-
tions on Graphics (TOG); vol. 25. 2006, p. 671–80.

[45] Adamson A, Alexa M. Approximating bounded, non-orientable surfaces
from points. In: Shape Modeling International. 2004, p. 243–52.

[46] Oztireli C, Guennebaud G, Gross M. Feature Preserving Point Set Sur-
faces based on Non-Linear Kernel Regression. Computer Graphics Forum
2009;28:493–501.

[47] Cheng ZQ, Wang YZ, Li B, Xu K, Dang G, Jin SY. A survey of methods
for moving least squares surfaces. In: Point-Based Graphics. 2008, p.
9–23.

[48] Dey T, Edelsbrunner H, Guha S, Nekhayev D. Topology preserving edge
contraction. Publ Inst Math(Beograd)(NS) 1999;66:23–45.

[49] de l’Isle EB, George. PL. Optimization of tetrahedral meshes. In: Model-
ing, Mesh Generation, and Adaptive Numerical Methods for Partial Dif-
ferential Equations, IMA Volumes in Mathematics and its Applications.
1995, p. 97–128.

[50] Cohen-Steiner D, Alliez P, Desbrun M. Variational shape approximation.
ACM Transactions on Graphics (TOG) 2004;23:905–14.

[51] Chen L. Mesh smoothing schemes based on optimal Delaunay triangula-
tions. In: 13th International Meshing Roundtable. 2004, p. 109–20.

[52] Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M. Variational tetrahedral
meshing. ACM Transactions on Graphics (TOG) 2005;:617–25.

[53] Sacht L, Jacobson A, Panozzo D, Schüller C, Sorkine-Hornung O. Con-
sistent volumetric discretizations inside self-intersecting surfaces. Com-
puter Graphics Forum (proceedings of EUROGRAPHICS/ACM SIG-
GRAPH Symposium on Geometry Processing) 2013;32(5):147–56.

12



Eurographics Symposium on Rendering 2016
E. Eisemann and E. Fiume
(Guest Editors)

Volume 35 (2016), Number 4

Forward Light Cuts:
A Scalable Approach to Real-Time Global Illumination

Gilles LAURENT+,∗ Cyril DELALANDRE+ Grégoire de LA RIVIÈRE+ Tamy BOUBEKEUR∗

+ Dassault Systèmes ∗ LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay

Figure 1: Real-time rendering with the first bounce of indirect lighting using Forward Light Cuts. The scene is composed of 7M triangles and
is rendered in 16 ms at 1024×512 pixels resolution, without any precomputation and accounting for occluded yet contributing surfaces and
long range light bounces.

Abstract
We present Forward Light Cuts, a novel approach to real-time global illumination using forward rendering techniques. We focus
on unshadowed diffuse interactions for the first indirect light bounce in the context of large models such as the complex scenes
usually encountered in CAD application scenarios. Our approach efficiently generates and uses a multiscale radiance cache by
exploiting the geometry-specific stages of the graphics pipeline, namely the tessellator unit and the geometry shader. To do so,
we assimilate virtual point lights to the scene’s triangles and design a stochastic decimation process chained with a partitioning
strategy that accounts for both close-by strong light reflections, and distant regions from which numerous virtual point lights
collectively contribute strongly to the end pixel. Our probabilistic solution is supported by a mathematical analysis and a
number of experiments covering a wide range of application scenarios. As a result, our algorithm requires no precomputation
of any kind, is compatible with dynamic view points, lighting condition, geometry and materials, and scales to tens of millions
of polygons on current graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Radiosity

1. Introduction

Light transport simulation is an important component of realistic
image synthesis. Beyond direct lighting, global illumination, de-
spite its well known physics laws, remains a challenging problem
due to its high computational cost, with even more critical conse-
quences for fully dynamic real-time scenarios involving large ob-
jects. Hidden behind the recursive nature of the rendering equa-
tion [Kaj86], global illumination simulation has been addressed
in a number of approaches with applications ranging from visual
special effects to scientific visualization, through animated pictures
and video games. Currently, we can distinguish two lines of re-
search: offline rendering, which targets a solution as close as pos-
sible to physics and interactive rendering, which aims at quickly

providing a visually convincing approximation of global illumina-
tion. While significant progress have been recently made for the
former using the Monte Carlo rendering framework, we focus on
the latter and the set of constraints induced by real-time scenarios.

Due to the low-pass filtering nature of diffuse material reflec-
tion [RH01, BJ03], most real-time global illumination methods ex-
ploit the reasonable assumption that indirect radiance can be de-
scribed by a low frequency function, especially when the emitter
is far from the receiver (Sec. 2). In particular, numerous radiance
caching methods [WFA∗05, REG∗09] compute a hierarchical spa-
tial structure over the geometry of the scene and use it to model
a multiscale radiance function, later queried to illuminate the pix-
els of the final image. The leaves of this tree structure are typically

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

formed by so-called virtual point lights (or VPLs), which are sam-
pled on the scene surfaces that are visibile from the primary light
emitters at caching time. Every internal node of this tree is then set
with a representative response that approximates the radiance of its
related subtree. At shading time, a set of nodes, called light cut,
is adaptively gathered from the tree to evaluate the incoming radi-
ance at a given point. Although it may contain leaves (i.e., original
VPLs) for close-by elements, it is typically mostly formed of inter-
nal nodes that act as economic substitutes to represent the incoming
radiance from distant locations, saving both time and memory.

For this category of methods, a fully dynamic scenario, in-
volving large objects, induces at least two limitations. First, the
caching structure needs to be recomputed at each frame, as detect-
ing changes under fully dynamic conditions ends up being just as
costly as recomputing the whole cache, in particular regarding the
limitation of the fine-grained parallel nature of modern graphics
hardware. Second, the initial set of VPLs may be too large to cope
with real time constraints, in particular when their generation can-
not be amortized over time.

In this paper, we adopt a forward strategy to address these prob-
lems (Sec. 3). First, we observe that the scene polygons themselves
can trigger the VPL generation process and propose a tessella-
tion/decimation GPU pipeline that uses both the geometry shader
and the tesselator unit to generate an initial set of VPLs (Sec. 4),
refining the geometry of the scene wherever it is too coarse to ac-
curately capture the radiance, and simplifying it where the polygon
distribution is too dense. Second, we propose a stochastic cluster-
ing scheme that associates subsets of the resulting VPLs to bounded
regions of influence for which they act as radiance representatives
to shade points. This yields a multiscale representation of indi-
rect lighting free from any explicit tree structure used to efficiently
shade receivers (Sec. 5). Moreover, we designed both the caching
and shading stages to efficiently map on modern graphics architec-
tures (Sec. 6). As a result, our entire algorithm runs from scratch
at every frame and preserves real-time performance even for large
scenes, capturing diffuse unshadowed indirect illumination under
dynamic conditions, while naturally accounting for long range in-
direct illumination and hidden geometry (Sec. 7).

2. Previous Work

A full survey of real-time global illumination methods is be-
yond the scope of this paper and we refer the reader to the re-
cent manuscripts by Ritschel et al. [RDGK12] for an up-to-date
overview of real-time global illumination methods and Dachs-
bacher et al. [DKH∗14] for a complete overview of the many-lights
framework. As we target diffuse GI for large dynamic scenes, we
focus on the most relevant prior art in the following, namely screen-
space and object-space diffuse global illumination solutions.

Mittring et al. [Mit07] introduced an ambient occlusion approx-
imation method using the depth-buffer as an economic, random-
accessible substitute to the actual (potentially large) geometry of
the scene, and parameterizing the light cache in screen-space. Later,
Ritschel et al. [RGS09] extended this approach to simulate diffuse
color bleeding in a similar setting. A large variety of other meth-
ods [RDGK12] exploit screen-space approximations to lower the

computational complexity of some lighting effects. However, de-
spite their real-time and dynamic performances, such approaches
rely on depth peeling and multiple views rendering to account for
the full geometry of the scene i.e., beyond the first depth layer and
outside the view frustum, which quickly impacts negatively their
native speed. Recently, Mara et al. [MMNL14] proposed to take
advantage of temporal coherency to build a multi-layered sampling
strategy and remove most of hidden surface issues – e.g. view de-
pendent ghosting artifacts. This approach is effective in a number of
cases, but still suffers from grazing angle geometry undersampling
issues.

In contrast to screen-space approaches, solving for indirect il-
lumination in object-space avoids such view-dependent artifacts, at
the cost of less GPU-friendly light caches. For instance, Instant Ra-
diosity (IR) methods [Kel97] work with VPLs, a set of secondary
point light sources, directly generated on the geometry illuminated
by the primary sources. Thus, a VPL set acts as a discrete repre-
sentation of the scene’s indirect lighting and allows to reduce com-
putations drastically when approximating light bounces. Reflective
Shadow Maps (RSM) [DS05, DS06] provide an efficient VPL gen-
eration mechanism by sampling the scene in light-view space. This
method has been improved by adding a clustering strategy over the
RSM pixels which allows to reduce the number of VPLs by keeping
the relevant ones only [PKD12]. However, scaling up to massive
data requires huge amounts of VPLs. This is challenging as both
generation and shading costs of so many VPLs is prohibitive in dy-
namic scenes. This problem is typically addressed with hierarchical
methods such as Lightcuts [WFA∗05] or Point-Based Global Illu-
mination [Chr08, REG∗09], which aim at managing massive sets
of VPLs using multiple level-of-details of the point-sampled light
field. In this context, ManyLODs [HREB11] reached interactive
rendering time by computing in parallel many coherent cuts in the
VPL tree. To reach real-time performances on complex scenes with
up to millions of lights, Olsson et al. [OBA12] chose to address fill-
rate issues by clustering the GBuffer pixels using an extension of
tiled shading [OA11]. However, these techniques are based on a
tree structure which requires amortizing its construction over time,
preventing full dynamism in the scene.

A challenging issue while simulating indirect illumination with
IR is to compute visibility between VPLs and pixels. Numer-
ous approaches have been developed to this end, such as the Im-
perfect Shadow Maps (or ISMs) [RGK∗08] which are generated
quickly and in droves from on a point sampling of the scene, and
queried during shading to approximate indirect visibility. Virtual
Area Lights (or VALs) [DGR∗09] allow to reduce the number of
visibility queries by clustering light emitters into small surfaces,
with the visibility being approximated by computing soft shadows
from VALs shadow maps. In order to amortize VPLs shadow com-
putation, Laine et al. [LSK∗07] proposed to select at each frame a
subset of VPLs for which shadow maps are computed or updated.
To improve temporal coherency, Barák et al. [BBH13] used a RSM
to sample preferably the scene in region with high radiance. Re-
cently, Hedman et al. [HKL16] developed a technique which gener-
ates a temporally coherent VPL sampling of large scenes by memo-
rizing their position from frame to frame and only invalidating them
when they no longer influence framebuffer pixels. Indirect visibil-
ity is then implicitly solved by using ray tracing to sample VPLs.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Raw Geometry

Indirect Draw Buffer

GBuffer

Randomly chooses
a function support

Computes VPL to pixels
radiance transfer

Computes VPL
unbiasing factor

Splats screen space
bounding elementTessellation Stage

Geometry
Stage

Oversized
Triangles

Randomly discards
or generates one VPL

Figure 2: Forward Light Cuts. The raw geometry is sent to the geometry shader where it is split into regular and divergent triangles.
Divergent triangles – i.e. with an area greater than a certain threshold – are used to fill an indirect draw buffer and then subdivided such that
every new triangle may be considered as regular. Regular and subdivided triangles are then randomly distributed over N+2 subsets including
one which is discarded. The surviving triangles are classified among subsets according to a probability distribution depending on their size.
Finally, for each of these triangles, a single VPL is created whose power depends on the subset it belongs to and its support function is
computed accordingly.

Note that our proposed algorithm does not address indirect visibil-
ity, as it is an orthogonal problem to the one we target: efficiently
balancing VPL distribution to focus computations where needed.

Finally, the Deep Screen Space (DSS) approach [NRS14] pro-
poses to exploit the advantages of both screen-space and object-
space radiance caching. The same way as object-space strategies,
this method generates on-surface VPLs, even on occluded geome-
try that may still impact the image; and similarly to screen-space
approaches, it benefits from a native GPU support, with the tes-
sellator unit – instead of the rasterizer – being used as a surface
sampler to generate the VPLs. Still, although DSS can successfully
be used for rendering small to medium size scenes, it cannot cope
with larger ones, where the real-time constraint imposes decimat-
ing geometry rather than refining it. Our technique makes a step
forward in this direction, by proposing a diffuse GI pipeline which
can both refine and simplify the set of geometry-driven VPLs in a
two-pass strategy. Exploiting both the tessellator unit and the ge-
ometry shader to adjust the resolution of an object-space radiance
cache in the context of scenes with a massive number of triangles.
In particular, we also reach real-time performance by using a multi-
scale representation of the light field but, contrary to the aforemen-
tioned techniques, our method is fully dynamic and does not resort
to any tree structure, nor imposes to maintain any data structure
among frames.

3. Algorithm Overview

Our algorithm, illustrated in Fig. 2, has the structure of typical VPL
based pipelines, composed of three main stages: VPL generation,
indirect light caching and lighting with VPLs. Our contributions

mainly focus on VPL generation and their usage during lighting,
and can be summarized as follows:

• at loading time, we associate a single random integer to each
vertex; this number will be used at rendering time to generate
per-triangle random numbers consistently, even under dynamic
geometry transformations (see Sec. 6);

• the full set of triangles L is then randomly partitioned according
to a probability distribution (Sec. 4, Fig. 3); for each triangle,
a VPL is stochastically generated and its outgoing radiance is
computed based solely on its related partition (L0 . . .LN ); in or-
der to balance computations, we distribute many samples with
small influence distance in L0 and decrease the number of sam-
ples while increasing the influence distance in Lk when k grows;
this leads to a functional equation on the VPLs radiance that we
derived in Sec. 5;

• in addition, to significantly reduce the number of triangles to
manage while optimizing the amount of sampling information, a
special set – mainly composed of small triangles – is completely
discarded;

• furthermore, to properly cope with hardware restrictions when it
comes to dynamic data amplification, we create exactly one VPL
per triangle; as such, large triangles – that we call “divergent”
(Sec. 4) – are not well sampled by the aforementioned strategy
and may introduce important lighting artifacts in the final im-
age; consequently, we reroute them through the tessellation unit,
where they are subdivided to reach the proper resolution (see
Sec. 6);

• last, we splat indirect illumination in a typical deferred shad-
ing process, with the splatted function supports depending on
the VPL partition, reserving powerful VPLs to carry on distant
lighting using crescent-shaped support (Sec. 5, Fig. 3).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

+ +

Figure 3: Multi-scale radiance cache. In our approach, VPLs
are distributed among different subsets, each of which having a
bounded region of influence (in yellow). The final illumination com-
puted at a given point uses samples from the different clusters to
reconstruct the incoming radiance at shading time.

4. VPLs Generation

Our VPL generation method is based on the standard hardware ras-
terization pipeline and is designed to exploit the GPU fine-grained
parallelism by generating each VPL independently from the oth-
ers. Moreover, our algorithm only implies a single draw pass of
the geometry, enabling its use with scenes featuring a high polygon
count. To do so, we distinguish regular triangles from divergent
ones, i.e. the set of triangles {ti} with surface area A(ti) greater
than a certain threshold S0. We set

S0 = 4π
D2

near
Navg

, (1)

which is a heuristic aiming at lighting pixels with approximately
Navg VPLs at least Dnear far from them. Let Rscene be the scene ra-
dius, we typically set Dnear = 0.2×Rscene and Navg between 64 and
1024 depending on the desired quality/speed tradeoff. We discuss
how we handle divergent triangles in Sec. 6 and assume triangles
to be regular in the remaining of this section.

Triangle decimation Small triangles contribute weakly to the fi-
nal rendering for diffuse indirect lighting [DKH∗14] and we tend
to favor their removal in our pipeline. However, we cannot just dis-
card every triangle smaller than a given threshold, since groups of
small triangles may collectively have an important impact in the
light transport reaching a distant point. We address this problem by
adopting a stochastic decimation approach: we retain the contribu-
tion of heavily tesselated geometry by computing, for each triangle,
a uniform random value uti lying between 0 and 1. We then keep
this triangle if A(ti) > utiS0. Because every triangle is assumed to
be regular, the probability for a triangle to be kept boils down to:

∀ti ∈ L, P(ti ∈ L∗) =
A(ti)
S0

, (2)

where L denotes the set of all triangles and L∗ the set of kept trian-
gles. This means that the smaller a triangle is, the greater its chance
to be discarded becomes. At the same time, this partitioning trans-
lates into a uniform distribution of samples over the entire scene
surface, such that the expectation of the surviving triangle count is
E[Nsample] =

AScene
S0

, with AScene the total scene area.

Triangle multiscale partitioning Once small triangles have been
discarded, we randomly dispatch the remaining ones (L∗) in a par-

tition (L0, . . . ,LN) such that LN contains a few triangles and Lk is
more and more populated when k gets closer to 0. To do so, we in-
troduce the sequence of N + 1 increasing values {S0 < · · ·< SN}
representing the desired VPL partitioning. By further defining in
Alg. 1:

∀k ∈ [0 . . .N], S̃k =
1

∑
k
j=0

1
S j

,

a multiscale partitioning of representative scene triangles emerges
from our decimation strategy (Fig. 3), with the probability for a
triangle to lie in the subset Lk being:

∀k ∈ [0 . . .N], P(ti ∈ Lk) =
A(ti)
Sk

. (3)

Note that, with this definition, a triangle is considered as diver-
gent if its area is greater than S̃N .

In such a way, the key property of our approach at this stage is
that we do not generate, maintain or manage any kind of explicit
hierarchy – because we affect a triangle to a certain subset inde-
pendently from the choice made for any other – while still being
able to later gather an adaptive multiscale light cut. This clearly fa-
vors parallel execution, however, this also means that a given trian-
gle, located in a given subset, does not capture any coarse-grained
information carried by finer triangles. This issue is discussed and
partially addressed in Sec. 5.

Algorithm 1 Multiscale Partition

1: procedure COMPUTELEVEL(uti , ti)
2: for k← 0 . . .N do
3: if uti <

A(ti)
S̃k

then
4: return k
5: end if
6: end for
7: DISCARDTRIANGLE( )
8: end procedure

5. Lighting with VPLs

x, ρx

~nx

t0

. . .

. . .

ti
yi, ρi, A(ti)

H(t i,x
)

~ni

Figure 4: VPL illumination at point x

In the many-lights framework, the indirect outgoing radiance
L(x,~nx) of a point x with normal~nx is approximated by LML(x,~nx)
which is defined as the discrete sum of the radiance coming from a
set of VPLs:

LML(x,~nx) = ∑
ti∈L

H(ti,x,~nx)A(ti), (4)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

where L represents the set of all triangles in the scene and
H(ti,x,~nx) stands for the incoming radiance transfer function start-
ing from ti toward the receiver x oriented by ~nx (Fig. 4). For a dif-
fuse receiver with albedo ρx, this function is defined as:

H(ti,x,~nx) = L(ti, ¯yix)
ρx

π

〈~nx, ¯xyi〉+〈~ni, ¯yix〉+

d2
i

, (5)

where ū = ~u
‖~u‖ , 〈~u,~v〉+ = max(0,〈~u,~v〉), L(ti, ¯yix) is the radiance

leaving the VPL centered at yi ∈ ti toward the direction ¯yix and di =
max(ε,‖ ~xyi‖) is the distance between yi and x clamped to a user
parameter ε to avoid singularities. We model the first diffuse bounce
of light with the following VPL outgoing radiance expression:

L(ti, ¯yix) = ρiE(ti)
3

2π
〈~ni, ¯yix〉+ , (6)

where E(ti) is the direct irradiance falling to the triangle ti. Note
that because of the term 〈~ni, ¯yix〉+, these reflectors cannot be con-
sidered as perfectly lambertian anymore. Although light is there-
fore preferably reflected in the direction of the geometric normal,
our experiments show that no important changes appear, while this
greatly alleviates upcoming computations. The term 3

2π
comes to

ensure energy conservation, with the radiosity B(ti) and the irradi-
ance E(ti) being related by:

B(ti) =
∫

Ω

L(ti,ω)〈~ni,ω〉+ dω = ρiE(ti)

Approximating VPL lighting We propose to approximate the
computation of LML(x,~nx) by summing the contribution of a subset
of VPLs (Fig. 3), i.e. the ones lying in (L0, . . . ,LN). Thus, we de-
fine K(x,~nx) an estimator of LML(x,~nx) as follows:

K(x,~nx) =
N

∑
k=0

∑
ti∈Lk

H(ti,x,~nx)Fk(ti,x), (7)

Fk(ti,x) is an unknown function of the position x, the emitter ti and
the index k. Its equation is derived below.

By computing the expectation of K(x,~nx) over the set of every
possible partition (L0, . . . ,LN), we get:

E [K(x,~nx)] = E

[
N

∑
k=0

∑
ti∈Lk

H(tk
i ,x,~nx)Fk(tk

i ,x)

]

= ∑
ti∈L

H(ti,x,~nx)E

[
N

∑
k=0

Fk(ti,x)1[ti∈Lk ]

]

= ∑
ti∈L

H(ti,x,~nx)
N

∑
k=0

Fk(ti,x)P(ti ∈ Lk), (8)

where 1[ti∈Lk ] is the indicator function, that equals to 1 if ti ∈ Lk

and 0 otherwise. If we want K(x,~nx) to represent an unbiased es-
timator of the incoming radiance LML(x,~nx), we have to verify the
following functional equation on Fk:

∀x, ∑
k

Fk(ti,x)P(ti ∈ Lk) =A(ti). (9)

According to our VPL partitioning strategy (see Eqn. 3), we define

D0

D1

D2

D3

0
f 0(ti,x) f 1(ti,x) f 2(ti,x)

Figure 5: Visualization of our support functions f k(ti,x) on a pla-
nar section, for values ranging from 0 (black) to 1 (white). Bh(ti)
are the isolevels of these functions.

Fk as:

Fk(ti,x) = Sk f k(ti,x),∀[0 . . .N], (10)

which translates the unbiased condition (Eqn. 9) to a partition of
unity problem, seeking for a set of functions ( f k)k such that:

∀x, ∑
k

f k(ti,x) = 1. (11)

Choice of partition of unity Inspired from PBGI tree cuts strate-
gies [Chr08], we introduce a family of nested balls Bh(ti) charac-
terized by h > 0. For a given h, Bh(ti) represents the set of points
for which the contribution of the VPL is significant. This means
that for each point x outside of Bh(ti), the function H(ti,x,~nx) has
a smaller value than h, whatever the orientation of the receiver~nx:

∀h ∈ R∗, Bh(ti) =
{

x ∈ R3 s.t. max
~n

H(ti,x,~n)≥ h
}

. (12)

Furthermore, H(ti,x,~n) (Eqn. 5) is maximal when the receiver is
front facing the emitter, i.e. ~n = ¯xyi. Thus, with our VPL radiance
distribution model, we can write:

Bh(ti) =
{

x ∈ R3 s.t.
‖x− yi‖
〈~ni, ¯xyi〉+

≤ D(h)
}

,

where

D(h) =
1
π

√
3ρxρiE(ti)

2h
.

(13)

Hence, as D(h) does not depend on x, (Bh(ti))h∈R∗ is a family
of nested balls whose frontier owns yi and center lies on the line
(yi,ni) (Fig. 5). We impose that our 3D unit partition ( f k)k is con-
stant over the spheres being the frontier of a Bh(ti). Then, by defin-
ing the following mapping from R3 to R:

∀x ∈ R3, d(ti,x) =
‖x− yi‖
〈~ni, ¯xyi〉+

, (14)

our problem boils down to a 1D partition of unity ( f̃ k)k:

∀x ∈ R3, f k(ti,x) = f̃ k(d(ti,x)). (15)

Since ( f k)k will be used as splatting functions during rendering,
we aim at making them as smooth as possible while keeping them

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

f̃ 0 f̃ 1 f̃ 2 f̃ 3
1

0

0 D0 D1 D2 D3

d

Figure 6: One dimensional partition of unity

easy to compute and define them as the following set of continuous
piecewise affine functions with compact support:

∀d ∈R, f̃ k(d)=


1 if k = 0 and d ∈]0,D1]
d−Dk−1

Dk−Dk−1
if k > 0 and d ∈]Dk−1,Dk]

Dk+1−d
Dk+1−Dk

if k > 0 and d ∈]Dk,Dk+1]

0 otherwise

. (16)

Where {Dk} allow to specify the influence distance of each level
(Fig. 5, 6).

Parameters setting In order to mimic the traditional hierarchi-
cal representations used with light fields, we generate our partition
with subsets size expectation that decreases geometrically. Further-
more, while Sk may be understood as the average surface of trian-
gles lying in the level Lk, we define them by:

Sk = S0µk, (17)

where µ > 1 is a user-defined real number. Depending on the scene
and the number of levels, we typically set µ between 1.4 and 5. In
addition, still by mimicking the hierarchical approaches, we pro-
pose to define the distance of VPLs influence such that each point
in space is reached by a controlled number of VPLs, which may be
translated into: {

Dk =
√
S0µk, ∀k ∈ [0 . . .N]

DN+1 = DN
, (18)

6. Implementation details

We implemented our method with the OpenGL 4.4 API.

Pipeline description As depicted in Fig. 2, our pipeline only con-
tains two geometry draw passes of the entire scene: one to generate
the GBuffer and one to generate and splat the VPLs. This moder-
ate use of the raw geometry is an important metric for our appli-
cation scenarios because we aim at managing scenes with a large
number of polygons. In fact, a third geometry draw pass occurs,
but involves only a fraction of the scene: the divergent triangles.
As the divergence criterion is set such that the number of diver-
gent triangles remains small, this last pass is not computationally
prohibitive. Our algorithm exploits intensively the geometry shader
stage to perform computations on a per-triangle basis rather than a
per-fragment or a per-vertex one. Fortunately, for recent GPU archi-
tecture, the formally prohibitive overhead of the geometry shader
stage has been greatly reduced, enabling polygon-wise computa-
tions for large streams.

Figure 7: FLC on the Crytek Sponza. Top: without the divergent
pipeline, only the heavy tessellated geometry (green flowers and
arc hessian) cast indirect lighting. Bottom: With the full pipeline,
the ground (4 triangles) light bounce reveals much of the scene.

Divergent triangle management Current hardware tessellation
units are not designed to manage massive triangle sets as input,
inducing a noticeable overhead while processing a triangle even if
this triangle does not require any subdivision. At the same time,
the geometry stage of these architectures are extremely efficient at
discarding or letting polygons pass trough, i.e. when no geometry
amplification is mandatory. This motivates us to design our indirect
lighting pipeline with the two following passes. In the first pass, the
entire scene geometry is processed but the tesselation stage is dis-
abled. Divergent triangles are detected at the geometry stage and
stored in a separate buffer, while regular ones are stochastically
sampled. In order to manage scenes with numerous materials and
textures, we also store a per-triangle material index, used in the fol-
lowing pass to fetch information from a material or texture atlas.

Using the OpenGL “glDrawArrayIndirect” feature, the divergent
buffer is subsequently directly used as input geometry for the sec-
ond pass without any CPU synchronization. The tessellation stage
is solely activated for this particular pass and used to subdivide the
triangles such that their area becomes small enough to be processed
by our regular pipeline. In general, the number of large triangles is
relatively small compared to the total triangle count. Consequently,
the overhead induced by the divergent buffer filling and vertex pro-
cessing is negligible compared to the visual effect improvement
(see Fig. 7 for instance).

Per-triangle random number generation To evaluate Alg. 1 for
each triangle, we use a pseudo-random value for the variable uti .
The generation of this value only requires the mesh to own an addi-
tional per-vertex uint32 attribute – v_rand. This attribute is initial-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Algorithm 2 Per-triangle random value computation

1: uniform uint32 u_rand
2: uniform texture2D noise
3: function REGULARRAND(ivec3 v_rand)
4: return u_rand xor v_rand.x xor v_rand.y xor v_rand.z
5: end function
6: function DIVERGENTRAND(ivec3 v_rand, vec2

tess_coord[3])
7: ivec3 v_tess_rand
8: v_rand_tess.x = TEXTURE(noise, tess_coord[0])
9: v_rand_tess.y = TEXTURE(noise, tess_coord[1])

10: v_rand_tess.z = TEXTURE(noise, tess_coord[2])
11: return REGULARRAND(v_rand xor v_tess_rand)
12: end function

v_rand_tess[0]
v_rand[0]

v_rand[1]

v_rand[2]
v_rand_tess[2]

v_rand_tess[1]

tess
_co

ord[i]

NOISE

noise[tess_coord[i]]

(b) (c)(a)
TESSELATOR

Figure 8: Generation of per-triangle uniform random values in the
divergent pipeline. Each divergent triangle (a) is first subdivided.
For each sub-vertex (b), its barycentric coordinates tess_coord are
used to fetch a random value in the noise texture. Finally the fetched
value is used to initialize the subtriangle (c) random attribute.

ized when loading the mesh with random values uniformly chosen
between 0 and 232−1. In the regular pipeline, at the geometry shad-
ing stage, uti is computed as a xor between the random attributes
of the three vertices of ti. Note that the choice of the xor opera-
tor avoids correlation among two or three triangles. Moreover, new
random values can be generated at any time by using u_rand, a
global uniform random value that may be updated at most once per
frame. Being xor’d with the original per-vertex values, it allows to
get whole new random distributions over the mesh (Alg. 2).

For the divergent pipeline, the construction of uti is quite more
subtle. Indeed, this value remains unaltered, even under camera mo-
tion or mesh deformation, i.e. as long as the mesh topology remains
the same. To preserve these properties, we perform the tessellation
in the model space and exploit the fact that the tessellation pat-
tern only depends on the input triangle shape. Indeed, in our use
cases, the tessellation parameters are only determined by the origi-
nal triangle area. Therefore, during the tessellation evaluation stage,
we use the barycentric coordinates of the generated vertices to fetch
a uint32 value, named v_rand_tess, from a precomputed noise tex-
ture. Thus, to generate uti for a triangle sprung from the subdivi-
sion, we compute a xor between the three v_rand_tess, the three
base triangle v_rand and finally the global uniform random value
u_rand (Fig. 8, Alg. 2).

Progressive Rendering Since the VPL support functions defined
in Eqn. 16 are smooth, our algorithm produces at each frame a vi-
sually plausible rendering without high frequency artifacts. Never-
theless, with the aforementioned global uniform variable u_rand,
it is straightforward to generate many independent renderings of

Cornell Box Power Plant
Tiling ×64 Tiling ×64

GBuffer + SM 0.3 3.6
Indirect 3.5 8.5

Regular Pipeline 0.9 6.5
Divergent Pipeline 1.0 0.8
Upscaling + Blur 1.2 1.2

Full frame 3.8 12.1

Table 1: Rendering time break drown (ms) at 1280× 720 resolu-
tion, for the Cornell Box (1K tri.) and the PowerPlant (12M tri.)

the same scene with our approach. In addition, for each triangle,
we can easily derive two new independent random values from
u_rand. These values are used to jitter the VPL center yi defined
in Eqn. 5 over the triangle ti. Then, by averaging all these render-
ings with jittered VPLs, Eqn. 8 provides a result that is close to
the true solution of our problem, i.e. the computation of the first
bounce outgoing radiance on surface composed of diffuse reflec-
tors and ignoring indirect visibility. While this means that indirect
lighting is computed by integrating over every scene triangle, this
progressive version of our technique is able to manage any kind of
disturbed geometry (e.g. normal mapping, alpha tested) and could
also be extended to manage emissive textured geometry (Fig. 11).

Splatting indirect illumination The way the VPL contributions
are summed to simulate the indirect lighting is orthogonal to the
previous discussion. Hence, to keep a simple pipeline, we use a
splatting strategy similar to deferred lighting [ST90]. In particu-
lar, this allows to manage geometry decimation, VPL generation
and lighting in a single shader program. Indeed, besides determin-
ing whether a triangle is divergent or not and which is the level
of generated VPLs, we use the geometry shader to transform in-
put triangles in sized point primitives which encompasses the un-
derlying VPL screen space function support. Although the major
drawback of such a single-pass lighting pipeline is the fillrate con-
sumption, our algorithm aims at simulating a low frequency phe-
nomenon. Therefore, undersampling the resulting signal appears as
a reasonnable optimization. To do so, we partition the viewport in
4Ntiling_level tiles and assign to each pixel in the viewport a unique tile
pixel at the same relative location – this technique is often referred
as interleaved sampling [KH01, LSK∗07]. Next, at splatting time,
a tile is randomly chosen for each VPL thus dividing the number
of touched pixels by 4Ntiling_level . We finally recompose the image by
untiling the buffer and blurring it to remove the generated noise.

7. Results

All our experiments are performed on a standard PC equipped with
a Quadro M6000 GPU. Tab. 1 gathers timings of our FLC algorithm
on two scenes: one very simple and one containing a much more
complex geometry. We observe that the overall performance of our
algorithm mainly depends on two factors: the framebuffer resolu-
tion and the number of triangles composing the scene (Fig. 13).
Note also that the divergent pipeline costs roughly the same in both
cases.

When geometry is not the bottleneck, the framerate heavily de-
pends on the number of lower resolution subtiles used when splat-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Model Direct lighting only With SSDO With DSS With FLC (ours)

Sponza
270k tri. 4ms 7ms 19ms 8ms

Oil Platform
700k tri. 1ms 5ms 22ms 14ms

Car
3M tri. 2ms 6ms 28ms 20ms

San Miguel
12M tri. 9ms 13ms 35ms 22ms

Lucy
28M tri. 18ms 20ms 80ms 35ms

Table 2: Comparisons performed at a 1280x720 resolution. All high resolution images are provided as supplemental material.

ting indirect illumination. However, even if no information is lost
from the viewport sampling, reducing subtile resolution also comes
with drawbacks such as removing geometry details in shadowed
area (Fig. 9), due to the indirect lighting interpolation. The num-
ber of required VPLs depends on the scene (Fig. 10) and induces
fillrate, bandwidth and shading costs which obviously influences
the FLC framerate. However, although the number of used VPLs
is proportional to rendering time, the overall visual quality does
not map linearly to this value. In fact, we observe that the degra-
dation brought with our downscale strategy is well compensated
by increasing the number of VPLs. This allows trading VPLs for
subtiles to adjust a visually pleasant real-time framerate.

Comparison We evaluate our FLC approach against two algo-
rithms that we reimplemented in our framework: the popular SSDO
method [RGS09] and the more recent DSS approach [NRS14].
These two algorithms share the same properties as our FLC
method: (i) they run in real time (ii) with no preprocessing (i.e.,
on fully dynamic scenes) and they reproduce one-bounce, unshad-
owed diffuse indirect lighting. We perform our comparison using 5
scenes that exhibit different structures, polygon counts and lighting

conditions. Table 2 provides resulting images obtained by the three
different approaches and reports the complete frame generation
time in each case. First, we can observe that our method succeeds
at producing similar or better result than DSS, while being signifi-
cantly faster. This behavior is emphasized when the polygon count
grows and can be explained by our rerouting strategy, which re-
duces significantly the tessellator work load for large models. Sec-
ond, when comparing to SSDO, we can observe that this method
often fails at revealing the scene regions which are not directly
lit, but should receive a signifcant amount of first bounce indirect
lighting. Of course, being fully screen-space, the SSDO framerate
remains high even with large scenes, but the visual improvement
appears to be small compared to direct lighting only, while our ap-
proach, just such as DSS, reproduces better and more consistent
long range indirect lighting. In addition, Fig. 11 illustrates the ex-
ecution of our approach when enabling progressive rendering. We
compute the average of many renderings for which we change the
random seed at each frame. Each rendering is done with a high
number of subtiles and a few number of VPLs which allows to im-
prove the rendering time until convergence. We can visually assess

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Figure 11: (Left) Progressive rendering (250ms) by averaging 50
renderings. (Right) Real time rendering (14 ms).

that, at the cost of a longer rendering time, this strategy allows to
completely remove any kind of artifact (like spikes).

Limitations and future work Our algorithm does not produce in-
direct shadow casting (Fig. 12) nor multiple light bounces since
splatting indirect illumination in screen space does not provide
any direct mean to simulate such phenomena. A future approach
would be to incorporate object space strategies [OBA12] to address
these issues, while still preserving the scalability and full dynamic-
compatibility of our method. The second limitation of our approach
is its current restriction to diffuse indirect lighting: incorporating
glossy reflectors in our mathematical framework is an important re-
search direction for managing scenes which are complex both from
a geometric and a material point-of-view.

8. Conclusion

We have proposed Forward Light Cuts, a novel approach to com-
pute diffuse indirect global illumination in real-time. Our geomet-
ric method generates VPLs using a stochastic decimation process
of the input triangles within a two-stages pipeline that either sim-
plifies or refines the scene’s geometry to reach a suitable radi-
ance caching resolution. Our approach does not imply any complex
preprocessing nor requires carrying complex data structures over
frames. It is compatible with large fully dynamic scenes, including
light, view point and geometry animations. Last, in terms of inte-
gration, our approach naturally fits modern graphics pipelines and
does not make any strong assumption on the complementary ren-
dering techniques employed by the host application. In addition to
the mathematical basis of our method, we evaluated it on a number
of scenes with high polygon counts, ranging from CAD models to
scans, and reported interactive performances in each case.

References

[BBH13] BARÁK T., BITTNER J., HAVRAN V.: Temporally coherent
adaptive sampling for imperfect shadow maps. In Comp. Graph. Forum
(2013), vol. 32, pp. 87–96. 2

[BJ03] BASRI R., JACOBS D. W.: Lambertian reflectance and linear sub-
spaces. IEEE Trans. PAMI 25, 2 (2003), 218–233. 1

[Chr08] CHRISTENSEN P.: Point-based approximate color bleeding.
Pixar Technical Notes 2, 5 (2008), 6. 2, 5

[DGR∗09] DONG Z., GROSCH T., RITSCHEL T., KAUTZ J., SEIDEL
H.-P.: Real-time indirect illumination with clustered visibility. In Proc.
VMV (2009), pp. 187–196. 2

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE
A., WALTER B., NOVÁK J.: Scalable realistic rendering with many-
light methods. In Comp. Graph. Forum (2014), vol. 33, pp. 88–104. 2,
4

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps.
In Proc. I3D (2005), pp. 203–231. 2

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect illu-
mination. In Proc. I3D (2006), pp. 93–100. 2

[HKL16] HEDMAN P., KARRAS T., LEHTINEN J.: Sequential monte
carlo instant radiosity. In Proc. I3D (2016), pp. 121–128. 2

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. In Comp. Graph. Forum
(2011), vol. 30, pp. 1233–1240. 2

[Kaj86] KAJIYA J. T.: The rendering equation. In Proc. SIGGRAPH
(1986), vol. 20, pp. 143–150. 1

[Kel97] KELLER A.: Instant radiosity. In Proc. SIGGRAPH (1997),
pp. 49–56. 2

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. Springer,
2001. 7

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTINEN J.,
AILA T.: Incremental instant radiosity for real-time indirect illumina-
tion. In Proc. EGSR (2007), pp. 277–286. 2, 7

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In SIGGRAPH
2007 courses (2007), pp. 97–121. 2

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Fast global illumination approximations on deep G-buffers.
Tech. rep., Tech. Rep. NVR-2014-001, NVIDIA Corporation., 2014. 2

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep screen
space. In Proc. I3D (2014), pp. 79–86. 3, 8

[OA11] OLSSON O., ASSARSSON U.: Tiled shading. Journal of Graph-
ics, GPU, and Game Tools 15, 4 (2011), 235–251. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered de-
ferred and forward shading. In Proc. HPG (2012), pp. 87–96. 2, 9

[PKD12] PRUTKIN R., KAPLANYAN A., DACHSBACHER C.: Reflec-
tive shadow map clustering for real-time global illumination. In Proc.
EUROGRAPHICS Short Papers (2012), pp. 9–12. 2

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. In Comp. Graph.
Forum (2012), vol. 31, pp. 160–188. 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL H.-P.,
KAUTZ J., DACHSBACHER C.: Micro-rendering for scalable, parallel
final gathering. In ACM Trans. Graph. (2009), vol. 28, p. 132. 1, 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-P.,
DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for efficient
computation of indirect illumination. In ACM Trans. Graph. (2008),
vol. 27, p. 129. 2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating dy-
namic global illumination in image space. In Proc. I3D (2009), pp. 75–
82. 2, 8

[RH01] RAMAMOORTHI R., HANRAHAN P.: On the relationship be-
tween radiance and irradiance: determining the illumination from images
of a convex lambertian object. JOSA A 18, 10 (2001), 2448–2459. 1

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. In Proc. SIGGRAPH (1990), vol. 24, pp. 197–206. 7

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable approach to
illumination. In ACM Trans. Graph. (2005), vol. 24, pp. 1098–1107. 1,
2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

(a) (b) (c) (d)

Figure 9: Influence of the tiling resolution parameter on the Lucy statue (28M triangles) in the Cornell Box model. The viewport resolution
is 1024×1024 pixels and we vary the tiling level from 0 (a) to 3 (d). Because of indirect light interpolation, Lucy’s face details are more and
more blurred while reducing resolution. At the same time, the indirect splatting time is reduced from 93 ms (a), to 48 ms (b) and 33 ms (c,
d). (c) and (d) rendering times do not vary because our algorithm is no more fillrate bottlenecked at this level.

(a) (b) (c) (d)

Figure 10: Indirect illumination computed with our algorithm on the Cornell Box model at 1024×1024 resolution. We fixed the number of
partitions level to N = 5 and we compare the results by varying Navg, i.e. the approximate number of VPLs influencing every pixel. Rendering
times are directly proportional to this number – (a) Navg = 64 is rendered in less than 1ms, (b) Navg = 128 in 3ms, (c) Navg = 256 in 7ms, (d)
Navg = 512 in 14ms. The close-up shows the typical artifacts appearing when N is not high enough.

Figure 12: Limitaton. Comparison between our technique (left) and a ground truth solution (right) for the first indirect light bounce. The
ground truth is rendered with path tracing using 8196 samples per pixels. We can observe the missing contact indirect shadow in our solution,
mainly visible at the pillar bases on the right. Underneath the right archs also appears much brighter than the reference in our solution, which
is due to the fact that the entire left facade illuminates this region without being occluded by the first floor.

(a) (b) (c)

Figure 13: FLC on the Power Plant model (12M triangles). The scene is rendered at 2560× 1440 pixels resolution in 8 ms for the direct
lighting (a) and 25 ms for the direct and indirect lighting (c) per frame.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


	Harvest4D-deliverable-D3.31_base
	PMAT
	FPBGI_lowres
	HSGS
	ohrhallinger-2016-sgp-paper
	MADVolumeRemesher
	FLC



