
Publications for Task 8.1
Deliverable 8.11
Date: 6.7.2015

Grant Agreement number: EU 323567

Project acronym: HARVEST4D

Project title: Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds

 i

Document Information
Deliverable number D8.11

Deliverable name Publications for Task 8.1

Version 0.1

Date 2015-07-06

WP Number 8

Lead Beneficiary PARISTEC

Nature R

Dissemination level PU

Status Final

Author(s) VUT

Revision History
Rev. Date Author Org. Description

0.1 2015-07-06 Michael Wimmer VUT Draft

Statement of originality
This deliverable, although of public dissemination level, may at the time of delivery still contain

original unpublished work (e.g., accepted papers that are not public yet, or papers under

revision). Acknowledgement of previously published material and of the work of others has been

made through appropriate citation, quotation or both.

 ii

TABLE OF CONTENTS

1 Executive Summary ... 1

1.1 Introduction ... 1

1.2 Publications .. 1

2 Description of Publications ... 2

2.1 Overview .. 2

2.2 Smooth, Interactive Rendering Techniques on Large-Scale, Geospatial Data in Flood

Visualisations .. 4

2.3 Large-Scale Point-Cloud Visualization through Localized Textured Surface

Reconstruction ... 5

2.4 Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction............................ 6

2.5 Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture

Functions .. 7

2.6 Adaptively Layered Statistical Volumetric Obscurance.. 8

2.7 Visibility sweeps for joint-hierarchical importance sampling of direct lighting for

stochastic volume rendering .. 8

2.8 Field-Aligned Mesh Joinery .. 9

3 Appendix ... 9

Deliverable D8.11 1/9

1 EXECUTIVE SUMMARY

1.1 INTRODUCTION

This deliverable describes the publications that resulted from Task 8.1, and how they fit into the

work plan of the project.

The objective of Task 8.1 is to develop new visualization strategies for large time-dependent data

that combine efficiency and generality. Several publications in this direction have been produced,

focusing on various aspects of rendering. They include rendering of large-scale data with dynamic

annotations, rendering of point clouds with images, rendering of models with enhanced

reflectance models (BSVTF), enhancing rendering using global illumination effects, as well as

physical rendering.

1.2 PUBLICATIONS

The following 7 publications are mainly associated with Task 8.1 and can be found in the appendix

of this deliverable:

 Christian Kehl, Tim Tutenel and Elmar Eisemann

Smooth, Interactive Rendering Techniques on Large-Scale, Geospatial Data in Flood

Visualisations

ICT Open, 2013

 Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, Michael Wimmer

Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction

IEEE Transactions on Visualization & Computer Graphics, 20(9):1280-1292, September 2014

 Murat Arikan, Reinhold Preiner, Michael Wimmer

Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction

IEEE Transactions on Visualization & Computer Graphics, preprints, 2015

 Christopher Schwartz, Roland Ruiters, and Reinhard Klein

Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

Computer Graphics Forum (Proc. of Pacific Graphics), 32(7):345-354, Oct. 2013

 Quintijn Hendrickx, Leonardo Scandolo, Martin Eisemann , Elmar Eisemann

Adaptively Layered Statistical Volumetric Obscurance

In Proceedings of High-Performance Graphics, 2015

 Thomas Kroes, Martin Eisemann, and Elmar Eisemann.

Visibility sweeps for joint-hierarchical importance sampling of direct lighting for stochastic

volume rendering.

Deliverable D8.11 2/9

In Proceedings of the 41st Graphics Interface Conference (GI '15). Canada, p 97-104, 2015.

BEST STUDENT PAPER AWARD!

 Paolo Cignoni, Nico Pietroni, Luigi Malomo, Roberto Scopigno

Field-Aligned Mesh Joinery

ACM Transactions on Graphics (TOG), Volume 33 (1), 2014

Several other papers are related to Task 8.1. They can be found in the deliverables they mainly

contribute to:

 Mohamed Radwan, Stefan Ohrhallinger, Michael Wimmer

Efficient Collision Detection While Rendering Dynamic Point Clouds

Graphics Interface, p 25-33. 2014

(Task 3.2)

 Johannes G. Leskens, Christian Kehl, Tim Tutenel, Timothy Kol, Gerwin de Haan, Guus Stelling,

Elmar Eisemann

An interactive simulation and visualization tool for flood analysis usable for practitioners

Mitigation and Adaptation Strategies for Global Change, May 2015

(Task 8.2)

 Tim Tutenel, Christian Kehl, Elmar Eisemann

Interactive visual analysis of flood scenarios using large-scale LiDAR point clouds

Geospatial World Forum 2013, May 2013

(Task 8.2)

2 DESCRIPTION OF PUBLICATIONS

2.1 OVERVIEW

The main objective of this task is to develop new methods for efficient visualization of large

multimodal and/or time-dependent data. The publications in this deliverable focus on several

aspects:

 Out-of-core rendering of very large data sets (i.e., floods) [Kehl et al. 2013]

 Out-of-core rendering of large point clouds with images [Arikan et al. 2014, Arikan et al. 2015].

We explored two methods, one based on mesh rendering and another on ray tracing the

point-based model directly.

 Out-of-core rendering of realistic surface descriptions [Schwartz et al. 2013], in particular,

focusing on Bidirectional Sparse Virtual Texture Functions.

 Screen-space enhancement of rendering using ambient occlusion [Hendrickx et al. 2015].

 Enhancing volume rendering using advanced illumination effects [Kroes et al. 2015]. We

explored both direct lighting of volume rendering, as well as rendering ambient-occlusion

effects in volumes.

Deliverable D8.11 3/9

 Physical rendering [Cignoni et al. 2014]

These contributions cover a range of application scenarios in this task and Harvest4D. The

publications on out-of-core rendering, in particular, show different tradeoffs between data-set

size and visualization quality and accuracy.

The first paper [Kehl et al. 2013] deals with very large data sets (several Terabytes), which occur in

flood visualizations. Here the focus is on a strong out-of-core strategy, and methods to

interactively modify the visualization, introducing time-dependency. The interactive modifications

work for the application scenario of 2.5D data, e.g., floods.

The two publications on rendering points with images [Arikan et al. 2014, Arikan et al. 2015] deal

with smaller (but still large) data sets, but introduce higher quality due to the direct use of

photographs taken of the scene. This allows a reconstruction with very high quality both for

geometry and textures. This method also allows the fast integration of new data – not in real

time, but much faster than a whole rebuild of the data structure would take. Both geometry and

image data are handled out-of-core in this method

Finally, the publication on realistic surface descriptions [Schwartz et al. 2013] handles normal-

sized models, but adds another level of quality by introducing a highly realistic surface

description, Bidirectional Sparse Virtual Texture Functions. Here, the reflectance data is handled

out-of-core due to its large size.

While these publications all deal with out-of-core rendering, there are further contributions that

focus on other aspects of rendering. The first method [Hendrickx et al. 2015] adds ambient

occlusion effects and applies to any rendering method that produces a depth buffer, since it

works entirely in screen space. Thus, it also applies to the rendering methods discussed so far. The

second one [Kroes et al. 2015] deals with a modality that has so far not been treated in

Harvest4D, namely volume data sets. Here, an efficient importance-sampling method is

developed for high-quality illumination in volume datasets. We will investigate whether this

method could also be generalized to other data sets that involve very dense samples, like the

methods working on large point-based data.

Finally, we also explore the option of breaking out of the screen entirely and moving towards a

physical representation of data using an illustrative arrangement of geometry to represent a

model [Cignoni et al. 2014].

Deliverable D8.11 4/9

2.2 SMOOTH, INTERACTIVE RENDERING TECHNIQUES ON LARGE-SCALE, GEOSPATIAL

DATA IN FLOOD VISUALISATIONS

Figure 1: Point-cloud of a coastal area with a dyke that has been interactively added to the data set using our system.

In this paper [Kehl et al. 2013], we present new approaches to render and interact with detail-

varying LiDAR point sets, which, due to the enormous data size, cannot currently be rendered

interactively without significantly compromising quality. Furthermore, our approach allows the

attachment of large-scale geospatial meta information and the modification of point attributes on

the fly. The core of our algorithm is a dynamic GPU-based hierarchical tree data structure that is

used in conjunction with an out-of-core, Level-of-Detail Point-based Rendering algorithm to

modify data on the fly. This combination makes it possible to augment the original data with

dynamic context information that can be used to highlight features (e.g., routes, marked areas) or

to reshape the entire data set in real-time.

We showcase the usefulness of our algorithm in the context of disaster management and

illustrate how decision makers can discuss a flood scenario covering a large area (spanning 300

km2) and discuss hazards, as well as related protection measures, interactively. One of our

presented reference point sets includes parts of the AHN2 data set (14 TB of LiDAR data in total)

(see Figure 1). Previous rendering algorithms relied on a long offline preprocessing (several hours)

to ensure a quick data display. This step made any changes to the data impossible. With our new

approach, we can modify point sets without requiring a new preprocessing run.

Deliverable D8.11 5/9

2.3 LARGE-SCALE POINT-CLOUD VISUALIZATION THROUGH LOCALIZED TEXTURED

SURFACE RECONSTRUCTION

Figure 2: A large-scale reconstructed 3D scene colored via photos shot from a few positions (see left). A segmentation
algorithm associates a photo to each location, while optimizing for visual fidelity.

In Harvest4D, a broad variety of inputs such as image data or points are fused into a high-quality

data representation. To handle their massive size, these data sets usually have to be treated out-

of-core. One example is our work on high-quality textured archaeological data sets, where high-

resolution images are used to texture a detailed mesh to achieve a high-quality reconstruction

[Arikan et al. 2014]. Our solution relies on a resampling of the input point cloud using depth

meshes created from the input cameras. For each mesh part, the best image is chosen using a

graphcut optimization that takes geometric and image-based criteria into account. Since this

optimization can be performed on a single depth mesh at a time, the algorithm is localized and

can run out of core. It automatically generates a texture atlas in significantly less time than

existing solutions and allows us to apply online virtual texturing to obtain a streaming out-of-core

high-quality visualization system (Figure 2).

file:///C:/Users/wimmer/Dropbox/harvest4d/M12 Report & Deliverables/media1.avi

Deliverable D8.11 6/9

2.4 MULTI-DEPTH-MAP RAYTRACING FOR EFFICIENT LARGE-SCENE RECONSTRUCTION

Figure 3: Equal-time and equal-quality comparisons for our method for the scene shown on the left.

In this work [Arikan et al. 2015], we revisit the problem of rendering large point clouds with

images. In particular, we found that the rendering performance of original method [Arikan et al.

2014] is strongly dependent on the number of depth maps and their resolution. Moreover, for the

proposed scene representation, every single depth map has to be textured by the images, which

in practice heavily increases processing costs. In this paper, we thus present a novel method to

break these dependencies by introducing an efficient raytracing of multiple depth maps. In a

preprocessing phase, we first generate high-resolution textured depth maps by rendering the

input points from image cameras and then perform a graphcut based optimization to assign a

small subset of these points to the images. At runtime, we use the resulting point-to-image

assignments (1) to identify for each view ray which depth map contains the closest ray-surface

intersection and (2) to efficiently compute this intersection point. The resulting algorithm

accelerates both the texturing and the rendering of the depth maps by an order of magnitude. An

equal-time/equal-quality comparison can be found in Figure 3.

Deliverable D8.11 7/9

2.5 LEVEL-OF-DETAIL STREAMING AND RENDERING USING BIDIRECTIONAL SPARSE

VIRTUAL TEXTURE FUNCTIONS

Figure 4: Rendering quality comparison of our new BSVTF technique.

In this work, we move towards a higher-quality material representation, thus establishing a link

between WP8 and WP7, i.e., we combine high-quality reflectance information with out-of-core

techniques. In particular, Bidirectional Texture Functions (BTFs) are among the highest quality

material representations available today and thus well suited whenever an exact reproduction of

the appearance of a material or complete object is required. BTFs are usually measured from real-

world samples and easily consist of tens or hundreds of gigabytes. By using data-driven

compression schemes, such as matrix or tensor factorization, a more compact but still faithful

representation can be derived. This way, BTFs can be employed for real-time rendering of photo-

realistic materials on the GPU. However, scenes containing multiple BTFs or even single objects

with high-resolution BTFs easily exceed available GPU memory on today’s consumer graphics

cards unless quality is drastically reduced by the compression.

In this publication [Schwartz et al. 2013], we therefore propose the Bidirectional Sparse Virtual

Texture Function, a hierarchical level-of-detail approach for the real-time rendering of large BTFs

that requires only a small amount of GPU memory. More importantly, for larger numbers or

higher resolutions, the GPU and CPU memory demand grows only marginally and the GPU

workload remains constant. For this, we extend the concept of sparse virtual textures by choosing

an appropriate prioritization, finding a trade off between factorization components and spatial

resolution. Besides GPU memory, the high demand on bandwidth poses a serious limitation for

the deployment of conventional BTFs. We show that our proposed representation can be

combined with an additional transmission compression and then be employed for streaming the

BTF data to the GPU from local storage media or over the Internet. In combination with the

introduced prioritization, this allows for the fast visualization of relevant content in the user’s field

of view and a consecutive progressive refinement. See Figure 4 for a comparison.

Deliverable D8.11 8/9

2.6 ADAPTIVELY LAYERED STATISTICAL VOLUMETRIC OBSCURANCE

Figure 5: Statistical volumetric obscurance (c) achieves higher quality than point sampling (a) or line sampling (b) at
similar computational time.

In this work [Hendrickx et al. 2015], we aim to improve the rendering quality of images obtained

using other techniques in this task. The idea is to apply a screen-space postprocessing pass that

adds shading effects based on the local geometry. In particular, we accelerate volumetric

obscurance, a variant of ambient occlusion, and solve undersampling artifacts, such as banding,

noise or blurring, that screen-space techniques traditionally suffer from. We make use of an

efficient statistical model to evaluate the occlusion factor in screen-space using a single sample.

Overestimations and halos are reduced by an adaptive layering of the visible geometry. Bias at

tilted surfaces is avoided by projecting and evaluating the volumetric obscurance in tangent space

of each surface point. We compare our approach to several traditional screen-space ambient

obscurance techniques and show its competitive qualitative and quantitative performance (see

Figure 5). Our algorithm maps well to graphics hardware, does not require the traditional bilateral

blur step of previous approaches, and avoids typical screen-space related artifacts such as

temporal instability due to undersampling.

2.7 VISIBILITY SWEEPS FOR JOINT-HIERARCHICAL IMPORTANCE SAMPLING OF DIRECT

LIGHTING FOR STOCHASTIC VOLUME RENDERING

Figure 6: Comparison of our technique (blue) to uniform sampling (red) and importance sampling of the environment
map (yellow), showing the faster convergence with less samples.

In this work [Kroes et al. 2015], we investigate high-quality rendering for a modality not handled

so far in Harvest4D, namely volumes. Physically based light transport in heterogeneous volumetric

Deliverable D8.11 9/9

data is computationally expensive because the rendering integral (particularly visibility) has to be

stochastically solved. We present a visibility estimation method in concert with an importance-

sampling technique for efficient and unbiased stochastic volume rendering. Our solution relies on

a joint strategy, which involves the environmental illumination and visibility inside of the volume.

A major contribution of our method is a fast sweeping-plane algorithm to progressively estimate

partial occlusions at discrete locations, where we store the result using an octahedral

representation. We then rely on a quadtree-based hierarchy to perform a joint importance

sampling. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is

applicable to a various volume data sets, dynamic transfer functions, and changing environmental

lighting. Figure 6 shows a comparison to previous sampling techniques.

2.8 FIELD-ALIGNED MESH JOINERY

Figure 7: An example of an illustrative representation of a 3D model that was physically fabricated by means of a set
of interlocking planar shapes that are able to convey the overall shape of the object..

Finding new ways to illustrate geometric data is one the objectives of this WP. In this context we

have developed a new approach for the illustrative visualization of geometric data that relies on

physical fabrication. In Mesh joinery, we have achieved an innovative method to produce complex

fabricable structures in an efficient and visually pleasing manner. We represent an input geometry

as a set of planar pieces, which are arranged to compose a rigid structure by exploiting an

efficient slit mechanism [Cignoni et al. 2013] (see Figure 7)

3 APPENDIX

The following pages contain all the publications that are directly associated with this deliverable.

Other publications referenced in this deliverable can be found in the public Harvest4D webpage

(for already published papers), or in the restricted section of the webpage (for papers under

submission, conditionally accepted papers, etc.).

11

Field-Aligned Mesh Joinery

PAOLO CIGNONI and NICO PIETRONI
CNR - ISTI
LUIGI MALOMO
University of Pisa
and
ROBERTO SCOPIGNO
CNR - ISTI

Mesh joinery is an innovative method to produce illustrative shape ap-
proximations suitable for fabrication. Mesh joinery is capable of producing
complex fabricable structures in an efficient and visually pleasing manner.
We represent an input geometry as a set of planar pieces arranged to com-
pose a rigid structure, by exploiting an efficient slit mechanism. Since slices
are planar, to fabricate them a standard 2D cutting system is enough.

We automatically arrange slices according to a smooth cross-field defined
over the surface. Cross-fields allow representing global features that char-
acterize the appearance of the shape. Slice placement conforms to specific
manufacturing constraints.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling

General Terms: Algorithms, Design

Additional Key Words and Phrases: Geometry processing, object fabrica-
tion, manufacturing

ACM Reference Format:

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014.
Field-aligned mesh joinery. ACM Trans. Graph 33, 1. Article 11 (January
2014) 12 pages.
DOI: http://dx.doi.org/10.1145/2537852

1. INTRODUCTION

In this article we introduce mesh joinery, a novel and practical
approach to fabricate artistic illustrative shape approximations made

The research leading to these results was partially funded by EU FP7 project
ICT FET Harvest4D (http://www.harvest4d.org/, G.A. no. 323567).
Authors’ addresses: P. Cignoni (corresponding author) and N. Pietroni,
Visual Computing Lab, CNR-ISTI, Italy; email: cignoni@isti.cnr.it; L. Mal-
omo, Computer Science Department, University of Pisa, Italy; R. Scopigno,
Visual Computing Lab, CNR-ISTI, Italy.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2014 ACM 0730-0301/2014/01-ART11 $15.00

DOI: http://dx.doi.org/10.1145/2537852

up of several interlocked planar pieces, called slices. Such slices can
be easily fabricated using any 2D cutting device and then assembled
through a sequence of manual operations.

Compared to previous approaches (such as McCrae et al. [2011],
Hildebrand et al. [2012], and Schwartzburg and Pauly [2012]) we
oriented the slices according to a given cross-field defined on the
surface. As most of the recent quadrangulation papers have shown
[Ray et al. 2006; Kälberer et al. 2007; Bommes et al. 2009, 2012;
Pietroni et al. 2011], cross-fields are an excellent instrument for
capturing the global structure of a given shape.

We provide a novel formalism to design a slice-to-slice interlock-
ing system. This formalism provides enough degrees of freedom to
follow complex cross-fields and, consequently, to efficiently ap-
proximate the global structure that characterizes the input shape.
Additionally, we ensure a sufficient degree of physical stability of
the final structure along with the sequence of manual operations
required for the assembly procedure.

Our approach provides limited but low-cost solutions due to the
simple cutting technologies employed and the relatively inexpensive
material used (such as cardboard). Although the proposed slice
structure approximates, to some extent, the original geometry, it
cannot be considered as a “physical copy”. Nevertheless, we believe
that our approach could be attractive in specific markets, such as
in artistic or illustrative contexts, in puzzles or toys, and where
assembly is a key part of user experience.

1.1 Motivation

Rapid prototyping [Dimitrov et al. 2006] has been developed over
the last decade to support the manufacturing process, especially for
the production-quality parts in relatively small numbers. It exploits
a wide variety of basic technologies to create real-world tangible re-
productions from 3D digital models. While initially the range of ma-
terials was very limited, modern technologies enable a wide range of
materials (plastic, glued gypsum, steel, ceramic, stone, wood, etc.)
to be used. At the same time, the printing resolution has improved
substantially and, consequently, accuracy in terms of reproduction
has reached high standards. Nevertheless, rapid prototyping is still
perceived as being too expensive for the mass market. Moreover,
the input geometry has to satisfy certain geometric characteristics
(manifoldness, watertightness, etc.) and static mechanical proper-
ties, in order to produce a compact, high-quality, fabricated model
that is free of artifacts.

A few years ago radically new paradigms for shape fabrication
were proposed [Mitani and Suzuki 2004; Shatz et al. 2006;
Massarwi et al. 2007; Mori and Igarashi 2007; Li et al. 2010]. The
main idea was to drastically simplify the overall printing procedure
by fabricating a plausible representation of the digital model,
instead of its exact copy. This class of methods relies on a simple

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:2 • P. Cignoni et al.

Fig. 1. Given a 3D shape with a smooth cross-field, we generate a set of planar slices that can be interlocked in a self-supporting structure.

concept: approximating an object does not necessarily mean that
there will be a visual deficit.

A recent approach proposed approximating the surface using an
orthogonal arrangement of planar pieces [Hildebrand et al. 2012].
The slices are plugged into each other to compose a rigid shape.

1.2 Contributions

We redesigned the traditional slice interlocking approach in or-
der to approximate generic 3D surfaces with greater flexibility. We
focused on building arrangements composed of shallow ribbon-
shaped pieces which follow a cross-field defined on the surface.
These structures are made up of planar pieces that interlock with
each other using an extended slit mechanism. Specifically, our con-
tributions are as follows.

—We propose a novel strategy to fabricate illustrative shape ap-
proximations based on ribbon-shaped planar slices. Compared to
classical planar sections [Hildebrand et al. 2012], ribbon-shaped
slices reduce the physical constraints involved in the assembling
procedure, allowing for more complex structures.

—We extend the classical slit mechanism [Hildebrand et al. 2012]
by providing additional structural degrees of freedom. In partic-
ular, we consider insertion movements that are not orthogonal to
slices. In addition, we formulated nonorthogonal slice placement
[McCrae et al. 2011; Schwartzburg and Pauly 2012] in a novel,
structurally sound perspective. We have demonstrated how these
additional degrees of freedom can be exploited to efficiently rep-
resent complex models.

—We propose a novel, efficient strategy to approximate a surface
with a set of slices. Slice placement is driven by an input cross-
field (such as Hertzmann and Zorin [2000], Bommes et al. [2009],
and Ray et al. [2009]). It provides a set of appealing, uniformly
distributed polylines lying on the surface of a mesh. In addition,
the method also takes into account slice insertion constraints and,
while it does not theoretically guarantee that the mounting se-
quence is collision free, it yields arrangements that are practically
assemblable and that exhibit a sufficiently robust slice structure.
Our method may also take advantage of field symmetrization
techniques, such as Panozzo et al. [2012] (see Figure 2) for a bet-
ter perception of the global structure of the generated structure.

—We propose an automatic procedure to ensure that the slice struc-
ture is physically achievable. First, it improves the final rigidity,
acting upon the slit interlocking mechanism. Second, it ensures

Fig. 2. (a) The classical waffle approach modeling technique (with axis-
aligned slices); (b) our method applied to a cross-field calculated with
Bommes et al. [2009]; (c) field symmetrization techniques [Panozzo et al.
2012] increase the visual appeal of the final result. The total length of the
polylines for each method is approximately the same.

that the slice structure conforms to the physical constraints re-
quired by the manual assembling procedure. This procedure is
specifically designed to deal with our extended slit mechanism.

2. RELATED WORK

Fabricating tangible models from a digital 3D shape is fundamental
in many industrial production processes. The majority of current ap-
plications require a high level of accuracy, that is, the printed model
needs to be a highly accurate physical copy of the digital shape.
For example, several applications require this level of accuracy for
aesthetic purposes or for performing functional tests. However, dif-
ferent contexts (toys, artistic reproductions) do not require the same
level of accuracy, or even prefer the production of an illustrative
version of the digital model.

On the basis of accuracy and reproduction we can classify the
various methods into two broad categories.

—Accurate. Modern devices enable almost exact copies of a given
shape to be reproduced. To guarantee high reproduction accuracy,
the printer and the reproduction material may both be expensive.

—Illustrative. These methodologies fabricate approximate copies
of a given object, usually by relying on standard and inexpensive
printing technologies.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

Field-Aligned Mesh Joinery • 11:3

In both categories, the model can be fabricated as a single piece or it
can be split into a set of separate pieces and assembled afterwards.

2.1 Accurate Methods

Rapid prototyping techniques [Dimitrov et al. 2006] have been cre-
ated to support the design industry. Usually the digital model needs
to be represented as a closed, piecewise, manifold mesh. Due to
the physical properties of the material employed and the production
procedure, specific mechanical constraints must be satisfied. These
constraints guarantee that the model is kept physically compact
throughout the printing procedure.

Recent research has focused on how to acquire the physical prop-
erties of a real object to transplant onto the fabricated model. For
example, Bickel et al. [2010] proposed a technique to match the elas-
tic properties of a given object. Other papers focus on appearance
properties: Cignoni et al. [2008] proposed a technique to enhance
colors for rapid prototyping; Weyrich et al. [2009] and Matusik
et al. [2009] reported a method for the improved reproducibility of
surface reflectance properties by adding microgeometry; and Hašan
et al. [2010] and Dong et al. [2010] proposed a technique to print
specific subsurface scattering characteristics.

One common strategy is to divide up the original shape into dif-
ferent components, which are fabricated separately but assembled
together to produce the desired shape. One example is architec-
tural modeling, where the original shape is subdivided into a finite
set of triangular [Singh and Schaefer 2010] or quadrilateral [Fu
et al. 2010; Eigensatz et al. 2010] basic panels. A method to fit
a freeform shape with a set of single direction bendable panels
(like wooden panels) is proposed in Pottmann et al. [2010]. To
further improve the smoothness of freeform surfaces in architec-
tural design, Bo et al. [2011] introduced the so-called circular arc
structures.

In architecture, the decomposition of an object is usually manda-
tory, and depends on the dimensions of the fabricated shape. Con-
versely, generic shapes were deliberately decomposed into small
pieces to create a puzzle-like structure in Lo et al. [2009] and Xin
et al. [2011].

2.2 Illustrative Methods

The aim of illustrative methods is to fabricate an illustrative approx-
imation of an input digital model.

Illustrative methods are generally designed to employ materials
and devices that are very popular and inexpensive. Since the fab-
rication process does not require a sophisticated device, a number
of inexpensive, accessible servicing companies have recently flour-
ished. The interest in these technologies is testified by the recent
release of software tools devoted to planar slice fabrication proce-
dures (such as Autodesk 123DMake [Autodesk 2013]).

For example, Mori and Igarashi [2007] proposed a sketching
interface to design plush toys. Li et al. [2010, 2011] put forward a
strategy to automatically fabricate pop-up models made of paper.
Pop-up models can remain in two different states: open (showing
the modeled shape) and closed (reduced to a simple sheet of paper).
A method to fabricate a three-dimensional shape illustrated through
a stack of colored slices was reported by Holroyd et al. [2011].
Finally, several methods [Mitani and Suzuki 2004; Shatz et al. 2006;
Massarwi et al. 2007] represent the input model through a set of
foldable strips (usually made of paper), which can be glued together
to create a layered 3D representation.

McCrae et al. [2011] create shape abstractions arranging planar
slices to optimize the perception of the original object. This method
allows nonorthogonal slices, however, it is not designed for the

fabrication of tangible objects and problems of the assembly of
these slices have not been investigated.

Recently, Hildebrand et al. [2012] proposed a method to semi-
automatically fabricate objects made up of planar slices. Altough
this method produces a wide range of visually appealing results,
unfortunately, it does not fit well with complex geometries (models
with a high degree of asymmetry or even complex topology) and it
favors arrangements of orthogonal slices. Similarly, Schwartzburg
and Pauly [2012] allow nonorthogonal slices, but their method tries
to retain the simplicity of orthogonally intersecting pieces. Recently
Schwartzburg and Pauly [2013] extended their approach to pro-
vide a more detailed formulation on the assembly of nonorthogonal
slices by dealing with rigidity constraints. Given a set of prede-
fined intersecting slices, Schwartzburg and Pauly [2013] optimize
slice positions to restrict the possible movement of each slice, thus
maximizing the rigidity of the resulting structure.

However, as demonstrated by the results, our method is capable
of automatically sampling planar slices in a visually appealing man-
ner. Our approach captures and represents the global structure of
complex objects, providing, at the same time, a fabrication strategy
that meets the physical rigidity constraints.

3. AN OVERVIEW OF THE COMPLETE PIPELINE

Our fabrication pipeline, as shown in Figure 3, has the following
steps.

(1) As input, we get a triangle mesh with a cross-field defined
on its surface (see Figure 3(a)). We obtained the cross-field
using the method proposed in Bommes et al. [2009] with the
symmetrization of Panozzo et al. [2012].

(2) We sample a set of planar polylines that lies on the original
surface (see Figure 3(b)). These polylines need to be oriented
consistently with the cross-field and uniformly distributed on
the surface of the object. At the same time, the polylines need
to conform to specific constraints thus ensuring the stability of
the final structure. This step is detailed in Section 5.

(3) The polylines are transformed into a set of ribbon-shaped slices
(see Figure 3(c)). These profiles are obtained through a se-
quence of boolean operations performed in a 2D space (using
ClipperLib [Johnson 2013]).

(4) We derive the interlocking mechanism to produce a physically
stable structure. At the same time we provide the sequence of
inserting gestures that make up the assembly procedure. This
step requires some slices to be split/carved (highlighted by the
close-up in Figure 3(d)). This step is detailed in Section 6.

(5) Each slice is then converted to a vectorial representation and
organized into sheets ready for automatic laser cutting (see
Figure 3(e)).

(6) Finally the slices are assembled by following the sequence
specified by our system (see Figure 3(f)). The derivation of the
assembling sequence is detailed in Section 7.

4. INTERLOCKING PLANAR SLICES

In this section we provide an overview of the basic concepts re-
garding interlocking mechanisms between planar slices. For a more
general discussion on interlocking shapes, see Séquin [2012].

For the sake of simplicity, consider the simple situation of two
perpendicular slices fitting together (see Figure 4). One slice moves
along a line parallel to the intersection between the two slices, to fit
with the other one which is fixed (this is the typical configuration
of waffle meshes). For each piece we create a rectangular slit at the

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:4 • P. Cignoni et al.

Fig. 3. A complete overview of our fabrication pipeline: (a) We get as input a triangle mesh and an associated smooth (possibly symmetric) cross-field; (b) we
sample a set of well-distributed field-oriented planar polylines; (c) the polylines are transformed into ribbon-shaped slices; (d) the slice structure is modified
to ensure that the final structure is physically achievable; (e) the slices are transformed into 2D vectorial profiles that are laser cut; (f) the pieces are assembled
manually by following the instructions.

Fig. 4. The classical situation of two connected slices: for each piece we
create a rectangular slit in correspondence with the intersection line.

intersection line. The width of the slit must be equal to the width of
the material used to create the slicing structure.

This classical, well-known configuration is built on two hard
constraints.

Orthogonality constraint. The angle between each pair of inter-
secting slices must be a right angle.

Parallelism constraint. For each pair of intersecting slices, the
insertion movement is parallel to the segment defined by their
intersection.

Conforming to these constraints means that the slice arrangement
is mostly arranged as an axis-aligned grid, the well-known waffle-
shaped configuration.

Unfortunately, orthogonality and parallelism constraints have
several modeling limitations. These limitations produce serious ar-
tifacts, especially for an input shape with a low degree of axis
alignment. Obviously, this reduces the range of possible shapes to
which this method can be applied.

To overcome this problem (instead of increasing the sampling
rate) we explicitly relax these two constraints.

4.1 Relaxing the Orthogonality Constraint

The traditional slit insertion forces the two slices to be orthogonal to
each other. This assembling mechanism is solid and strong because
it relies on a tight grip of the slits around the slices, which ensures a
firm interlock of the two pieces. If the two slices are not orthogonal,
the slit has to be widened by the factor λ

λ = (| tan(π/2 − α)| + 1) · τ, (1)

where τ is the slice thickness and α is the angle between the two
slice planes.

Fig. 5. Three interlocked slices are rigid and tightly connected, although
the slices are not orthogonal and the wide slits are not tightly fitted onto
the surface of the other slice. The red dots denote where the slices are
pressed/forced against each other, such that the resulting friction ensures the
stability of the structure.

On the other hand, if we consider arrangements consisting of
multiple slices, the solidity of the grip can be guaranteed by a
simple triangular arrangement (see Figure 5) or, alternatively, by
four slices interlocked together with nonparallel intersections (see
Figure 7). In the latter case, the rigidity derives from the fact that a
nonorthogonal slit is like a hinge and the four connected slices form
a four-bar linkage [McCarthy and Soh 2000]. Any spatial linkage
formed by four links and four hinged joints, when in general posi-
tion, is a highly constrained (rigid) mechanical system. Section 5
outlines how we exploit this mechanism to ensure stability in the
final structure.

4.2 Relaxing the Parallelism Constraint

Just allowing the angle between slice planes to deviate from 90◦ is
not sufficient to deal with all the possible real scenarios. Indeed,
as illustrated in Figure 6, when a slice (the green one) has to be
inserted over four existing nonparallel slices (the blue ones), the
direction of insertion will definitely not be parallel to some of the
intersections. In these cases the slit has to be enlarged so that it can
accommodate the insertion movement. The size and shape of the
widened slit (trapezoidally-shaped) depend on the chosen direction
for the insertion.

Guaranteeing that the inserted piece has a firm grip is important,
so an insertion direction that is parallel with at least one of the

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

Field-Aligned Mesh Joinery • 11:5

Fig. 6. The shape of the slit widening depends on the insertion direction.
The divergence of the green slice is the maximum angle between the various
intersection segments when the best insertion direction is chosen. On the
right we show how the slit widening varies when different insert directions
are chosen.

intersection segments is required, so that at least one of the slits
holds the other piece steadily.

To increase the overall rigidity, arrangements that limit the slit
widenings are clearly preferable. The size of the slit widening also
depends on the order in which we insert the slices. In the example
shown in Figure 6, we could have avoided any widening by simply
placing the slices in a different order: for example, by inserting
the four blue slices one at a time on the green slice. An even
more complex example is shown in Figure 7 where four slices
are interlocked together. Note that, given the ordering shown in
the figure, just a single slit widening is enough to assemble the
structure. To quantify how well a slice can be inserted over a set of
existing slices we introduce the concept of divergence. Given a slice
s that is inserted over a set of slices s1, . . . sn, let �i = s ∩ si be the
intersection segment formed between the slice s and the i-th slice;
we define the divergence � of the slice s with respect to s1, . . . sn

as

�(s) = min
i

(
max
j �=i

ANGLE(�i, �j)

)
. (2)

In practice �(s) denotes the maximum slit widening that we are
forced to make even when the best slice for the perfect slit is chosen.
For the example in Figure 6, the divergence of the green slice is the
angle indicated in the second row of the right part of the figure.

4.3 Exploiting Oblique Slice-to-Slice Arrangement

By relaxing the orthogonal and insertion constraints we consider-
ably increase the resulting expressive power. However, this addi-
tional degree of freedom needs to be carefully tuned to ensure that
the final structure is physically stable. This entails optimizing the
overall structure. Thus:

—the physical stability for a given slice arrangement is influenced
by the shape of the slits. As the slits become larger, there is less
friction between the pieces, thus reducing their physical stability.
When the slit between two pieces is not enlarged, then we have a
perfect plug.

—the shape of the slit is directly related both to the position of
the slice and its insertion direction. As the slices become less
and less perpendicular and, likewise, as the divergence between
the insertion direction and intersection segment increases, the slit
increases in size.

Our framework must be general enough to guarantee a correct
slice structure for a given, arbitrary placement. This means that

Fig. 7. Four interlocked slices that are rigidly and tightly connected, even
though the slices are neither orthogonal nor inserted along a direction parallel
to the intersections. Starting from the green slice, the blue and yellow slices
are inserted one by one onto the previous slice along the intersection line (no
slit widening needed). The last pink slice is inserted over two nonparallel
slices, so widening is required. The red dots denote contact points.

the absolute position of slices must be maintained constant, though
the insertion directions can be changed.

From an overall purely aesthetic perspective, the final slice struc-
ture does not depend on the sequence of gestures needed to assem-
ble it. We only have to ensure the existence of a valid mounting
sequence. Then, for a given set of slices, we optimize the insertion
direction in order to increase the overall stability of the structure.

4.4 Ribbon-Shaped Slices

In our framework, we shaped the slices into ribbons, that is, the
slices are not solid but they only define the main silhouette of the
object. This kind of shape has particularly appealing visual results.
Since it is possible to see through the slices, this provides a complete
vision of the overall structure. Ribbon-shaped slices have additional
advantages in terms of fabrication: there are considerable savings
in terms of material and it is very uncommon for three slices to
intersect at the same point.

Having three slices intersecting at the same point is, indeed, the
standard situation of the approaches based on solid slices (such as
Hildebrand et al. [2012]). The solution to these cases consists in de-
composing the slices hierarchically using a BSP tree. Unfortunately,
this approach means that the slices are excessively fragmented as
the sampling resolution is incremented.

This situation may also arise in our approach, especially in a high
curvature region, where ribbons degenerate into solid sections of the
mesh. In this case, we follow a heuristic similar to Hildebrand et al.
[2012]: we remove one intersecting slice by splitting the ribbon that
has the smallest area.

5. FIELD-ALIGNED SLICE DISTRIBUTION

We define a set of ribbons by inflating planar polylines that lie on
the surface of the input object.

As mentioned in Section 1 we exploit a smooth feature-aligned
cross-field defined over the original surface. Given a manifold,
single-connected component mesh and a cross-field, we automat-
ically provide a set of polylines, on the original surface, which
conform to the following characteristics.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:6 • P. Cignoni et al.

Cross-Field Alignment. The polylines should be as aligned as
possible to the input cross-field. In general, since gradient lines of
a cross-field are not planar, it is impossible to provide a perfect
alignment (unless we rely on tiny polylines). We must then make a
trade-off between length and alignment.

Uniform Distribution. Polylines must sample the original sur-
face as uniformly as possible. Since polylines intersect each other,
then the intersection points must also be distributed uniformly on the
original surface. This makes the overall shape seem more “regular”.

Stability. Once assembled, the fabricated structure must be
rigid. As explained in Section 4.1, stability can be ensured locally by
the orthogonality of the slices or, globally, by mutual interlocking.

5.1 Alignment to Cross-Field

We designed a simple procedure to trace field-aligned planar poly-
lines. For each face and for each direction, we iteratively trace a
polyline, called a separatrix, which follows the orientation of the
field. Since the cross-field is invariant to 90◦ rotations, at each trac-
ing step the separatrix follows one of four possible directions which
has the smallest angle with the previous direction. At each trac-
ing step, we also fit a plane to the current separatrix (the plane is
constrained to lie on the initial face). We perform tracing steps iter-
atively while the maximum distance between the separatrix and its
fitting plane stays below a certain threshold. Additionally, we may
also stop the iterative tracing if the separatrix self-intersects.

The final set of planar polylines, which we call traces, is defined
as the intersection between the mesh and the fitting planes. The
extremes of each trace are chosen according to the extremes of the
generating separatrix.

5.2 Distribution Constraints

We formalized a set of constraints between slices to distribute them
uniformly on the surface of the object. Given a disk radius r , we
sample a set of traces � = {t0, t1, . . . , tn} generating a set C of
intersections cj such that:

—for each ci, cj ∈ C: D(ci, cj) > r;
—for each xi ∈ ti , xj ∈ tj :

D(xi, xj) < r →
∃ ck ∈ ti , tj : D(xi, ck) < r

∨
D(xj , ck) < r ,

where D() is the geodesic distance on the original surface. In prac-
tice, we search for traces whose intersections are well spaced and
so that the geodesic distance between traces is larger than r (except
in a neighborhood of the intersections). An example of the uniform
distribution of polylines on the surface is shown in Figure 8.

Figure 9 shows a mesh sampled at different radius resolutions.
Obviously the higher resolution (small values of r) increases the
details of the final model.

5.3 Stability Constraints

In order to keep the final structure stable, the slice arrangement must
be a single-connected component.

Moreover, the slices should be almost orthogonal to each other.
Indeed, orthogonality provides a good grip for the interlocking
mechanism, by minimizing the slit widening.

We consider a slice stable if:

—it is the first slice placed on the structure;
—or it has a perfect fit with at least one other stable slice. We

consider two slices to be in a perfect fit if the intersection between
their planes is in between [π/2 − δ, π/2 + δ];

Fig. 8. The constraint used to guarantee an even distribution of the traces.
Gray disks represent intersection distances, while the red disks show the
distances between points that are far from the intersections.

—or the slice is interlocked in a rigid substructure (see Section 4.1,
following the intuition of the triangular configuration in
Figure 5).

5.4 The Sampling Strategy

We designed a simple algorithm to produce a slice arrangement that
conforms to the constraints we mentioned before.

We build a candidate set by collecting two traces for each face
(corresponding to each orthogonal direction of the cross-field). We
then assign a priority value to each candidate trace. The priority
of a candidate trace is the maximum length without violating the
distribution constraints.

Initially we place the longest trace, and since it is the first one
it is consequently stable. Then, we iteratively search for the longer
trace which, when placed, would become stable.

By following this simple greedy strategy, we add candidates one
by one, until no further trace can be inserted.

5.5 Global Regularization

Finally, we improve the distribution of the traces with a global
regularization step in order to balance the space between slice
intersections.

Given a trace with its intersection points, we evaluate the optimal
position of each intersection point. Given an intersection point pint

its optimal position is the one that minimizes the squared sum of
distances with the surrounding intersections (or endpoints). After
we have calculated the optimal points, each trace is slightly moved
to approach the optimal points. This operation is executed only if
distribution and stability constraints are not violated.

We repeatedly execute optimization operations until the trace
displacements become lower than a certain threshold.

A sequence showing the placement and optimization of slices is
shown in Figure 10.

6. FROM RIBBONS TO ASSEMBLABLE SLICES

The planar polylines defined over the surface in the previous sections
can be easily transformed into ribbons by simple extrusion.

However, if we consider a set of generic intersecting slices, there
are several situations where physical assembly is impossible. For
example, it is impossible to interlock two closed rings without
opening at least one of them. In relation to this specific problem,
Figure 11 shows a typical situation: three orthogonal ribbons, each
one intersecting the other two in two different points. In this case
the slices must be decomposed into at least four pieces leaving only
one annular ribbon. We refer to the situation where two ribbons
intersect in two different points as multiple intersections.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

Field-Aligned Mesh Joinery • 11:7

Fig. 9. The Bunny model sampled at different radius resolutions. Sampling radius r is given as a percentage of the diagonal of the model’s bounding box.

Fig. 10. A sequence of the slice sampling procedure: (a); (b) show two
intermediate steps of the slice sampling procedure, composed of 6 and
12 slices respectively; (c) the final slice structure composed of 33 slices and
its global regularization (d).

Let us assume that we have a set S = s0, . . . , sn of planar ribbons
that approximates a given 3D surface M . We aim to transform S
into a set S ′ = s0, . . . , sm of ribbons such that:

(1) for each pair of ribbons s1 s2, the intersection s1 ∩ s2 is a proper
segment � with exactly one of the two endpoints lying over the
surface M;

(2) we have a proper assembly sequence, such that the resulting
divergence is lower than a given threshold.

Under the aforesaid constraints, we are able to create the slit
mechanisms described in Section 4 and, in order to fulfill them, we
use the following two-step procedure which:

Fig. 11. Three interlocked looping ribbons must be split into four pieces
so that they can be untangled.

—removes multiple intersections that limit the assembly procedure;
—minimizes the divergence by shuffling the slice order or if neces-

sary by splitting some of the ribbons.

In the following sections we first introduce all the basic concepts
behind the process, and then provide a more detailed description of
each step.

6.1 Slice Graph

We model the relations between slices in the arrangement structure
using a directed graph. Each node si of this graph represents a slice.
Each arc corresponds to a physical intersection between two slices
(and has to be transformed into a slit mechanism). The direction of
each arc represents the priority in the partial ordering of the assem-
bly sequence, for example, the arc si → sj means that the piece si

must be plugged into sj , which should already have been assembled.
Three simple examples of slice graphs with the corresponding

slice arrangements are shown in Figure 12.
A valid slice graph must be acyclic. A cycle in the slice graph

involves plugging one slice onto another slice that still needs to
be inserted (in some geometric cases this may still be feasible by
assembling all the pieces simultaneously), but this is obviously not
desirable.

The orientation of the arcs in the slice graph can significantly
affect the shape of the slit widenings, as described in Section 4
and shown in the last two rows of Figure 12 where the different
arc orientations generate different slit widenings; the configuration
in the middle row needs two slit widenings, while the bottom row
needs only one.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:8 • P. Cignoni et al.

Fig. 12. The two slice graphs corresponding to the slice arrangements
shown in Figures 5 and 7. The last two rows show two different arc orienta-
tions for the same slice arrangement: the slit widenings are affected by the
orientation.

6.1.1 Finding a Good Sink Set. Initially we must select a sink
set, that is, the initial set of disconnected, independent slices into
which the remaining slices are inserted one by one. Intuitively, the
sink set of a slice graph represents the ribs of the whole structure
which we try to preserve in the various processing steps. More
formally, we search for the sink set that is composed of a maximal
independent set of nodes and exhibits the maximum number of
arcs/relations. Unfortunately finding this optimal sink set is closely
related to the problem of finding the maximum independent set of
nodes in a graph: an NP-hard problem. For practical purposes, we
verified that it is sufficient to randomize the procedure in order to
build a maximal independent set (we randomly add nodes until the
set is maximal), repeat it for a limited time, and then pick the best
candidate. We found that for a typical set of slices (100 pieces),
10k to 100k attempts (a few hundred msecs of computing time) are
sufficient to get a stable sink set.

6.1.2 Optimizing the Graph. Once the sink set has been de-
fined, we need to sort all the remaining nodes. In order to provide a
good initial order, we sort all the nonsink nodes according to their
maximal divergence between each pair of intersection segments.
The idea is to minimize the variance of the insertion directions and
their divergence once the arcs have been oriented.

Starting from this initial ordering, we swap the direction of each
arc if this reduces the divergence between the insertion direction and
intersection segment. We follow a greedy approach by swapping the
arc that produces the greatest divergence improvement. Simultane-
ously, we reject any swap operation that would introduce cycles
into the graph. The result of the optimization process is shown
in Table I, which highlights how the graph optimization process
improves the quality of the interlocking between slices. The table
reports the number of slices that are perfect fits (i.e., slices with a
divergence equal to zero) and the number of slices with a significant
divergence (i.e., larger than 45 degrees).

6.2 Intersection Graph

Given a set of ribbons during the process of making it physically
achievable, we need to control the degree of solidity of the assem-
bled structure.

Table I. Slice Graph Optimization Results
The slice graph optimization allows us to increase the number
of slices that make perfect fits (all the insertion directions are
parallel) and to reduce the slices whose divergence is higher
than a given threshold.

Perf. Fit Perf. Fit >45 >45

Model Slice after before after before

Man 112 71 54 6 17

Hand 123 82 68 0 26

Bimba 196 134 110 4 22

Ico 90 70 58 0 0

Fig. 13. A close-up of an improper intersection in the Hand model. The two
ribbons marked in red have an intersection that does not touch the original
surface.

For this purpose let us consider the intersection graph. Each node
represents a ribbon intersection and an arc represents a slice that
embeds two adjacent intersections.

We exploit the concept of isoperimetric number [Bobkov et al.
2000] (or Cheeger constant)h(G) of a graphG = {V,E}, a common
measure of the presence of bottlenecks in a graph. The isoperimetric
number h(G) is defined as

h(G) = min
0<|G|≤ n

2

|∂(U)|
|U | , (3)

where the minimum is over all nonempty sets U ⊂ V of at most
n/2 vertices and ∂(U) is the edge boundary of S, that is, the set of
edges with exactly one endpoint in U . In practice h(G) becomes
small when a significant portion of the graph is connected to the
rest of the graph by just a few arcs.

6.3 Splitting a Ribbon

Given two slices s1, s2 with intersection segments �1, . . . , �k , we can
improve the set of ribbons by using a split operation Split(s1, �j)
which modifies s1 so that it no longer intersects s2 along �j . The
splitting operation Split(s1, �j) is performed by carving out from
s1 all the points at a distance lower than λ from �j (e.g., taking
into account the relative orientation between s1 and s2, as speci-
fied by Eq. (1)). This operation may split a slice into two separate
components or, if the ribbon is a loop, it may open it.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

Field-Aligned Mesh Joinery • 11:9

Fig. 14. An arrangement containing multiple double intersections (indicated by red lines) is corrected by means of repeated split operations (indicated with
red circles). In the bottom row we show the intersection graph at each step of the process. The top-right image shows the arrangement when all the remaining
six intersections are transformed into slit mechanisms.

Fig. 15. The Kneeling Human model. The model is composed of 140 slices.

6.4 Removing Improper Intersections

At the very beginning of the process we clean out all the improper
intersections from S, for example, all the intersection segments � be-
tween two slices s1, s2 that do not intersect the surface of M . These
intersections do not correspond to any intersections of the generating
polyline and are caused only by the intersections of the inner extru-
sion of the polylines. We simply remove all of them by applying two
split operations for both the involved slices Split(s1, �), Split(s2, �).
In all the encountered examples there are only a few of these im-
proper intersections and, once removed, we ignore their contribu-
tion for the rest of the process. In Figure 3(d) the two blue circles
highlight the ribbons that were processed for removal of improper
intersections. Figure 13 shows a close-up of one of these improper
intersections: the two ribbons marked in red have an intersection
that does not touch the original surface and therefore does not cor-
respond to an intersection between the originating traces.

6.5 Removing Double Intersections

There are two main reasons for splitting a ribbon:

—to remove double intersections;
—to lower slice divergence.

First, we remove all the double intersections, that is, pairs of slices
si , sj whose intersection is not a single segment �, but it is com-
posed of two (or more) segments. A typical situation is depicted in
Figure 11.

To clean out a double intersection, we have to carve out a portion
of the slice from one of the two slices around the intersection.
There is generally a choice of four different carvings (one for each
slice/intersection pair). We opt for the split operation that maximizes
the resulting isoperimetric number. If there are many slice splittings
that lead to the same isoperimetric number, we split the nonsink
slice that has the largest number of intersections with other slices.

We keep the slices in the sink intact because they were chosen
specifically to increase the rigidity of the structure. Similarly, of the
nonsink slices, we pick the one that will remain connected as much
as possible with other slices.

Figure 14 shows an example of this process for a small arrange-
ment made up of nonorthogonal looping ribbons on a sphere. The
top row of the figure shows how the arrangement evolves during the
process. The red circle highlights the result of the last split opera-
tion. The red lines highlight the double intersections that are still
present in the arrangement. The last image in the top row shows
the slice arrangement after transforming the remaining six intersec-
tions into slit mechanisms (machining tolerances are exaggerated

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:10 • P. Cignoni et al.

Fig. 16. A simpler slice arrangement (rather than following a cross-field)
has been tested to assemble an icosahedroan and a sphere (which has been
built using plexiglass).

for sake of image readability). At the beginning the first sink set
has just one random ribbon (in this case the yellow one). Each
ribbon intersects every other ribbon in two points, so there are six
double intersections. The intersection graph corresponding to each
step of the process is shown in the bottom row of the figure. At
the beginning, the intersection graph is equivalent to the edges of a
cuboctahedron and its isoperimetric number is 8/6, that is, the most
fragile set of intersections has six intersections from which there
are eight connections to other intersections.

We start with a sequence of five split operations and we re-
move the double intersections. Then the only slice that remains
untouched is the original sink, two of the other ribbons have been
split twice thus generating four ribbons and the last one has been
split only once, thus remaining a connected component. At this
point in the process there are no more double intersections and the
whole structure is still rigid (see Section 4.1: each slice is involved
in a four-cycle of nonparallel intersections).

6.6 Lowering Divergence by Splitting a Slice

Once all the double intersections have been removed and the
slice graph has been optimized, we can still improve the overall

Fig. 17. Our algorithm applied to the Hand model. The arrangement is
composed of 122 pieces.

arrangement by splitting those slices with a high divergence which
could cause huge slit widenings. In general, when we have a slice
with high divergence we can split it along one of its intersection
segments. Of all the possible splitting operations that significantly
minimize the divergence, we pick the operation that maximizes the
resulting isoperimetric number.

Looking again at the final arrangement in Figure 14 there is a
slice with a high divergence which causes slit widening. We could
remove this widening by splitting the slice, but this would lead to
significant loss of rigidity. In fact, with another split, we would fail
to satisfy the rigidity conditions described in Section 4.1.

In Figure 3(d) the three red circles highlight some of the split
operations that were performed in order to remove double intersec-
tions (the two top red circles) and to lower the divergence (bottom
red circle).

7. ASSEMBLING PROCEDURE

To facilitate the assembly procedure we provide basic references:
all the slices and slits are labeled so that matching between pieces
is unambiguous. We derive an appropriate assembling sequence as
follows.

The slice graph optimization steps described in Section 6.1 gen-
erate a partial ordering which is tailored to minimize the divergence
of the slices. Starting from this relation we want to generate a to-
tal ordering that is easy to assemble in the real world. We thus
use a greedy procedure which, starting from the fully assembled
slice arrangement, removes at each step the slice si that satisfies the
following conditions.

(1) the isoperimetric number of the intersection graph of S \ si is
maximum (i.e., we remove the slice that leaves the structure as
robust as possible);

(2) of all the slices with the minimal h(), si has the smallest number
o(si) of outgoing arcs in the slice graph;

(3) of all the slices with the minimal h() and o(), si is the closest
(in terms of Euclidean distance) slice to si−1.

In practice, given the fact that we consider h(S) as a measure of the
robustness of the structure, we try to find an assembly order that

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

Field-Aligned Mesh Joinery • 11:11

Fig. 18. Our algorithm applied to the Bimba model. The arrangement is composed of 178 pieces.

keeps the structure reasonably solid at each step, and in ambiguous
cases, we proceed by adding the slice that has the most intersections
with the already assembled structure and if possible close to the
previous slices. This ordering is used to label both slices and slits.

8. RESULTS

We tested our method with several models from the Stanford 3D
Scanning Repository (Bunny) and the AIM@SHAPE Repository
(Hand, Bimba, and Kneeling Human). All the results presented in
this article have been generated automatically.

If a cross-field is not available we may simply arrange slices
procedurally. As an example, two configurations approximating an
icosahedron and a sphere are illustrated in Figure 16.

We successfully applied the entire pipeline described in Section 3
to approximate input geometries with an associated feature-aligned
cross-field as input. These structures are shown in Figures 15, 17,
and 18. It took from about one to three hours to manually assem-
ble each final model, with most of the time spent searching for
the next slice. Once assembled, the resulting models were physi-
cally stable. Exploiting an input cross-field has several advantages
over axis-aligned approaches, such as Hildebrand et al. [2012] (this
comparison is shown in Figure 2). In addition, the cross-field can
be further optimized in a preprocessing step to increase the quality
of the results (see Figure 2).

Although the entire process is completely automatic, users can
perform some simple editing operations to obtain a more visually
pleasing result at the end of the process. Users can suggest which
slice should be inserted in the sink set and force the split of a
particular slice. We used the first option in the Bunny, preferring
a vertical orientation of the sink slices, which is much easier to
assemble.

9. CONCLUSIONS AND FUTURE WORK

We have proposed a novel method for the automatic fabrication
of an illustrative representation of a given geometry made up of
interlocked planar slices. We have shown the effectiveness of our
method both in terms of illustrative quality and physical stability.
To the best of our knowledge, no existing fabrication paradigms are
able to represent such complex objects.

Our method is particularly efficient in terms of production costs.
In fact, the production costs scale with the surface of the object since

slices are sampled almost uniformly over the surface. In addition,
due to the slice decomposition, mesh joinery is also suitable for the
production of medium-scale objects.

A useful extension of our framework would be to automatically
generate effective instructions to simplify the manual assembly pro-
cedure, for example, a packing strategy that could preserve the par-
tial ordering of the model to facilitate the search for the next piece.

9.1 Limitations

Although the range of shapes that we can efficiently approximate
is wide, our method suffers from minor limitations. We did not
account for the presence of other slices that could obstruct a straight
insertion. However, in our experience, due to the ribbon shape of
the slices, this never constitutes a serious limitation.

Moreover, we did not consider the physical issues regarding grav-
ity and the position of the barycenter and the resulting stress acting
on each individual slice. Again, in our experience, given the rigid-
ity of the material, we had no stability problems for any of the
assembled structures shown in the article.

ACKNOWLEDGMENTS

We also thanks Giuliano Kraft and Tv@Area of the CNR Research
Area of Pisa for the support in the of the production of the paper
videos.

REFERENCES

Autodesk. 2013. 123D make. http://www.123dapp.com/make/.

B. Bickel, M. Bacher, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross,
and W. Matusik. 2010. Design and fabrication of materials with desired
deformation behavior. ACM Trans. Graph. 29, 3, 63:1–63:10.

P. Bo, H. Pottmann, M. Kilian, W. Wang, and J. Wallner. 2011. Circular arc
structures. ACM Trans. Graph. 30, 101, 1–11.

S. Bobkov, C. Houdr, and P. Tetali. 2000. Lambda and infinity, vertex
isoperimetry and concentration. Combinatorica 20, 2, 153–172.

D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin.
2012. State of the art in quad meshing. In EG’12 State of the Art Reports,
M.-P. Cani and F. Ganovelli, Eds., EuroGraphics Association.

D. Bommes, H. Zimmer, and L. Kobbelt. 2009. Mixed-integer quadrangu-
lation. ACM Trans. Graph. 28, 3, 77:1–77:10.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

11:12 • P. Cignoni et al.

P. Cignoni, E. Gobbetti, R. Pintus, and R. Scopigno. 2008. Color enhance-
ment for rapid prototyping. In Proceedings of the 9th International Sym-
posium on Virtual Reality, Archaeology and Cultural Heritage (VAST’08).
EuroGraphics Association, 9–16.

D. Dimitrov, K. Schreve, and N. De Beer. 2006. Advances in three dimen-
sional printing state of the art and future perspectives. Rapid Prototyp. J.
12, 136–147.

Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating
spatially-varying subsurface scattering. ACM Trans. Graph. 29, 62:1–
62:10.

M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, and
M. Pauly. 2010. Paneling architectural freeform surfaces. ACM Trans.
Graph. 29, 4, 45:1–45:10.

C.-W. Fu, C.-F. Lai, Y. He, and D. Cohen-Or. 2010. K-set tilable surfaces.
ACM Trans. Graph. 29, 4, 44:1–44:6.

M. Hasan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010.
Physical reproduction of materials with specified subsurface scattering.
ACM Trans. Graph. 29, 4, 61:1–61:10.

A. Hertzmann and D. Zorin. 2000. Illustrating smooth surfaces. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’00). ACM Press/Addison-Wesley, New York,
517–526.

K. Hildebrand, B. Bickel, and M. Alexa. 2012. Crdbrd: Shape fabrication
by sliding planar slices. Comput. Graph. Forum 31, 583–592.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik. 2011. Computing and
fabricating multilayer models. ACM Trans. Graph. 30, 187:1–187:8.

A. Johnson. 2013. Clipper library 5.1.6- An open source freeware polygon
clipping library. http://www.angusj.com/delphi/clipper.php.

F. Kalberer, M. Nieser, and K. Polthier. 2007. Quadcover- Surface parame-
terization using branched coverings. Comput. Graph. Forum 26, 3, 375–
384.

X.-Y. Li, T. Ju, Y. Gu, and S.-M. Hu. 2011. A geometric study of v-
style pop-ups: Theories and algorithms. ACM Trans. Graph. 30, 4, 98:1–
98:10.

X.-Y. Li, C.-H. Shen, S.-S. Huang, T. Ju, and S.-M. Hu. 2010. Popup:
Automatic paper architectures from 3D models. ACM Trans. Graph. 29,
4, 111:1–111:9.

K.-Y. Lo, C.-W. Fu, and H. Li. 2009. 3D polyomino puzzle. ACM Trans.
Graph. 28, 5, 157:1–157:8.

F. Massarwi, C. Gotsman, and G. Elber. 2007. Papercraft models using
generalized cylinders. In Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications. IEEE Computer Society, 148–157.

W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. P. A. Lensch, F. Pellacini,
and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. ACM
Trans. Graph. 28, 5, 128:1–128:9.

J. M. McCarthy and G. S. Soh. 2000. Geometric Design of Linkages, Vol. 11.
Springer.

J. McCrae, K. Singh, and N. J. Mitra. 2011. Slices: A shape-proxy based on
planar sections. ACM Trans. Graph. 30, 6, 168:1–168:12.

J. Mitani and H. Suzuki. 2004. Making papercraft toys from meshes using
strip-based approximate unfolding. ACM Trans. Graph. 23, 3, 259–263.

Y. Mori and T. Igarashi. 2007. Plushie: An interactive design system for
plush toys. ACM Trans. Graph. 26, 45:1–45:8.

D. Panozzo, Y. Lipman, E. Puppo, and D. Zorin. 2012. Fields on symmetric
surfaces. ACM Trans. Graph. 31, 4, 111:1–111:12.

N. Pietroni, M. Tarini, O. Sorkine, and D. Zorin. 2011. Global parameteri-
zation of range image sets. ACM Trans. Graph. 30, 6, 149:1–149:10.

H. Pottmann, Q. Huang, B. Deng, A. Schiftner, M. Kilian, L. Guibas, and J.
Wallner. 2010. Geodesic patterns. ACM Trans. Graph. 29, 4, 43:1–43:10.

N. Ray, W. C. Li, B. Levy, A. Sheffer, and P. Alliez. 2006. Periodic global
parameterization. ACM Trans. Graph. 25, 1460–1485.

N. Ray, B. Vallet, L. Alonso, and B. Levy. 2009. Geometry aware direction
field processing. ACM Trans. Graph. 29, 1:1–1:11.

Y. Schwartzburg and M. Pauly. 2012. Design and optimization of orthog-
onally intersecting planar surfaces. In Computational Design Modeling,
C. Gengnagel, A. Kilian, N. Palz, and F. Scheurer, Eds., Springer, Berlin,
191–199.

Y. Schwartzburg and M. Pauly. 2013. Fabrication-aware design with inter-
secting planar pieces. Comput. Graph. Forum 32, 2pt3, 317–326.

C. H. Sequin. 2012. Prototyping dissection puzzles with layered manufac-
turing. In Proceedings of the Fabrication and Sculpture Track, Shape
Modeling International Conference.

I. Shatz, A. Tal, and G. Leifman. 2006. Paper craft models from meshes.
Vis. Comput. 22, 825–834.

M. Singh and S. Schaefer. 2010. Triangle surfaces with discrete equivalence
classes. ACM Trans. Graph. 29, 4, 46:1–46:7.

T. Weyrich, P. Peers, W. Matusik, and S. Rusinkiewicz. 2009. Fabricating
microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3,
32:1–32:6.

S. Xin, C.-F. Lai, C.-W. Fu, T.-T. Wong, Y. He, and D. Cohen-Or. 2011.
Making burr puzzles from 3d models. ACM Trans. Graph. 30, 4, 97:1–
97:8.

Received May 2013; revised October 2013; accepted October 2013

ACM Transactions on Graphics, Vol. 33, No. 1, Article 11, Publication date: January 2014.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 1

Large-Scale Point-Cloud Visualization through
Localized Textured Surface Reconstruction

Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke and Michael Wimmer

Abstract—In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied
by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are
augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality
representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task.
We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and
handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-
time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem,
our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since
our preprocessing phase requires only a minor fraction of the whole dataset at once, we provide maximum flexibility when dealing
with growing datasets.

Index Terms—Image-based rendering, surface representation, color, large-scale models, segmentation

F

1 INTRODUCTION

THE high-quality visualization of point-cloud data
gathered from laser scans or photogrammetric ap-

proaches is a fundamental task in many scientific and
non-scientific applications, like preservation in cul-
tural heritage, digitalization of museums, documen-
tation of archaeological excavations, virtual reality
in archaeology, urban planning, architecture, indus-
trial site management, and many others. An essential
component for the quality of the resulting visualiza-
tion is the use of registered high-resolution images
(photographs) taken at the site to represent surface
material, paintings etc. These images typically over-
lap, exhibit varying lighting conditions, and reveal
inaccuracies in registration. Consequently, for high-
quality visualizations, the individual images have to
be consolidated to provide a common, homogeneous
representation of the scene.

One way to display these data is to directly render
point-based surfaces texture-mapped with the im-
ages [1], [2]. These methods are flexible but cause vis-
ible artifacts, and are therefore not suitable for high-
quality visualization requirements (see Section 7).

In the traditional visualization pipeline, on the
other hand, a mesh surface is reconstructed from
the 3D points and textured by the registered images.
Optimization-based methods have been developed
to produce a high-resolution texture over the mesh

• M. Arikan, R. Preiner, C. Scheiblauer and M. Wimmer are with the
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Austria.
E-mail: marikan@cg.tuwien.ac.at

• S. Jeschke is with the Institute of Science and Technology, Austria.

surface while simultaneously minimizing the visibil-
ity of seams, typically using graph-cuts [3], [4]. One
problem is that such algorithms are global in nature
and thus assume that both the mesh and the images fit
into main memory. However, many real-world appli-
cations deal with large-scale input datasets, which not
only pose a problem of scalability for texturing tech-
niques, but for which it is extremely time-consuming
to construct a consistent mesh in the first place. Even if
a mesh is available, changing or extending the dataset
with new data proves nontrivial. In such scenarios,
mesh-based techniques would require first an out-of-
core meshing of the dataset, second, a robust out-of-
core texturing algorithm, and third, the maintenance
of the mesh topology and an expensive re-texturing
every time the dataset changes. This raises a main-
tenance overhead, which makes current mesh-based
methods unsuitable for certain data complexities and
applications.

One important observation about the texturing
problem is that it is “semi-global”: at each location of
the scene, only a small part of the geometric and im-
age data is required to provide a good visualization.
In this paper, we therefore propose a new semi-global
scene representation that abstracts from the deficiencies
of both point- and mesh-based techniques: it provides
the flexibility and ease of use of point-based data
combined with the quality of mesh-based reconstruc-
tion. The main idea of our system is to reconstruct
many smaller textured surface patches as seen by the
image cameras. This leads to a collection of patches,
one for each image camera, that we stitch together
at render-time to produce a high-quality visualization
of the data. We therefore avoid the need for the
reconstruction and maintenance of the whole surface

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 2

(a) (b) (c) (d)

Fig. 1. (a) Penetration artifacts caused by rendering two meshes with z-buffering. (b) Any overwriting order of
the meshes in the overlap area resolves the penetration artifacts. However, heavy artifacts occur at the transition
of the meshes. (c) Our novel image-space stitching solution, and (d) an intensity levelling post-process, assures
a seamless surface representation from multiple meshes.

at once, allowing for both an efficient data representation
and an easy extension of the dataset by new images
or points if new scans are acquired in a scanning
campaign, for example.

The main challenge when working with multiple
textured patches is to avoid stitching artifacts and
visible seams at their transitions (see Fig. 1 (a) and
(b) respectively). For this, we propose as our main
technical contribution a novel efficient image-space
stitching method that computes a smooth transition
between individual patches (Fig. 1 (c) and (d)).

2 RELATED WORK

Point-Based Rendering: To convey the appear-
ance of a closed surface, several methods [5], [6], [7]
render splats, i.e., small discs in 3D, instead of simple
one-pixel points. Botsch et al. [5] propose a splat-
filtering technique by averaging colors of overlapping
splats. Instead of using a constant color for each
splat, Sibbing et al. [2] extend this splatting approach
by blending textures of overlapping splats. Another
work [1] assigns several images to each splat and
blends between them in a view-dependent manner.

Surface Reconstruction: As an alternative scene
representation, a mesh surface can be reconstructed
from a point cloud, e.g., using methods such as the
Poisson surface reconstruction [8] and its screened
variant [9]. However, these methods are not suited
to large-scale datasets. Bolitho et al. [10] address the
out-of-core reconstruction of surfaces from large point
clouds. However, texturing a mesh surface consisting
of millions of triangles from a collection of high-
resolution images remains a time-consuming and te-
dious task. In another work, Fuhrmann and Goe-
sele [11] fuse multiple depth maps into an adaptive
mesh with coarse as well as highly detailed regions.
Turk and Levoy [12] remove redundant border faces
of two overlapping patches and glue them together
by connecting their pruned borders. Marras et al. [13]

take this idea further by allowing to merge meshes
with very different granularity.

Texturing: To generate a high-quality texture
over a mesh surface from multiple images, several
previous works [3], [4] apply a graph-cut based opti-
mization that incorporates certain criteria to select for
each surface part a portion of a single source image.
These methods reduce the visibility of seams between
areas textured by different images.

Another option is to perform a weighted blending
of all the images over the whole surface [14], [15],
[16]. However, the blending approach produces un-
desirable ghosting artifacts in the presence of misreg-
istrations.

Our approach builds on the former group and ex-
tends these methods to consider several overlapping
surface patches.

Optical Flow: Optical-flow techniques [17], [18]
have proven useful to correct small inaccuracies in-
troduced in the image-to-geometry registration. We do
not explicitly correct misaligned features along seams,
although an optical-flow strategy can be integrated
as a post-process into our pipeline. The aim of our
method is to achieve a smooth transition between sur-
face patches without requiring expensive computation
of warp fields in order to produce an accurate color
mapping of a set of images onto a 3D model.

3 PROBLEM ANALYSIS

Motivation for Multi-Mesh Approach: We con-
sider the problem of generating a textured surface
representation from captured real-world data, given
by a point cloud together with a set of registered
images I = {I1, . . . , In}. The traditional way is to
reconstruct a single mesh M from the point cloud and
choose for each triangle t ∈ M an image I(t) ∈ I
that should be mapped onto it. This image-to-triangle
assignment problem considers both local quality cri-
teria (i.e., detail provided by an image), as well as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 3

(a) (b) (c)

Fig. 2. Overview of our pipeline. (a) Meshes are generated by rendering depth maps from image cameras.
The meshes Mi and Mj are color-coded by their respective images and additively blended in the overlap area
(yellow). (b) Each of the meshes is textured by all the input images. Besides, each mesh face is equipped with a
binary label: foreground (F), if the face is assigned to its respective image during the texturing, and background
(B) otherwise. As we will show in Section 6.1, it’s beneficial to reconstruct the scene by using foregrounds. This
provides in the major part of the overlap area a deterministic solution, however, some minor ambiguities remain
such as overlaps (yellow) and thin cracks (black) between foreground faces (see inset). (c) In order to resolve
these ambiguities, we render entire meshes and decide for each screen pixel, based on faces’ binary labels,
which of the overlapping fragments to display.

continuity in the mapping (i.e., avoiding visible seams
between areas represented by different images), and
is commonly solved with a graph-cut based optimiza-
tion [3], [4]. The mesh is then displayed with each
triangle t textured by I(t). Both the optimization,
usually carried out in a preprocess, as well as the visu-
alization are straightforward. However, as discussed
above, generating M and solving the optimization
problem for large datasets is intractable.

In this paper, we observe that the problem is semi-
global, i.e., each part of the sampled surface is only
covered by a small number of images. Therefore,
instead of solving the mapping problem globally for
a single mesh M , we provide a surface representation
consisting of multiple meshes, and solve the mapping
problem locally for each mesh. This provides a strong
localization of the problem, since each individual
mesh represents only a small part of the scene. Un-
fortunately, while this multi-mesh approach makes the
mapping problem tractable, it is not straightforward
anymore, as we will discuss now.

Setup of the Multi-Mesh Approach: We will
use the following setup, illustrated in Fig. 2: from
the given point cloud we reconstruct a set of meshes
M = {M1, . . . ,Mn}. Each mesh Mi corresponds to an
image Ii ∈ I, in the sense that it represents the scene
from the same viewpoint and with the same camera
parameters as the image camera (Fig. 2 (a)). However,
the triangles of Mi can be textured by any image, not

only by Ii. Thus, in the following we examine various
ways how to determine the mapping of images to
individual triangles of each mesh (Fig. 2 (b)). This
concludes the preprocessing phase of our algorithm.
Furthermore, we also have to deal with the fact that
a representation by a collection of meshes is not a
unique representation of the surface anymore. In par-
ticular, there will be regions where multiple meshes
will overlap. As discussed, seamlessly stitching the
meshes in the preprocess is intractable. Therefore, we
need to send all the visible meshes to the GPU in
their entirety, and devise a rendering algorithm that
decides for each screen pixel in an overlap region
which of the overlapping mesh triangles to display.
This constitutes the visualization phase of our algorithm
(Fig. 2 (c)).

Challenges of the Multi-Mesh Approach: Let
us first look at visualization: the simplest approach is
to display all meshes using the standard rendering
pipeline, and resolve any overlaps using z-buffering.
However, this leads to heavy rendering artifacts, be-
cause the individual meshes exhibit geometric varia-
tions (see Fig. 1 (a)).

Even if z-buffering artifacts can be avoided by pre-
scribing an overwriting order of meshes (Fig. 1 (b)),
texturing, i.e., solving the image-to-triangle assign-
ment problem, is not straightforward. Let us first look
at the very simple image assignment, i.e., I(t) = Ii for
all t ∈ Mi. This has the obvious problem that image

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 4

Ii is usually not the best choice for every triangle
t ∈ Mi. This problem could be solved by applying
the single-mesh approach to each mesh Mi separately,
always using all images I. For each mesh individually,
this would provide an optimal solution. However,
single-mesh texturing does not take mesh borders into
account, so two problematic cases occur, illustrated in
Fig. 3 (a) and (b):

First (Fig. 3 (a)), assume Mi is rendered on top of
Mj , and at the border of Mi, Ii happens to be the best
choice after the optimization of Mi. However, Ii is
not defined beyond the border of the overlap region.
Therefore, the visible part of mesh Mj is textured with
an image Ij 6= Ii, which usually leads to color discon-
tinuities (from misalignments and lighting variations)
at the mesh border due to camera misregistrations,
geometric variations of the two meshes in their over-
lapping region, and different lighting conditions of the
images. These color discontinuities are particularly
visible when they go through salient color features
(see also Fig. 1 (b)).

Second (Fig. 3 (b)), still assuming Mi is rendered on
top of Mj , but Ii is not the best choice at the border
of Mi. In this case, no color discontinuity due to the
use of different images will appear at the mesh border.
However, geometric variations of the meshes will still
cause visible misalignments if the mesh border passes
through a salient color feature.

This shows that the idea of applying the single-
mesh approach to each mesh Mi separately is not
sufficient for a good visualization. While the optimiza-
tion can find optimal image seams on each individual
mesh, the mesh borders lead to transitions that are not
under the control of this optimization. Therefore, it is
essential to also adapt the mesh transitions so that
visible artifacts along these are minimal.

Making the Multi-Mesh Approach Work: We
start by creating individual meshes and solving an
image-to-triangle assignment problem on each mesh
separately in a preprocess. However, in contrast to the
simple approach described before, we also take mesh
borders into account. Since at mesh borders, multiple
meshes are involved, in order to keep the locality of
the approach during the preprocessing phase, we shift
some of the burden of the optimization to the visual-
ization phase. In particular, we determine at runtime
optimal transitions for mesh overlap regions.

This is done in the following way for the two
cases discussed above: if Ii is dominant at the border
of Mi (Fig. 3 (a)), we shift both the image and the
mesh transition away from the mesh border, so that
the artifacts along these transitions are less apparent
(Fig. 3 (c)). If Ii is not assigned to the border of Mi

(Fig. 3 (b)), we adjust the mesh transition so that it
follows an image seam in the overlap region, since
that is where it is least likely to be visible (Fig. 3 (d),
and see Fig. 1 (c) for another example). Finally, we
also postprocess the overlap regions in order to reduce

Fig. 3. Illustration of misalignments at mesh borders
and our solution strategy. (a) and (b) show two cases
of a graph-cut optimization of Mi. (a) Ii (i.e., the corre-
sponding image of Mi) is assigned to the border of Mi.
(b) Ii is not assigned to the border ofMi. In both cases,
rendering Mi on top of Mj leads to misalignments
along the mesh border. To avoid the case from (a), our
graph-cut optimization (c) excludes Ii from the border
of Mi, and our stitching solution (c), (d) pushes the
mesh transition towards the image seam, where the
transition is not as visible.

the remaining intensity differences among the images
(Fig. 1 (d)).

4 ALGORITHM OVERVIEW

Preprocess – Textured Multi-Mesh Generation:
In a preprocessing phase (Section 5), we reconstruct
textured meshes. The first step is to generate the
meshes themselves. For each image, we create a depth
map by rendering the scene as seen by the image’s
camera. These depth maps (stored as 2D textures) can
be interpreted and rendered as triangular meshes, so-
called depth meshes [19]. For our purposes, this has the
advantage that texturing a mesh with its correspond-
ing image is guaranteed to have no occlusion artifacts,
and the accuracy of the representation can be easily
tuned through the depth-map resolution.

The second step is to texture the generated meshes
while taking into account the problematic overlap
regions, in particular mesh borders. Following the
reasoning in Section 3, we first carry out a graph-
cut optimization (also referred to as labeling in the
following) with the set of candidate images for each
individual mesh. The candidate set consists of only
the images whose camera can see the mesh. To avoid
the case from Fig. 3 (a), we will show in Section 5.2
that excluding image Ii from the border pixels in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 5

labeling of mesh Mi (Fig. 4) will later push mesh
transitions towards image seams where the transition
is not as visible.

Visualization – Image-Space Stitching: In the
visualization phase (Section 6), the generated meshes
are visually stitched together to provide a high-quality
textured surface representation. Note that we do not
perform an actual mesh stitching, but rather resolve
conflicting fragments of overlapping meshes on a per-
pixel basis at render time. This works by rendering
all meshes in the overlap region and choosing an
appropriate mesh for each overlap pixel at runtime
(Fig. 2 (c)), based on the mesh labelings calculated in
the preprocessing phase.

Since the input images can differ arbitrarily in
viewing parameters, the generated depth maps may
represent the observed surface at different sampling
rates. Our approach of visually stitching meshes with
varying sampling rates at render-time is closely re-
lated to the work of Fuhrmann and Goesele [11].
However, our method also addresses texturing issues,
and most importantly, the runtime stitching of the
meshes makes the easy handling of large datasets
possible.

5 TEXTURED MULTI-MESH GENERATION

5.1 Depth-Map Generation

For the generation of the depth maps, the input point
cloud is converted into splats with normal vectors and
spatial extents. Here we can optionally use available
input normals, or apply an in-situ-reconstruction at
depth-map rendering time [20] if no normals are
given. Then these small discs are used as rendering
primitives to generate depth maps. For each image
camera, we render the scene as seen by this image
camera using Gauss-splatting [7]. However, since we
deal with large-scale datasets, the input points do
not necessarily fit into main or video memory. We
therefore use an out-of-core data structure to store the
points and stream only those parts seen by an image
camera into video memory (our implementation is
based on the work of Scheiblauer and Wimmer [21],
but any other out-of-core point rendering system can
be used). The out-of-core data structure also provides
the splat radii, derived from the density of the points
at the current detail level [21].

In order to reduce storage and processing costs, the
user can choose to create the depth maps at a lower
resolution than the input images. For the examples
in this paper, we used a resolution of 256 × 171 for
12 MPixel images (see Table 2). While depth-map
generation is rather straightforward, our work focuses
on generating a high-quality surface representation
from them as described in the following.

5.2 Multi-Mesh Labeling
The second step of the preprocessing phase is the
computation of a graph-cut based labeling with the
set of candidate images for each depth mesh. Com-
pared to traditional single-mesh labeling approaches,
we also take mesh borders and overlap regions into
account. We further equip each mesh triangle with a
binary value (foreground/background), which is then
utilized at runtime by our image-space stitching to
determine the overwriting order of meshes on a per-
pixel basis (Fig. 2 (c)).

5.2.1 Foreground and Background Segmentation
The optimization step, described shortly, will assign
each mesh triangle to an image. We call the set of all
triangles of mesh Mi that is assigned to its respective
image foreground (denoted by Fi), i.e., t ∈ Fi ⊆Mi iff
I(t) = Ii. The remaining part that is assigned to an
image Ij 6= Ii is called background (denoted by Bi).
In the rest of this paper, we further use the notation
Bik ⊆ Bi to distinguish between background triangles
assigned to different images, i.e., t ∈ Bik ⊆ Mi iff
I(t) = Ik.

5.2.2 Candidate Labels Selection
The set of candidate images (labels) for each mesh
triangle is formed by those images whose camera
can see the triangle. The visibility of a triangle is
determined based on an in-frustum test and an oc-
clusion test (given the computed depth maps) of each
individual triangle vertex.

However, reconsider the situation (illustrated in
Fig. 3 (a)) where the mesh borders lead to transitions
between images that are not under the control of
the optimization of individual meshes. In order to
account for this problem, we constrain the candidate
labels of outer mesh borders (i.e., those that are not
inner borders due to holes in the input datasets). Our
strategy is to exclude the foreground label (i.e., the
index of the respective image) from the candidate
label set of each outer border triangle. By setting such
a hard constraint, these triangles are forced to be la-
beled as background even if best suited as foreground.
Through the shrinking of the potential foreground
region, we intentionally insert image seams at mesh
borders (Fig. 4 (a)). The smoothness requirement of
the labeling, described shortly, will ensure that these
seams are shifted away from mesh borders to regions
where the transition is not as visible (Fig. 4 (b)).

5.2.3 Optimization Step
For each depth mesh M , we compute a labeling
L, i.e., a mapping from mesh triangles to image
indices (labels). This labeling has two goals: (1)
maximizing back-projection quality (high resolution,
low anisotropy, etc.) of images onto triangles, and
(2) penalizing the visibility of seams between areas

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 6

Fig. 4. Handling of mesh borders. (a) Excluding the
respective image from the border faces in the labeling
of mesh Mi introduces an image seam at the mesh
border. The example in (b) illustrates how the image
seam is pushed by the labeling towards more homo-
geneous color regions where artifacts caused due to
camera misregistrations are less apparent.

mapped from different images. The labeling problem
can typically be formulated in terms of an energy
minimization (see Kolmogorov and Zabih [22], and
Boykov and Kolmogorov [23] for a comprehensive
discussion of vision problems expressed in terms of
an energy minimization). The labeling L is computed
as the minimizer of the energy

E(L) = Ed(L) + λsEs(L), (1)

which is composed of a data term Ed and a smooth-
ness term Es.

Data Term: For each triangle t, the data term
should favor the image with the highest “quality”.
The quality was previously computed by counting
the number of texels covered by the projection of a
triangle into an image [24]. This was later extended
by taking color variation of the covered pixels into
account, favoring more detailed images [4]. However,
color variation can also be caused by noise in the
image, so we prefer a purely geometric term. Further-
more, while the number of covered texels combines
both distance from the image and orientation into
one term, we found that in the case of depth meshes
generated from noisy point clouds, it is beneficial
to allow more control over the relative importance
of these two factors. In particular, since the selected
image also determines the mesh to be rendered, and
since meshes generated from orthogonal views have
better quality, we usually give more weight to the
orientation factor.

We therefore propose the following data term:

Ed = σt
(
λdistEdist + λorEor), (2)

with the distance factor

Edist =
∑
t∈M

1

h
min(‖tc − cit‖, h), (3)

where tc is the triangle center and cit the center of

projection of image Iit . The orientation factor

Eor =
∑
t∈M

1−
∣∣∣∣nt ·

tc − cit
‖tc − cit‖

∣∣∣∣ (4)

uses the triangle normal nt.
In order to make the data term comparable between

different meshes with differently sized triangles (e.g.,
in overlap areas), it is scaled by the world-space area
σt of the triangle. The parameter h allows adjusting
the relative influence of Edist and Eor: the distance
term is clamped to a maximum of h and then nor-
malized to one, so that for all images at a distance h
or larger, the distance penalty matches the orientation
penalty of an image with normal deviation of π/2
degrees.

Smoothness Term: As in Gal et al. [4], we use
the smoothness term

Es =
∑

(t,t′)∈N

∫
ett′

∥∥Φit(x)− Φit′ (x)
∥∥ dx, (5)

where Φi is the projection operator into image Ii,
ett′ is the edge between neighboring faces t and t′,
and the integral is evaluated by regular sampling
along the edge. The smoothness term penalizes color
differences due to label changes at triangle edges, and
therefore biases the method towards solutions where
the transitions from one image to another are less
visible.

Energy Minimization: For the minimization
of the objective function of Eq. 1, we apply an
α-expansion graph-cut algorithm [25]. Further, the
choice of the parameter λs reflects the trade-off be-
tween the local quality provided by the images and
the color smoothness.

5.2.4 Summary
Through the particular handling of border triangles
during the candidate labels selection, the presented
optimization routine accounts for optimal image tran-
sitions in overlap regions. However, visible artifacts
at transitions from one mesh to another remain (e.g.,
see Fig. 4 (b)). In Section 6, we will show our stitching
solution that uses the binary labels to also adapt mesh
transitions so that these coincide with image seams.

6 IMAGE-SPACE STITCHING

6.1 Overview
A depth mesh represents the scene from the same
viewpoint and with the same viewing parameters
as its corresponding image camera. Therefore, the
quality of projection of an image onto a surface region
on the one hand and the sampling rate of this region
by the image’s depth mesh on the other hand are in-
herently coupled. As we have shown in Section 5.2.3,
the data term of the graph-cut optimization always
favors the image with the highest quality. Thus, for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 7

(a) (b)

Fig. 5. (a) Two meshes Mi and Mj are binary seg-
mented into foreground and background regions. (b)
However, rendering only foreground-labeled regions
causes holes due to different mesh discretizations.

rendering a region of several overlapping meshes, it is
preferable to also render the corresponding mesh, i.e.,
the mesh labeled as foreground, as this may imply an
increase of the sampling rate of the overlap area (for
an example, compare Fig. 10 (a) and (b), respectively).
Note, however, that foreground regions do not always
have higher sampling rates, since the optimization has
to consider color continuity as well.

Ideally, the label assignment of mesh regions is
consistent between meshes in overlap regions, so all
foreground regions together could theoretically cover
the whole surface. However, in practice this will not
work due to two reasons:

1) Triangles of different meshes sharing a spot of
the scene typically differ in size and rotation,
which makes a “perfect” alignment of fore-
ground borders impossible (see Fig. 5).

2) Since each individual mesh is optimized sep-
arately, the local minimization of the objective
function of Eq. 1 for different meshes can pro-
duce different seams in their overlapping region,
as in the example of Fig. 6 (a) and (b).

The union of all resulting foregrounds is thus not
guaranteed to cover the whole surface (Fig. 6 (c)).
Our stitching approach, therefore, is to reconstruct
the scene by preferably drawing foreground regions,
while still being able to fall back to background-
labeled regions where no foreground label is avail-
able (Fig. 6 (d)). In practice, this is implemented by
assigning mesh faces a depth value according to their
binary label (foreground/background) and employing
z-buffering to perform the corresponding overwriting
decisions.

6.2 Rendering Pipeline

The rendering pipeline consists of five steps, which
are described in the following:

mesh transition

image seam

image seam

Fig. 6. Illustration of our stitching idea. (a) and (b) show
the labelings of the meshes Mi and Mj , respectively.
(c) Rendering only foreground regions Fi and Fj does
not cover the complete object, due to the different
seams in the overlap area. (d) The rendering algorithm
resorts to the background-labeled regionBij , where no
foreground label is available.

Visibility Pass: In this first pass, all meshes
intersecting the view frustum are rendered with z-
buffering, writing to a depth buffer, a mesh-index buffer,
and a triangle-label buffer. We will use the triangle-label
buffer in the image-management step to determine
which images are required for texturing the currently
visible meshes, and to cache those images to the
GPU if necessary. Similarly, the mesh-index buffer
contains the indices of all the visible meshes that will
be rendered in the stitching pass. Other meshes are
considered to be occluded. The depth buffer will be
used in the stitching pass to determine which triangles
belong to the front surface and need to be resolved.

Image Management: Since all the high-resolution
images do not fit into video memory, we employ
an out-of-core streaming technique for continuously
caching the currently required images into a GPU tex-
ture array. Due to the limited size of this texture array,
it is our goal to always have the most relevant images
available on the GPU. We measure this relevance by
the frequency of occurrence of an image’s label in the
triangle-label buffer. In this step, we therefore com-
pute a label histogram from the triangle-label buffer,
based on which we can always cache the currently
most relevant images onto the GPU. If the texture
array is already full, the least relevant images are
dropped to make space for more relevant images. For
performance reasons, we currently restrict the number
of image loads to only one high-resolution image per
frame. In case of the unavailability of images that
are required for the texturing, we alternatively use
precomputed per-vertex colors.

Stitching Pass: In this pass, the visible meshes
are rendered again, and visually stitched together in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 8

image space in order to produce a coherent repre-
sentation of the observed surface. The visible meshes
are determined from the mesh-index buffer during
the computation of the label histogram in the image-
management step.

We resolve conflicting fragments of overlapping
meshes on a per-pixel basis, using the binary labeling
of the meshes. One or more triangle fragments are
said to be overlapping at a pixel position p if their
depth values differ by less than ε from the front-most
depth value of p, stored in the depth buffer which
is bound as a texture. Triangle fragments beyond
this threshold are considered to be occluded and
discarded. For the overlapping triangle fragments, our
stitching chooses the fragment from the best-suited
mesh based on their binary labels. To this end, we
equip each mesh triangle with a depth according to
its binary label (foreground: 0, background: 1). In this
way, for each pixel p of an overlapping region, z-
buffering automatically picks one mesh whose label
at p is foreground, and chooses a background-labeled
mesh if no foreground candidate is available. This
pass outputs two textures that store positions and
labels of the chosen triangle fragments.

Similar to surface splatting [5], [7], visibility is not
resolved for features smaller than epsilon. Except for
small concave features, the resulting artifacts can be
avoided by using back-face culling using the mesh
orientations given by the generating camera positions.

Texturing Pass: We render a full-screen quad to
retrieve the color of each chosen triangle fragment
by projecting it onto its assigned image based on the
position and label retrieved from the output textures
of the previous stitching pass.

Levelling: The outcome of the texturing pass
is a rendering of the current view (see Fig. 7 (a)),
which typically reveals visible seams caused by light-
ing variations among the input images. To minimize
the visibility of such seams, we apply as a render-
ing post-process an adapted version of the seamless
cloning method of Jeschke et al. [26], which we briefly
illustrate in Fig. 7. The goal of this method is to
compute a levelling texture (denoted by L) that can be
added to the output of the texturing pass to locally
alleviate lighting variations. This is done by mini-
mizing the Laplacian ∇2L of a texture, where border
pixels of uniformly labeled regions (Fig. 7 (b) and
(c)) impose boundary constraints on that optimization
problem. Moreover, our levelling is geometry-aware,
which means that we prevent levelling over non-
connected parts of the surface. This is easily achieved
by introducing depth-discontinuity border pixels as
additional boundary constraints.

Before applying the levelling texture, we average it
with the textures of previous frames in order to avoid
flickering during animations. For this, we follow the
idea of temporal smoothing presented in Scherzer et
al. [27]. We first determine for each currently rendered

Fig. 7. Levelling pipeline. (a) Output of the texturing
pass. (b) Output texture of the stitching pass storing
fragment labels. (c) A one-pixel wide border around
each connected pixel region of the same label is de-
tected. The color of each border pixel is fixed to the
average of its own and that of its direct neighbors
on the other side of the border. Additionally, we fix
colors of depth-discontinuity border pixels. All these
fixed border pixels impose color constraints on the
minimization of the Laplacian of the levelling texture.
The difference between the fixed and original colors of
the closest border pixels is the initial guess (d) of the
levelling texture (e). (a) is added to (e) to produce the
final result (f) with the locally levelled intensities.

fragment at position (xc, yc) its corresponding pixel
position (xp, yp) in the previous frame. Then, we
compute the smoothed levelling value as lc(xc, yc) =
wL(xc, yc)+(1−w)lp(xp, yp), where lp stores levelling
values of the previous frame. For all new fragments
(xnew, ynew) that are not present or occluded in the
previous frame, we use the non-averaged levelling
value lc(xnew, ynew) = L(xnew, ynew).

7 RESULTS

We have tested our method on four large-scale point
datasets acquired by a laser scanner, accompanied by
a set of high-resolution images (Table 1, see Fig. 14
for various results and the accompanying video for a
walkthrough of the Hh2 We1 model). In the following,
we give a detailed analysis of the performance, the
memory consumption, the reconstruction and ren-
dering quality, and the extensibility of our proposed
system in comparison to a point-based and a single-
mesh approach.

As a comparable point-based method involving
texturing, we adapted the work of Sibbing et al. [2]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 9

TABLE 1
Model statistics.

Model #Points #Scans
Point cloud memory |I| Image resolution

Images memory
consumption consumption

Hanghaus 2 Wohneinheit 1 (Hh2 We1) 682.6M 46 16.4GB 276 4258× 2832 (36MB) 9.9GB
Hanghaus 2 Wohneinheit 6 (Hh2 We6) 34.7M 25 0.8GB 188 4032× 2674 (32MB) 6GB

Siebenschläfer (7schläfer) 907.4M 44 21.8GB 254 4258× 2832 (36MB) 9.1GB
Centcelles 1091.3M 42 26.2GB 161 4258× 2832 (36MB) 5.8GB

Fig. 8. Plot of the labeling timings of the single-mesh
and our multi-mesh approach, applied to the Hh2 We1
dataset, for increasing mesh sizes.

to handle large-scale point clouds.
As a comparable surface-reconstruction technique,

we used the out-of-core Poisson-based approach pro-
posed by Bolitho et al. [10]. To texture the meshes, we
employed Lempitsky and Ivanov’s work [3], which
most closely matches our approach. For the minimiza-
tion of their energy function, we used the α-expansion
algorithm in Boykov et al. [25], as in our case.

7.1 Performance and Memory Consumption

All results in this paper were produced on a standard
PC with an Intel i7 2600K 3.40 GHz CPU, 16 GB RAM
and NVIDIA GeForce GTX580 GPU.

The reference single-mesh reconstruction- and la-
beling approach was applied to the datasets Hh2 We1
and 7schläfer. Table 2 compares the resulting mesh
sizes and timings with those of our proposed multi-
mesh system for one particular configuration. A direct
comparison of the timings at the same reconstruction
accuracy is non-trivial due to our runtime surface
representation. However, we observed that during
rendering, the majority of the overlap areas is repre-
sented by foreground regions (see also Fig. 2). There-
fore, to obtain an expressive comparison, we chose
the resolution of our depth maps in a way that the
total number of all foreground faces approximately
matches the number of single-mesh faces (see Table 2).

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

120

140

160

Fig. 9. Rendering timings and numbers of rendered
meshes measured during a walkthrough of the Hh2
We1 model.

In this configuration, our approach is faster by an
order of magnitude or even more.

Fig. 8 analyzes just the labeling times for increasing
mesh sizes. In both approaches, image loading alone
already requires a significant amount of total labeling
time. This is due to the image requests during the
computation of the smoothness costs. Since not all
of the high-resolution input images fit into main
memory, images are loaded on demand. We reserved
3GB (∼80 images) of main memory for them. Im-
ages in memory that are not required for a longer
time are dropped according to the least recently used
paradigm [28]. Table 2 also indicates that in the multi-
mesh case, much fewer images are loaded, for reasons
explained in Section 7.3. However, even ignoring im-
age load time, our method is significantly faster.

Fig. 9 shows the performance of our rendering
approach for a walkthrough of the Hh2 We1 model,
rendered at a resolution of 1280 × 720 (see also the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 10

TABLE 2
Timings of the single-mesh (in hours) and our

multi-mesh approach (in minutes), and in both cases,
the mesh sizes.

Model Hh2 We1 7schläfer

Si
ng

le
-m

es
h

Meshing time 3h 8h
#Vertices 1.9M 3.95M
#Faces 3.8M 7.9M
Memory consumption 68.4MB 142.3MB
Labeling time 14.3h 102.95h

of which image loading/count 10.9h/171k 96.9h/1592k
Cycles1 2 2

Total preprocess time 17.3h 110.95h

M
ul

ti
-m

es
h

Depth maps generation time 4m 5.3m
Depth-map resolution2 256× 171 256× 171

#Faces 17M 16.7M
Memory consumption 48.4MB 44.4MB
Labeling time 53.5m 30m

of which image loading/count 16.6m/7.5k 6.8m/3.3k
Cycles1 2 2

Candidate images min/aver/max 2/46/122 4/39/93
#Foreground faces 4.6M 7.2M
Overlap ratio3 (or) 0.73 0.57

Total preprocess time 57.5m 35.3m
1 Each cycle performs an iteration for every label (expansion algorithm).
2 The depth-map aspect ratio matches the image aspect ratio.
3 Overlap ratio is the ratio of the number of background faces to the total

number of multi-mesh faces.

TABLE 3
Parameters used for the rendering performance

analysis.

Labeling Image man. Stitching Levelling

λs λdist λor h1 tex. array size ε1 #iter. w

0.2 1 2 10 25 (∼0.9GB) 0.1 8 0.4

1 in meters

accompanying video). It also gives numbers of depth
meshes rendered during the visibility and stitching
render passes. For this performance analysis, the
depth maps are generated at a resolution of 256×171
(Table 2). These depth maps and auxiliary textures
storing triangle labels and vertex colors were stored
on the GPU. In total, these textures require ∼180MB
of video memory. Table 3 shows the parameters used
for the labeling and during the rendering. The min-
imum, average and maximum frame rates obtained
during the walkthrough are 24 fps, 34 fps and 55 fps,
respectively. For the same walkthrough, rendering of
the single mesh (with 3.8M faces) and textured splats
took 42 and 23 fps on average, respectively. For single-
mesh rendering, we employed OpenSceneGraph [29]
and a virtual-texturing algorithm [30]. For textured
splatting, we used an out-of-core point renderer [21]
to stream visible parts of the point cloud to the GPU.
We restricted the renderer to stream a maximum
amount of 10M points to the GPU each frame.

The lower memory consumption of depth meshes
(despite the much higher total number of faces) results

Fig. 10. Comparison of the single-mesh reconstruction
(left) and our multi-mesh approach (right, (a)) applied
to a part of the Hh2 We1 dataset. For a fair comparison,
the number of single-mesh faces approximately equals
the number of multi-mesh foreground faces (∼1M). In
the presence of high-resolution depth maps of this
particular region, the multi-mesh approach produces
a very accurate surface representation as it chooses
a foreground for rendering (a). (b) shows one of many
backgrounds of this region, which are not considered.

from the fact that each depth-map pixel stores one
float compared to three floats per single-mesh vertex
and three integers per single-mesh triangle. On the
other hand, while mesh-based visualization can avoid
further storage of the input points, textured splatting
requires points and their normal vectors for rendering,
which results in a vast memory consumption (see
Table 1).

7.2 Reconstruction and Rendering Quality
As stated in Fuhrmann and Goesele [11], a Poisson-
based reconstruction technique [8] does not account
for input data at different scales. In contrast, the
multi-mesh approach seamlessly combines overlap-
ping depth meshes at various scales, and in overlap
areas, prefers meshes with higher sampling rates for
rendering. Thus, a multi-mesh representation uses
more triangles in regions where high-resolution depth
maps are present. Our approach therefore can repre-
sent particular surface regions more accurately than
the reference single-mesh reconstruction (for an ex-
ample, compare Fig. 10 left and right, respectively).

However, a direct comparison of the reconstruction
accuracy of the single-mesh and our multi-mesh tech-
nique is not straightforward, since the consideration
of the smoothness also affects the accuracy of a multi-
mesh representation. Fig. 11 shows a close-up view

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 11

Fig. 11. A close-up view of our rendering without (a) and with (b) the color-smoothness constraint during the
computation of the labelings. (b) Artifacts due to lighting variations and registration errors are barely visible along
the transition of the meshes, but this comes at a price of an overall lower detail.

(a) (b) (c)

Fig. 12. Side-by-side comparison of our approach (a)
and textured splatting (b). (c) demonstrates the depen-
dency of the blurriness of the images generated by
textured splatting on the noise and the view direction.C
denotes the user camera and I an input image camera.

of a multi-mesh result with (b) and without (a) the
consideration of color smoothness. The trade-off of
both the texture resolution and the geometric detail
for less noticeable artifacts along the seam is clearly
visible.

Comparing to textured surface splatting, Fig. 12
demonstrates the superior quality of our multi-mesh
approach in terms of visual quality. It can be clearly
seen that in contrast to mesh rendering, blending
texture-mapped splats can cause heavy blurring arti-
facts depending on the viewing angle and the degree
of the noise present in the point datasets.

7.3 Asymptotic Analysis
In this section we give an asymptotic argument why
the multi-mesh approach is significantly faster in the
labeling step. We first consider the upper bound of the
number of smoothness computations: In the single-
mesh case, each iteration of the expansion algorithm
accounts for O(eS ∗ |I|2) smoothness computations,
where eS and |I| denote the number of mesh edges
and the number of labels, respectively. A number of

|I| iterations results in O(|I| ∗ eS ∗ |I|2) total compu-
tations. In the multi-mesh case, the upper bound for
the number of smoothness computations per mesh is
O(k ∗ eM ∗ k2), where eM is the number of edges in a
single depth mesh and k denotes the average number
of candidate images considered for the labeling of
each depth mesh (Table 2). The labeling of all the
|I| meshes results in O(|I| ∗ k ∗ eM ∗ k2) smoothness
computations. Without loss of generality, to obtain
an expressive comparison, let’s choose the resolution
of – and thus the number of edges eM in – each
depth map in a way that in total, all foregrounds
contain the same amount of edges as the single
mesh, i.e., (1 − or) ∗ |I| ∗ eM = eS . Then the upper
bound of the multi-mesh case can be reformulated as
O(eS ∗k3/(1−or)), whereas the single-mesh bound is
O(eS ∗ |I|3). Thus, the computation of the smoothness
costs in our multi-mesh approach is generally faster
by a factor of (|I|/k)3 ∗ (1 − or). In general, k << |I|,
so we obtain a significant speed up in comparison to
the single-mesh case.

In a similar way, upper bounds of the number of
data-term computations can be formulated: In the
single mesh case, each iteration accounts for O(fS∗|I|)
computations, where fS denotes the number of mesh
faces. A number of |I| iterations results in O(fS ∗
|I|2) computations. In the multi-mesh case, the upper
bound is given by O(fM ∗ k2). Then, the labeling
of all meshes results in O(|I| ∗ fM ∗ k2) total data-
term computations. Analogous to above, by setting
(1 − or) ∗ |I| ∗ fM = fS we get a speed-up factor of
(|I|/k)2 ∗ (1− or).

7.4 Extensibility
Our system is designed to provide maximum flexi-
bility and extensibility when dealing with large-scale
datasets, which might be extended over time. In the
single-mesh case, adding new images would require
an expensive global relabeling of the model incor-
porating all previous and new images. On the other

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 12

(a) (b)

Fig. 13. Point and image data acquired from new scan
positions can be easily integrated into an existing multi-
mesh representation without requiring a complete re-
computation. To evaluate this, we generated a multi-
mesh representation from (a) 44 scan positions of the
Hh2 We1 model and then (b) added two new scan po-
sitions (red and blue). In this example, a recomputation
for 63 and 11 of 264 previous meshes was necessary.

hand, given our proposed multi-mesh representation
of the model, adding a new photograph of the scene
involves the generation and labeling of one new depth
mesh, and a relabeling of (on average) only the k
meshes that overlap with the new one.

A more interesting scenario is to extend a model
by new point and image data acquired from a new
scan position. In this case, we first generate depth
maps for the new images. Then, we determine all
the previous images whose camera can see the new
point data, since the corresponding depth maps have
to be regenerated. For this purpose, we perform for
each image an occlusion query for the new points
by rendering them as seen by the image’s camera,
where the corresponding depth mesh serves as an
occluder. If the new point data is visible, i.e., if at
least one point is drawn, we regenerate the depth
map incorporating all previous and new point data.
Finally, we compute for all new and regenerated
depth meshes the labeling.

To evaluate the effectiveness of the proposed exten-
sibility method, we first used 44 scan positions (Fig. 13
(a)) and corresponding 264 images to generate the
multi-mesh representation of the Hh2 We1 model and
then subsequently added the remaining 2 scan posi-
tions (shown in Fig. 13 (b) red and blue, respectively)
and 12 images. To a major extent, both scan positions
are contained in the existing model, which means that
the corresponding points add detail to the point data
acquired from the previous 44 positions. Adding these
two new scans caused a regeneration and relabeling
of 63 and 11 previous meshes, respectively.

8 CONCLUSION

In this paper, we proposed a novel two-phase ap-
proach for providing high-quality visualizations of

large-scale point clouds accompanied by registered
images. In a preprocess, we generate multiple overlap-
ping meshes and solve the image-to-geometry map-
ping problem locally for each mesh. In the visual-
ization phase, we seamlessly stitch these meshes to
a high-quality surface representation.

We have shown that the localization of the global
mapping problem provides a huge performance gain
in the preprocessing phase, an overall lower memory
consumption, and a higher flexibility and extensibil-
ity of large-scale datasets, in exchange for a slightly
higher rendering complexity (due to the rasterization
of multiple meshes in overlap regions) and minor
stitching artifacts at object concavities. Similar to
Fuhrmann and Goesele [11], our approach produces
an adaptive surface representation with coarse as well
as highly detailed regions. Additionally, our multi-
mesh method addresses texturing issues.

9 LIMITATIONS AND FUTURE WORK

The most time-consuming steps of the preprocessing
phase are the computation of the smoothness costs
and the minimization of the objective function of
Eq. 1, since these are currently performed on the
CPU. However, the 4-connected grid neighborhood of
triangle pairs could be further exploited to transfer
these tasks to the GPU. Note that we perform the
remaining operations of the labeling step (i.e., the
computation of candidate labels and data costs) on
the GPU.

In order to keep the image-management step sim-
ple, we currently do not support mipmapping. We use
the high-resolution images for texturing, and resort
to per-vertex colors if images are not available on the
GPU. However, a more sophisticated method for so-
called virtual texturing [30] can be easily integrated
into our system to alleviate this.

Another limitation is that our stitching currently
makes a random decision between overlapping back-
ground fragments. This can lead to low-resolution ge-
ometry filling small gaps between foreground regions.
By favoring fragments with a lower data penalty,
the resolution provided by backgrounds could be
improved. Unfortunately, such a per-pixel decision
would not consider label continuity over neighboring
pixels. We thus plan to investigate further possibilities
to make a more elaborate choice between overlapping
backgrounds.

ACKNOWLEDGMENTS

We wish to express our thanks to the reviewers for
their insightful comments. We also thank Norbert
Zimmermann for providing us with the datasets and
Michael Birsak for his assistance in the performance
analysis.

This research was supported by the Austrian Re-
search Promotion Agency (FFG) project REPLICATE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 13

Fig. 14. Two views of each input point cloud, and the corresponding multi-mesh representations of (from top to
bottom) Hh2 We1, Hh2 We6, Centcelles and 7schläfer datasets. The point clouds are displayed with the colors
acquired by a scanner. In the last example, points are color-coded according to their normals.

(no. 835948), the EU FP7 project HARVEST4D (no.
323567), and the Austrian Science Fund (FWF) project
DEEP PICTURES (no. P24352-N23).

REFERENCES

[1] R. Yang, D. Guinnip, and L. Wang, “View-dependent textured
splatting,” The Visual Computer, vol. 22, no. 7, pp. 456–467,
2006.

[2] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt, “Sift-realistic
rendering,” in Proc. the 2013 International Conf. 3D Vision (3DV
13), 2013, pp. 56–63.

[3] V. Lempitsky and D. Ivanov, “Seamless mosaicing of image-
based texture maps,” in Computer Vision and Pattern Recognition
(CVPR 07), IEEE, June 2007, pp. 1–6.

[4] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or,
“Seamless montage for texturing models,” Computer Graphics
Forum, vol. 29, no. 2, pp. 479–486, 2010.

[5] M. Botsch and L. Kobbelt, “High-quality point-based render-
ing on modern gpus,” in Proc. the 11th Pacific Conf. Computer
Graphics and Applications (PG 03), 2003, pp. 335–343.

[6] M. Botsch, M. Spernat, and L. Kobbelt, “Phong splatting,” in
Proc. the 1st Eurographics Symp. Point-Based Graphics (SPBG 04),
2004, pp. 25–32.

[7] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-
quality surface splatting on today’s gpus,” in Proc. the 2nd
Eurographics / IEEE VGTC Symp. Point-Based Graphics (SPBG
05), 2005, pp. 17–24.

[8] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Proc. the 4th Eurographics Symp. Geometry
Processing (SGP 06), 2006, pp. 61–70.

[9] M. Kazhdan and H. Hoppe, “Screened poisson surface recon-
struction,” ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13,
June 2013.

[10] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
streaming for out-of-core surface reconstruction,” in Proc. the
5th Eurographics Symp. Geometry Processing (SGP 07), 2007, pp.
69–78.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 14

[11] S. Fuhrmann and M. Goesele, “Fusion of depth maps with
multiple scales,” in Proc. the 2011 SIGGRAPH Asia Conf. (SA
11), 2011, pp. 148:1–148:8.

[12] G. Turk and M. Levoy, “Zippered polygon meshes from range
images,” in Proc. the 21st Annual Conf. Computer Graphics and
Interactive Techniques (SIGGRAPH 94), 1994, pp. 311–318.

[13] S. Marras, F. Ganovelli, P. Cignoni, R. Scateni, and R. Scopigno,
“Controlled and adaptive mesh zippering,” in GRAPP, 2010,
pp. 104–109.

[14] F. Bernardini, I. M. Martin, and H. Rushmeier, “High-quality
texture reconstruction from multiple scans,” IEEE Transactions
on Visualization and Computer Graphics, vol. 7, no. 4, pp. 318–
332, Oct. 2001.

[15] A. Baumberg, “Blending images for texturing 3d models,” in
Proc. the British Machine Vision Conference (BMVC 02), 2002, pp.
38.1–38.10.

[16] M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno, “Masked
photo blending: mapping dense photographic dataset on high-
resolution 3d models,” Computers and Graphics, vol. 32, no. 4,
pp. 464–473, Aug 2008.

[17] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,
E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent, “Floating
textures,” Computer Graphics Forum, vol. 27, no. 2, pp. 409–418,
Apr. 2008.

[18] M. Dellepiane, R. Marroquim, M. Callieri, P. Cignoni, and
R. Scopigno, “Flow-based local optimization for image-to-
geometry projection,” IEEE Transaction on Visualization and
Computer Graphics, vol. 18, no. 3, pp. 463–474, Mar 2012.

[19] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stuerzlinger, R. Bastos, M. Whitton,
F. Brooks, and D. Manocha, “Mmr: an interactive massive
model rendering system using geometric and image-based
acceleration,” in Proc. the 1999 Symp. on Interactive 3D Graphics
(I3D 99), 1999, pp. 199–206.

[20] R. Preiner, S. Jeschke, and M. Wimmer, “Auto splats: Dynamic
point cloud visualization on the gpu,” in Proc. Eurographics
Symp. on Parallel Graphics and Visualization (EGPGV 12), May
2012, pp. 139–148.

[21] C. Scheiblauer and M. Wimmer, “Out-of-core selection and
editing of huge point clouds,” Computers and Graphics, vol. 35,
no. 2, pp. 342–351, Apr. 2011.

[22] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?” in Proc. the 7th European Conf.
Computer Vision-Part III (ECCV 02), 2002, pp. 65–81.

[23] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9,
pp. 1124–1137, Sep. 2004.

[24] C. Allene, J.-P. Pons, and R. Keriven, “Seamless image-based
texture atlases using multi-band blending,” in Proc. 19th Inter-
national Conf. Pattern Recognition (ICPR 08), 2008, pp. 1–4.

[25] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[26] S. Jeschke, D. Cline, and P. Wonka, “A gpu laplacian solver
for diffusion curves and poisson image editing,” ACM Trans.
Graph., vol. 28, no. 5, pp. 116:1–116:8, Dec. 2009.

[27] D. Scherzer, S. Jeschke, and M. Wimmer, “Pixel-correct shadow
maps with temporal reprojection and shadow test confidence,”
in Proc. the 18th Eurographics Conf. Rendering (EGSR 07), 2007,
pp. 45–50.

[28] P. J. Denning, “The working set model for program behavior,”
Comm. ACM, vol. 11, no. 5, pp. 323–333, May 1968.

[29] D. Burns and R. Osfield, “Open scene graph a: Introduction,
b: Examples and applications,” in Proc. the IEEE Virtual Reality
(VR 04), 2004, pp. 265–.

[30] M. Mittring and C. GmbH, “Advanced virtual texture topics,”
in ACM SIGGRAPH 2008 Games (SIGGRAPH 08), 2008, pp. 23–
51.

Murat Arikan is a Ph.D. student at the Insti-
tute of Computer Graphics and Algorithms of
the Vienna University of Technology. He re-
ceived his M.Sc. degree in Mathematics from
Vienna University of Technology in 2008. His
current research interests are real-time ren-
dering, point-based rendering, and interac-
tive modeling.

Reinhold Preiner received his B.Sc. degree
in Computer Science from Graz University
in 2008 and his M.Sc. degree in Computer
Science from Vienna University of Technol-
ogy in 2010. His research interests include
reconstruction, geometry processing, and in-
teractive global illumination. He is now an
assistant professor and doctoral researcher
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology.

Claus Scheiblauer is a Ph.D. student at
the Institute of Computer Graphics and Algo-
rithms of the Vienna University of Technol-
ogy, where he received an M.Sc. in 2006.
His current research interests are real-time
rendering, point-based rendering, and out-of-
core processing.

Stefan Jeschke is a scientist at IST Austria.
He received an M.Sc. in 2001 and a Ph.D. in
2005, both in computer science from the Uni-
versity of Rostock, Germany. His research in-
terest includes modeling and display of vec-
torized image representations, applications
and solvers for PDEs, as well as modeling
and rendering complex natural phenomena.

Michael Wimmer is an associate professor
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology, where he received an M.Sc. in 1997
and a Ph.D. in 2001. His current research
interests are real-time rendering, computer
games, real-time visualization of urban en-
vironments, point-based rendering and pro-
cedural modeling. He has coauthored many
papers in these fields, and was papers co-
chair of EGSR 2008 and Pacific Graphics

2012, and is associate editor of Computers & Graphics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 1

Multi-Depth-Map Raytracing for
Efficient Large-Scene Reconstruction

Murat Arikan, Reinhold Preiner and Michael Wimmer

Abstract—With the enormous advances of the acquisition technology over the last years, fast processing and high-quality
visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point
cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials.
However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its
potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at
runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent
on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map
has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method
to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first
generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-
cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image
assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently
compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by
an order of magnitude.

Index Terms—Point-based rendering, raytracing depth maps, large-scale models

F

1 INTRODUCTION

THe high-quality reconstruction and visualization
of large scenes from huge amounts of raw sensor

data is an important and particularly challenging task
in many application areas, ranging from digitization
and preservation of cultural heritage, over virtual real-
ity and games, to planning and visualization for archi-
tecture and industry. To virtually recreate such scenes,
geometry is reconstructed from scanned 3D point-
cloud data and commonly textured from registered
high-resolution photographs taken at the original site.

In practice, computing a high-quality texturing
from such images is a non-trivial task due to image
overlaps, varying lighting conditions, different sam-
pling rates and image misregistrations. One potential
workflow represents the geometry as a point cloud
again and directly texture-maps the resulting point-
based surface [1], [2]. However, this approach can
exhibit visible artifacts like illumination seams and
texture misalignments, which heavily degenerate the
visual quality of the result. A more common approach
is to convert the point data into a mesh once [3], [4]
and then render the scene as a textured mesh, re-
ducing both memory and bandwidth consumption. In
order to obtain the required texturing, an image-to-
triangle assignment (also called labeling) problem has

• M. Arikan, R. Preiner and M. Wimmer are with the Institute of
Computer Graphics and Algorithms, Vienna University of Technology,
Austria.
E-mail: marikan@cg.tuwien.ac.at

to be solved, for which state-of-the-art methods [5], [6]
use a graph-cut based optimization, which provides
a homogeneous and high-quality solution. In large-
scale scenarios, this is done once in an expensive
preprocessing phase, and the resulting textured mesh
is then used for efficient rendering. However, these
methods are not very flexible – any change or addition
in the geometry or image data requires an expensive
relabeling of the mesh – and do not scale well due to
the time complexity of the global labeling. Moreover,
large-scale scenarios require an out-of-core computa-
tion of the mesh [7] and its texturing, imposing an
additional maintenance overhead.

State of the art: To break down the problem com-
plexity and accelerate the reconstruction and labeling
preprocessing, Arikan et al. [8] introduced a local-
ized textured surface reconstruction and visualiza-
tion approach. They employ a set of Textured Depth
Maps to represent the scene as a collection of surface
patches, avoiding the reconstruction and maintenance
of the whole surface and significantly reducing the
optimization costs by labeling only a set of small
depth maps instead of a large out-of-core mesh. These
patches are triangulated and stitched at runtime, trad-
ing a minor increase in rendering time against a huge
decrease in preprocessing time. Moreover, the patch-
based representation offers both more flexibility and
better scalability, since new patches can be added
and textured easily without recomputing the whole
surface. However, the rendering performance heavily
depends on the number of depth maps and their reso-
lution. This introduces a natural bound on the depth-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 2

(c) state of the art (d) our method

labeling in 7 min, 45 fps labeling in 87 min, 5 fps labeling in 3.4 min, 43fps

(a)

(b)

Fig. 1. (a) Point-cloud and image data acquired by a scanner. The data set consists of 682M points and 192
images. (b) Scene overview rendered by our method. (c) and (d) compare the state of the art [8] and our method
in terms of performance and quality. The previous approach has to settle with a significantly lower geometric
resolution in order to reach the performance of our new method.

map resolution usable to be rendered interactively,
thus limiting the achievable geometric quality in the
rendered image.

Solution approach: We introduce an output-sensitive
visualization technique of such a patch-based surface
representation. Instead of stitching high-resolution
depth maps, which is expensive, we perform a multi-
depth-map raytracing approach, which efficiently iden-
tifies for each view ray the depth map that contains
the closest valid ray-surface intersection, and then
finds this intersection point. Our method also avoids
the labeling of every single depth map in the prepro-
cessing, but instead labels a strongly reduced subset of
the original point cloud, which in practice accelerates
the labeling process by over an order of magnitude.
To obtain high-quality per-pixel labels for texturing,
this coarse point set is projected to the screen and its
labels are upsampled using a geometry-aware Voronoi
decomposition of the depth buffer at runtime.

As our main contribution over the state of the
art, we propose a novel raytracing approach whose
performance is independent of the number and res-
olution of the depth maps, therefore allowing for a
high-quality real-time visualization of large scenes at
much higher geometric resolution than the previous
approach [8] (Fig. 1).

2 RELATED WORK

The problem of textured scene reconstruction and vi-
sualization from large point clouds and photographs
has been addressed by several authors.

Point-based rendering techniques like surface splat-
ting [9], [10], [11], [12] render the input points as
elliptical surface primitives (splats), which are blended
to obtain a smooth continuous surface. These methods
have been coupled with texturing [1], [2] to obtain a
textured point-based visualization of a scene. Texture
mapping point-based surfaces avoids a costly large-
scale mesh reconstruction, but does not produce op-
timal point-to-texture assignments. This can produce
visible artifacts like texture misalignments and illumi-
nation seams.

Mesh-based textured reconstruction techniques
achieve a continuous high-quality texturing of the
scene by performing a global, graph-cut based op-
timization of the triangle-to-texture assignments on
a single huge mesh [5], [6]. These methods produce
high-quality visualizations of large scenes, but require
a time-expensive preprocessing for the mesh recon-
struction and labeling as well as a large maintenance
overhead, making it inflexible to changes and exten-
sions in the data set.

Therefore, Arikan et al. [8] recently proposed a
patch-based reconstruction approach, which breaks
down the meshing and labeling complexity by repre-
senting the scene by several surface patches, allowing
for both a more efficient preprocessing and a more
flexible and scalable data management. Their method
generates a set of textured depth maps in a prepro-
cessing and stitches them at runtime, which strongly
couples the rendering performance with the number
and resolution of these depth maps.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 3

Our method builds upon this localized approach
for the data representation, but alleviates its perfor-
mance limitations by introducing a solution for an
efficient raytracing of multiple depth maps. Finding
ray intersections with surfaces represented by two-
dimensional range maps has various applications, like
rendering soft shadows [13], [14] or reflections [15].

Previous methods for raytracing large-scale scenes
depend on the use of spatial acceleration data struc-
tures. Reshetov et al. [16] employs a spatial kd-tree to
detect scene parts that are guaranteed not to intersect
with a collection of view rays. Agrawala et al. [13]
proposed a hierarchical ray traversal to skip over
large sections of a ray that cannot possibly intersect
the scene. Xie et al. [14] raytraces a multi-layer depth
map to reduce shadowing artifacts. To cope with
the additional overhead of searching an intersection
point in multiple layers, they introduced a hierarchical
intersection test against a quadtree, where each node
contains the minimum and maximum depth value of
the four child nodes in the layer below. In contrast, we
use multiple single-layer depth maps covering a scene
and employ a labeled coarse subset of the original
point cloud to directly determine the depth map that
is first intersected by a view ray. This is done by
splatting the label information of these points into the
screen, and upsampling their labels to obtain per-pixel
labels. The resulting label of a pixel then indicates the
depth map to be intersected by the pixel’s correspond-
ing view ray.

In the following, we give an overview of our pre-
processing and rendering pipeline, and then describe
each step of our reconstruction and texturing system
in detail.

3 OVERVIEW
Our method takes as input a high-density 3D point
cloud (denoted by PHD), for example from a laser
scanner, and a set of high-resolution photographs {Ij}
with known camera registrations. We propose a two-
phase solution for an efficient high-quality visualiza-
tion of the data.

In the preprocessing phase, we generate high-
resolution depth maps by rendering the input point
cloud PHD from image cameras (Fig. 2a, Section 4.1),
and compute an image-to-point assignment (referred
to as labeling) only for a small subset PLD ⊆ PHD

(Fig. 2b, Sections 4.2 and 4.3), which we will call proxy
points.

At runtime, we reconstruct a high-resolution depth
buffer, which stores depth values of the scene as
viewed from the user’s camera. This is done by
first splatting proxy points, and then raytracing the
precomputed depth maps, starting from coarse splat
positions (Fig. 2c, Section 5.1). In a second step, the
labels of PLD are used to obtain an upsampled depth-
buffer labeling, which is required for texturing the
final output image (Section 5.2).

4 PREPROCESSING

4.1 Generating the Depth Maps

For each image Ii, we generate a depth map Di by
rendering the original point cloud PHD from the same
viewpoint and with the same viewing parameters
as Ii. For rendering, we use oriented circular splats
as rendering primitives and employ an out-of-core
octree data structure [17] to store PHD and stream
visible points to the GPU. If point normals are not
available, we compute them by fitting a least-square
plane to a neighborhood of each point. The splat
radii are determined from the density of the rendered
points [17].

4.2 Generating the Proxy Points

The proxy points PLD are obtained by sub-sampling
PHD. To this end, the octree storing PHD is pruned to
contain only its k top-most levels, which correspond
to the k lowest levels of detail of PHD. As we will
show in Section 6.1, the choice of k is a trade-off
between performance and rendering quality. We will
also demonstrate that using only a small subset of
the original point cloud as proxy points strongly
accelerates the subsequent labeling stage, but is still
sufficient for a high-quality textured reconstruction
from the depth maps at render time.

4.3 Labeling

To obtain a point-to-image assignment, first a set of
candidate images of each point p ∈ PLD is deter-
mined. The image Ii is a candidate of p if p is not
occluded from the camera view of Ii. In the second
step, we pick for each point p its best-suited candidate
image Ij for texturing, i.e., p is labeled with the index
j.

This assignment has to consider the quality of the
image-to-geometry mapping as well as continuity in
the texturing (i.e., avoiding visible artifacts between
areas labeled by different images). We solve this
problem by a graph-cut based optimization, where
the quality and continuity criteria are addressed by
a data and a smoothness term, respectively. However,
instead of operating on triangles as done in previous
approaches, we use the knn-graph built upon the
points as input graph for the optimization. We use the
same data and smoothness term as in Arikan et al. [8]:
For the points, the data term favors orthogonal and
close image views. In contrast, the smoothness term
penalizes label changes with strong color differences
along edges between neighboring points.

5 MULTI-DEPTH-MAP RAYTRACING

In this section, we describe how the precomputed data
is used at runtime to obtain a high-quality visualiza-
tion of the scene. We perform two major steps, surface

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 4

Ii

DjPHD

Ij

Di

(a) Depth-map generation

PLDPLD

(b) Point-cloud labeling (c) Rendering

Fig. 2. Overview of our pipeline. (a) High-resolution depth maps are generated by rendering the high-density
input point cloud PHD from image cameras. The depth maps Di and Dj , lifted to 3D, are color-coded by their
corresponding images Ii and Ij , respectively. (b) PHD is subsampled, and the resulting low-density point cloud
PLD is labeled by the input images, i.e., each point of PLD is assigned to an input image. This concludes the
preprocessing phase. (c) Coarse surface positions (marked with 4) that are equipped with labels are efficiently
obtained by splatting points of PLD. Then, starting from these positions, raytracing the respective depth maps
yields high-resolution surface positions (marked with©).

(a) (b)

(c) (e)(d)

2
la

ye
rs

1
la

ye
r

1
la

ye
r

2
la

ye
rs

Fig. 3. (a)-(d) Rendering pipeline. (a) Splatting proxy points PLD (color coded according to labels). (b) Raytracing
high-resolution depth maps. (c) Per-pixel labeling to be used for texturing. (d) Textured and shaded surface. (e)
shows invalid intersections with discontinuity triangles that can occur when raytracing a single depth-map layer
along each view ray.

generation and color mapping, to render a textured
surface.

The surface-generation step first renders PLD as
splats to create a depth buffer representing coarse
surface positions and a corresponding label buffer
(Fig. 3a, Section 5.1.1). For rendering, we employ the
same out-of-core data structure [17] that we used to
generate the depth maps. Then, starting from these
coarse positions, for each pixel the depth map indi-
cated by the label buffer is raytraced in a full-screen
rendering pass to produce a high-resolution depth
buffer (Fig. 3b, Section 5.1.2).

The following color-mapping step splats PLD again
to generate a high-resolution label buffer by upsam-

pling the labels that were output in the first pass
(Fig. 3c, Section 5.2.1).

Finally, high-resolution images relevant for textur-
ing are cached to the GPU (Section 5.2.2), and the
color of each pixel is retrieved in a full-screen pass
by projecting it onto its assigned image based on the
depth and label retrieved from the high-resolution
depth and label buffers (Fig. 3d, Section 5.2.3).

In the following, we will describe the individual
steps of our rendering pipeline in more detail.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 5

Ii

Dj

Ij

Di

depth-map discontinuity

silhouette

Fig. 4. Multiple label layers for raytracing. Invalid
intersections (©, green) can be caused by initializing
raytracing with the front-most splat position (4, green)
and its label i. In this case, starting from second-layer
positions (4, red) with label j, raytracing Dj produces
valid intersection points (©, red).

5.1 Surface Generation
5.1.1 Visibility Stage
In the first pass, PLD is rendered with z-buffering,
writing to a depth buffer Bd and a label buffer Bl. The
generated buffers represent the front-most label layer,
which will be used in the raytracing pass to compute
the intersection points of view rays with depth maps.
In particular, a ray cast from the viewpoint through
the pixel position p = (xp, yp) will intersect the
depth map indexed by label lp = Bl(xp, yp), and the
intersection search will start at the 3D position q0

p

corresponding to the depth value dp = Bd(xp, yp).
This fast, direct selection technique gives the correct

depth map for the vast majority of the view rays in the
screen. However, in some cases, the labels in Bl will
not correspond to a depth map that contains a valid
ray intersection. This mostly happens for proxy points
splatted very close to depth-map discontinuities and
silhouettes (Figs. 3e and 4). In such a case, we retrieve
the depth-map label for the intersection test from the
next closer proxy point splat along the ray with a
different label. For this, we have to store a second label
layer to look up the next depth map for raytracing if
no valid intersection point is found in the first depth
map (Figs. 3e and 4). To extract this second label layer,
PLD is rendered again with z-buffering, and at each
pixel p, fragments with label lp or depth values less
than dp are discarded. The resulting depth and label
values are written into two additional buffers. We then
extend this approach to multiple layers computed in
a depth-peeling fashion [18].

5.1.2 Raytracing Pass
We render a full-screen quad and perform for each
screen-space pixel p an iterative search in the high-
resolution depth map Dlp , followed by a binary

q
p

1Dlp

Ilp

q
p

0

rp

h0

Fig. 5. A single iteration of the iterative search, taking a
step of h0 on rp. The start position q0

p and its label index
lp are retrieved from the closest ray-splat intersection.

search. The iterative search starts at q0
p and uses a

stepsize that adapts to the current estimated distance
to the intersection. The next point on the ray is
computed as follows:

qi
p = qi−1

p + hi−1 ∗ rp, (1)

where rp is the normalized ray direction. The adaptive
stepsize hi−1 is calculated as the signed distance of
qi−1
p to Dlp along the line to the center of projection

of Ilp (Fig. 5). The distance is signed since the low-
resolution depth-buffer value used as initialization
can lie in front or behind the high-resolution depth
map.

Since q0
p provides a sufficiently good initialization,

only a few iterations are required (except at oblique
angles) to find a pair of points qk−1

p and qk
p enclosing

an intersection. In a second step, the interval [qk−1
p ,qk

p]
is refined by a binary search to find a more accurate
approximation q̂p of the intersection point.

We then check whether q̂p lies on a depth discon-
tinuity of Dlp . For this, we detect the four texels of
Dlp (yielding two triangles in 3D) that are nearest to
the projection of q̂p into Dlp , and assume a disconti-
nuity if the depth disparity between any two triangle
vertices is above a user-defined threshold (20cm in
our examples). Averaging the two triangle normals
also provides us with per-pixel normals, which can
be optionally used for lighting effects. In case of a
depth discontinuity, raytracing is re-performed to find
an intersection with the depth map retrieved from the
next label layer (Fig. 4).

The results of the raytracing pass basically refine
for each pixel the depth value and – in case of a
discontinuity – the label value originally obtained
from splatting PLD.

5.2 Color Mapping
5.2.1 Labeling Pass
The aim of this rendering pass is to equip the high-
resolution depth data from the previous pass with
labels that are suitable for texturing. Unfortunately,
we cannot use the label buffer Bl created in the
visibility stage as is, since due to the low resolution of
PLD, this buffer exhibits non-regular borders between

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 6

Dj Di

Fig. 6. Illustration of false labels near silhouettes.
View rays through the splat at the silhouette have valid
intersections with Di. Therefore, this splat projects its
label i to the background, causing corresponding pixels
of that region to be assigned the label i instead of j.

differently labeled regions (Fig. 3b) and false labels
near silhouettes (Figs. 6 and 8c).

Instead, we compute a Voronoi decomposition of
the screen space into equally labeled regions. The
seeds of this decomposition are specified by the pro-
jection of the points cj ∈ PLD into screen space,
and distances between pixels and seed points are
measured by the Euclidean distances of the respective
points q̂p and cj in 3D. This way, each pixel will be
assigned the label of its closest seed cj . This results
in a high-resolution label buffer with per-pixel labels
upsampled from the sparse labeling information in
PLD.

In practice, this is implemented by rendering PLD

as splats using z-buffering, with the depth value of
a splat at pixel p manually set to the 3D Euclidean
distance d(cj , q̂p) between the splat center cj and
the point q̂p. This pass stores at each pixel p (corre-
sponding to the surface point q̂p) the label of cj with
j = argminj d(cj , q̂p).

5.2.2 Image Management
In this step, we employ an out-of-core streaming tech-
nique [8] for continuously caching the currently most
relevant images into a GPU texture array, where the
relevance of an image is measured by the frequency
of occurrence of its label in the updated label buffer.

5.2.3 Texturing Pass
A full-screen quad is rendered to retrieve the color of
each pixel p by projecting q̂p onto the image indicated
by the updated label buffer.

In a last step, we perform an online screen-space
leveling method [8] to balance the color intensities
between regions textured by different photographs
and thus reduce illumination seams in the final output
image.

6 RESULTS
We have tested our approach on three different data
sets acquired by a laser scanner (Table 1, Fig. 17).

TABLE 1
Scene characteristics.

Model # Points # Images
Hanghaus 2 Wohneinheit 6 (Scene 1) 35M 188

Hanghaus 2 Wohneinheit 1 (Scene 2) 682M 192

Centcelles (Scene 3) 1091M 161

Scene 1 and 2 are scans of different building units
in terrace house (Hanghaus) 2 in the excavation of
ancient Ephesus, while Scene 3 is a scan of the cupola
of the Roman villa of Centcelles. In the following, we
discuss performance and quality tradeoffs depend-
ing on the algorithm’s main parameters, and give
a detailed analysis of memory consumption, recon-
struction error compared to ground truth, and the
convergence of the iterative search. Then, we will
compare our approach (denoted by DMRT) to the
related depth-map triangulation approach (denoted
by DMT) in terms of both quality and performance.

All results in this paper were produced on a PC
with an Intel i7-4770K 3.50 GHz CPU, 32 GB RAM
and NVIDIA GeForce GTX TITAN GPU. A frame-
buffer resolution of 1280 × 720 was used in all our
experiments and the accompanying video.

6.1 Performance and Quality Tradeoffs
Number of layers. Currently, we extract layers in a
depth-peeling fashion [18], which requires a geometry
pass for every single layer. Therefore, the choice of
the number of layers is a trade-off between rendering
performance and quality. Table 2 shows that, even
using more than ten layers, DMRT achieves real-time
frame rates. For the measurements in this table, we
used a proxy point cloud that is sub-sampled from the
original point cloud by a factor of 686 (as in Fig. 17).
The table also shows a breakdown of the running time
of the algorithm by its stages.

Size of proxy point cloud. In our approach, another
key criterion for the rendering performance and qual-
ity as well as the labeling time is the size of the proxy
point cloud. Fig. 7 shows renderings for different pa-
rameters. As expected, the number of layers required
for a high-quality rendering decreases with growing
sizes of proxy point clouds. For the same layer count
on the other hand, a DMRT reconstruction with more
proxy points results in an increase of the labeling time
and a decrease of the rendering performance.

For more performance results, see Section 6.5.

6.2 GPU Memory Consumption
The GPU memory usage of our method is affected by
several factors, including the number of input images,
the size of the proxy point cloud, the layer count, and
the framebuffer resolution.

For all our test scenes, we generated depth maps of
size 1024 × 684. Each map consumes 2.8MB of GPU

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 7

|PLD| 4.4M 1M 0.2M
labeling in 16.4 min 3.4 min 0.8 min
layers 3 3 4 4 7
fps 44 54 48 49 36

Fig. 7. Results for different parameters. The red ellipses indicate regions of some artifacts.

TABLE 2
Average performance of DMRT rendering (in ms) for

different numbers of layers, measured during a
walkthrough of Scene 2.

layers 1 3 5 7 9 11

visibility stage 2 6 9.8 13.7 17.5 21.2

raytracing pass 1.2 2 2.3 2.7 3 3.3

labeling pass 2 2 2 2 2 2

img. man. 2.5 2.8 2.9 3.1 3.3 3.3

texturing pass 6.3 6.4 6.3 6.3 6.3 6.3

total 14 19.2 23.3 27.8 32.1 36.1

fps 71 52 43 36 31 28

memory (one float per pixel). As described in Sec-
tion 5.2.2, the high-resolution input images are cached
in a GPU texture array on demand. We reserved 1GB
of GPU memory for them. We resort to low-resolution
images (of size 256 × 171) if input images are not
available in the texture array. All of these are stored on
the GPU, and each requires 0.13MB. As an example,
rendering Scene 2 requires 563MB for the 192 depth
maps and low-resolution images.

Furthermore, each point of the proxy point cloud
is represented by six floats for the position and the
normal vector, and an integer for the label. A screen-
space pixel in a layer requires two floats, one for
the depth, and the other for the label. Therefore, an
optimal DMRT rendering of Scene 2 with |PLD| = 1M
at a resolution of 1280 × 720 and five layers (see the
accompanying video) occupies an additional 65MB of
GPU memory (37MB for the proxy points and 28MB
for the layers).

6.3 Ground-Truth Comparison

In order to analyze the reconstruction error of DMRT,
we rendered the scene from the viewpoint of one of
the image cameras, and compared the color output
and depth buffer at different stages of our rendering
pipeline to the original image and its correspond-
ing high-resolution depth map, respectively (Fig. 8).
This comparison can give a first impression of the

(a) image & high-res. surface

0

0.1

0.05

0

1

0.5

(b) coarse surface

(c) raytraced surface

(d) raytraced surface with per-pixel labels

voronoi decomposition

Fig. 8. Analysis of the reconstruction error. The scene
is rendered as seen by the image shown in (a). The
error is measured as the deviation of the color output
and depth buffer at different rendering stages (b)-
(d) from the reference image and its corresponding
high-resolution depth map, respectively. The color and
depth differences are visualized as heat maps shown
in the right column.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 8
3

ad
di

tio
na

l l
ay

er
s

fir
st

 la
ye

r

(a) initial (b) 1 iteration (c) 5 iterations (d) 30 iterations (e) 100 iterations

(f) initial (g) 1 iteration (h) 5 iterations (i) 100 iterations (j) our output

Fig. 9. (a)-(e) show absolute stepsizes of the iterative search in the first layer. For each of the white pixels in (e),
where raytracing of the first layer fails, a maximum of three more layers are consecutively searched until a valid
intersection is found. (f)-(i) show stepsizes in the layer where raytracing succeeds. Note that for the visualization,
all stepsizes are multiplied by 10 and then clamped to the range [0, 1].

reconstruction error, however note that due to differ-
ent lighting conditions when acquiring the different
images, a full match to the “ground truth” is not
possible. The rightmost column in Fig. 8 shows color
and depth differences as heat maps. For this analysis,
we used a sub-sampling factor of 686 (|PLD| = 1M)
to generate the proxy point cloud, and rendered the
scene using four layers. Figs. 8c and 8d show the
DMRT reconstruction after a maximum of 100 iter-
ative search and 20 binary search iterations.

A comparison of the heat maps (of depth differ-
ences) in Figs. 8b and 8c shows that raytracing reduces
the overall depth error. As expected, remaining differ-
ences are maximal at oblique angles and silhouettes.
However, note that the differences at silhouettes are
not generated by our raytracing method. Instead,
these occur naturally since the depth map of the
image and the raytraced depth maps have different
sampling rates of the observed surface, and thus
exhibit slight geometric variations at silhouettes.

Interestingly, the overall color error is minimal,
except inside the two small rooms. This is because
the labeling assigns the points there to images that
have better geometric resolution, but were acquired
under different lighting conditions than the reference
image in Fig. 8a.

Fig. 8c shows that while raytracing resolves the
geometry at silhouettes adequately, it generates false
labels among these regions by mapping the labels
of proxy splats to the background (see also Fig. 6).
As we have shown in the accompanying video, these
false labels generate ghosting artifacts during anima-
tions, and are resolved by our per-pixel labeling step
(Fig. 8d).

(a) initial (b) 4 layers (c) 11 layers

Fig. 10. Worst-case scenario. (a) shows a poor initial-
ization of the stepsizes of the iterative search, therefore
requiring many layers for a high-quality visualization.
Our output with four (b) and eleven (c) layers.

6.4 Convergence

In this section, we analyze the convergence of the
iterative search with adaptive stepsize, which is re-
sponsible for finding a “tight” pair of points enclosing
an intersection point to seed the binary search. We
also discuss the limits of our rendering method for a
synthetically generated scene configuration.

We rendered the scene using the same parameters
as in Section 6.3. Figs. 9a-9e show absolute stepsizes
of the iterative search in the first label layer. For some
pixels, our raytracing failed to find intersections in
this layer. These pixels are marked white in Fig. 9e,
and for each of them, an intersection point is searched
in three additional layers. Figs. 9f-9i show absolute
stepsizes in the layer where an intersection point is
found.

We perform a total of ctotal =
∑k

i=1 ci iterative
search iterations for each pixel, where 1 ≤ ci ≤ cmax

is the number of iterations performed in the ith layer.
The maximum iteration count in each layer is bound
by cmax (100 in this example), and k refers to the index
of the layer where the intersection is found (or the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 9

TABLE 3
Comparison of the labeling times and rendering

performance on Scene 2.

DMT

depth-map res. 256× 171 512× 342 1024× 684

aver. num. of labels
per depth map 46

labeling times 7 min 23 min 87 min
min/avg/max fps 32/45/84 11/17/46 3/5/16

DMRT

depth-map res. 1024× 684

|PLD| 1M
labels 192

layers 5

labeling times 3.4 min
min/avg/max fps 30/43/74

user-defined maximum layer count).
In practice, iterative search converges in a few

iterations to an intersection point, if any. Otherwise, it
terminates early if an intersection with a discontinuity
triangle is found. In our experiment, the iteration
count ctotal was on average 4.6 over all pixels, and it
took the raytracing pass 2.4 ms to complete (including
the binary search procedure).

The convergence of the iterative search is only guar-
anteed if each texel along the projection of the view
ray onto the depth map is visited, which is slow if
the depth-map resolution is high. The iterative search
with adaptive stepsize, on the other hand, proved
very efficient in practice to find in a few iterations
a pair of points enclosing an intersection point.

In order to see the performance of our raytracing
for a poor initialization of the stepsizes (Fig. 10a),
we multiplied the splat radii by 2.5, and rendered
the scene again. In this scenario, the iterative search
required on average ctotal = 9.5 iterations per pixel,
and the raytracing pass completed in 4.2 ms. Even
though our raytracing was still efficient, four lay-
ers was not sufficient to obtain a high-quality result
(Fig. 10b). To obtain a comparable result (Fig. 10c)
as in Fig. 9j, eleven layers were required, and the
raytracing pass performed in 8 ms with ctotal = 11
on average. We see that the most performance-critical
part of our rendering pipeline is still the extraction of
the layers, while searching for intersections in these
layers is quite efficient (see also Table 2).

6.5 Comparison to DMT
Finally, we compare our method to the related depth-
map triangulation approach on Scene 2. For this
comparison, we used a proxy point cloud of size
1M and five layers for the DMRT approach. Our
experiments suggest that this configuration is more
than sufficient for a not completely artifact-free, but
high-quality DMRT rendering. On the other hand,
depending on the chosen stitching threshold, DMT
can produce severe artifacts (Fig. 11).

Table 3 compares the labeling times and rendering
performance of DMT and DMRT for differently sized

�𝜀
p

q

�𝜀
p

q

𝜀�
5c

m
𝜀�

10
cm

Fig. 11. DMT’s stitching artifacts. Top: Due to a small
stitching threshold ε, the points p and q are considered
as non-overlapping by the DMT, leading to the point
p on the low-resolution depth map to be chosen for
texturing. Bottom: In DMT, visibility is not resolved
for features smaller than the ε threshold. Thus, the
invisible point q can shine through the front surface.

walkthrough time in s

re
nd

er
in

g
tim

e
in

 m
s

0

50

100

150

200

250

300
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

DMT 256 x 171
DMT 512 x 342
DMT 1024 x 684
DMRT 1024 x 684

Fig. 12. Comparison of the rendering performance
of DMT and our DMRT approach for a walkthrough
of Scene 2. Using high-resolution depth maps, our
method runs at 43 fps, being on average about an order
of magnitude faster than the previous work, which has
to settle with a quarter of the resolution to reach this
performance.

depth maps. Since the resolution of the depth maps
does not have a direct effect on the performance
of DMRT, we used the highest resolution for our
approach. The table shows that DMT strongly cou-
ples the labeling time and rendering performance to
the resolution of the depth maps used to represent
the scene. If we aim for an equal-quality comparison
(Figs. 1c right and 1d), DMT needs to label 192 depth
maps of size 1024×684, which takes about 26 times
longer (87 min) than labeling the 1M proxy points
used by DMRT (3.4 min). While DMT cannot render
depth maps of this size in real time anymore (5 fps on
average), our new raytracing method is about 9 times

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 10

(a) one layer (b) two layers (c) three layers

Fig. 13. (a)-(c) show results of raytracing different num-
ber of layers along each view ray. Raytracing a single
layer (a) produces severe artifacts (black background
pixels), especially near silhouettes. In this example,
artifacts produced by raytracing two layers (b) are
barely visible. Adding a third layer almost completely
removes artifacts.

Fig. 14. The left image shows the coarse surface
(without raytracing). By using textured coarse positions
where raytracing fails, the splats along silhouettes spu-
riously occlude the background (right top). Therefore,
we always discard pixels if no valid intersection with
the surface could be found (right bottom).

faster, thus providing a real-time high-quality visual-
ization of the scene (Figs. 1d and 12, see also Table 2).
Reducing the depth-map resolution to 256×171 allows
DMT to almost match these performance values for la-
beling and real-time rendering, but noticeably reduces
the geometric resolution of the output (Fig. 1c left).

7 LIMITATIONS AND FUTURE WORK

Number of layers We found that extracting a few
layers in the visibility stage (Section 5.1.1) is sufficient
for high-quality visualizations (Fig. 13). However, in
scenes of higher geometric complexity, more layers
might be required (e.g., see Fig. 10). At the moment,
we use a naive implementation that performs k geom-
etry passes for k layers, which can become inefficient
as k increases. In such cases, more elaborate A-Buffer
techniques could be incorporated to achieve a multi-
layer setup in a single pass [19]. Also, for a few pixels
where raytracing fails to find a valid intersection with
any of the layers, we show the background color
instead of textured coarse surface points (Fig. 14). We

S

Ii

Fig. 15. Sub-sampling issue. The shown view ray
intersects a discontinuity edge of Ii. Due to the poor
sampling of the surface S by proxy points, there isn’t
any second layer to search for a valid intersection in
this case.

time

co
ar

se
ra

yt
ra

ce
d

Fig. 16. Label changes under camera motion can lead
to view-dependent geometry of silhouettes.

opted for this solution since splats along silhouettes
can also occlude the background.

Size of proxy point cloud. As discussed in Sec-
tion 6.1, the sub-sampling factor is a trade-off between
performance and quality. In order to achieve high
performance, this factor has to be large enough, but
should be small enough to maintain fine surface de-
tails. Currently, we discard the highest levels of detail
of the input point cloud to obtain proxy points. How-
ever, a feature-aware sub-sampling strategy could
produce an even better rendering quality, since the
generation of the proxy points currently does not
take local surface characteristics into account. Fig. 15
illustrates the absence of layers for raytracing, even
for a reasonable coverage of the surface by proxy
splats.

Motion artifacts. Depth maps can have slightly
varying representations of silhouettes based on the
viewing angle and distance relative to the observed
surface. Thus, label changes under camera motion
can lead to raytracing of depth maps with possibly
different representations of silhouettes (Fig. 16).

Inherited artifacts. Other rendering artifacts that
are inherited from the previous approach [8] are the
flickering during animations, and false textures at
some silhouettes due to image misregistrations and
the noise inherent in point clouds.

Extension. Note that the runtime steps required to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 11
Sc

en
e

1
(8

7x
)

Sc
en

e
2

(6
86

x)
Sc

en
e

3
(2

07
5x

)

Labeled proxy splats Raytracing pass Texturing passLabeling pass

Fig. 17. Results from three data sets. From left to right: Splatted proxy points with (from top to bottom) increasing
sub-sampling factors of the original point cloud ranging from 87× up to 2075×; raytraced surface without and with
per-pixel labels; and textured surface. The insets demonstrate how the labels of the column are mapped to the
back wall if the labeling pass is not applied.

create a high-resolution depth buffer (splatting a small
number of proxy points (visibility stage) and perform-
ing an efficient raytracing in a full-screen pass) are so
fast that they could be run twice per frame. This could
be used, for example, to create a shadow map for a
moving light source, allowing dynamic shadows at
interactive frame rates.

8 CONCLUSION

In this paper, we introduced a novel multi-depth-map
raytracing approach for high-quality reconstruction
and visualization of large-scale scenes. In a prepro-
cessing, we generate multiple high-resolution depth
maps and perform a graph-cut based optimization
of the point-to-image assignments (point labels) on a
strongly reduced subset of the original point cloud. At
runtime, we first reconstruct a high-resolution depth
buffer by raytracing these depth maps, where the
labels indicate which depth maps to intersect. In a
second step, we compute high-quality per-pixel labels

from the sparse label information and use these for
texturing the depth buffer.

We have shown that our method allows for a real-
time visualization of large-scale scenes at much higher
geometric resolution than the related state of the
art, which is based on rendering and stitching of
many depth maps. Our results also indicate a huge
performance gain in the labeling step as compared to
the previous method.

REFERENCES

[1] D. T. Guinnip, S. Lai, and R. Yang, “View-dependent
textured splatting for rendering live scenes,” in ACM
SIGGRAPH 2004 Posters, ser. SIGGRAPH ’04. New
York, NY, USA: ACM, 2004, pp. 51–. [Online]. Available:
http://doi.acm.org/10.1145/1186415.1186474

[2] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt, “Sift-realistic
rendering,” in Proc. the 2013 International Conf. 3D Vision (3DV
13), 2013, pp. 56–63.

[3] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Proc. the 4th Eurographics Symp. Geometry
Processing (SGP 06), 2006, pp. 61–70.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 12

[4] M. Kazhdan and H. Hoppe, “Screened poisson surface recon-
struction,” ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13,
June 2013.

[5] V. Lempitsky and D. Ivanov, “Seamless mosaicing of image-
based texture maps,” in Computer Vision and Pattern Recognition
(CVPR 07), IEEE, June 2007, pp. 1–6.

[6] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or,
“Seamless montage for texturing models,” Computer Graphics
Forum, vol. 29, no. 2, pp. 479–486, 2010.

[7] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
streaming for out-of-core surface reconstruction,” in Proc. the
5th Eurographics Symp. Geometry Processing (SGP 07), 2007, pp.
69–78.

[8] M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, and M. Wim-
mer, “Large-scale point-cloud visualization through localized
textured surface reconstruction,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 99, no. PrePrints, p. 1, 2014.

[9] M. Botsch and L. Kobbelt, “High-quality point-based render-
ing on modern gpus,” in Proc. the 11th Pacific Conf. Computer
Graphics and Applications (PG 03), 2003, pp. 335–343.

[10] M. Botsch, M. Spernat, and L. Kobbelt, “Phong splatting,” in
Proceedings of the First Eurographics Conference on Point-Based
Graphics, ser. SPBG’04. Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association, 2004, pp. 25–32. [Online].
Available: http://dx.doi.org/10.2312/SPBG/SPBG04/025-032

[11] M. Zwicker, J. Räsänen, M. Botsch, C. Dachsbacher,
and M. Pauly, “Perspective accurate splatting,” in
Proceedings of Graphics Interface 2004, ser. GI ’04.
School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2004, pp. 247–254. [Online].
Available: http://dl.acm.org/citation.cfm?id=1006058.1006088

[12] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-
quality surface splatting on today’s gpus,” in Proc. the 2nd
Eurographics / IEEE VGTC Symp. Point-Based Graphics (SPBG
05), 2005, pp. 17–24.

[13] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll,
“Efficient image-based methods for rendering soft shadows,”
in Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’00.
New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 375–384. [Online]. Available:
http://dx.doi.org/10.1145/344779.344954

[14] F. Xie, E. Tabellion, and A. Pearce, “Soft shadows by ray
tracing multilayer transparent shadow maps,” in Proceedings
of the 18th Eurographics Conference on Rendering Techniques,
ser. EGSR’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 265–276. [Online].
Available: http://dx.doi.org/10.2312/EGWR/EGSR07/265-
276

[15] C. Zhang, H.-H. Hsieh, and H.-W. Shen, “Real-time reflections
on curved objects using layered depth texture,” in IADIS
International Conference Proceedings on Computer Graphics and
Visualization, 2008.

[16] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-
level ray tracing algorithm,” in ACM SIGGRAPH
2005 Papers, ser. SIGGRAPH ’05. New York, NY,
USA: ACM, 2005, pp. 1176–1185. [Online]. Available:
http://doi.acm.org/10.1145/1186822.1073329

[17] C. Scheiblauer and M. Wimmer, “Out-of-core selection and
editing of huge point clouds,” Computers and Graphics, vol. 35,
no. 2, pp. 342–351, Apr. 2011.

[18] C. Everitt, “Interactive order-independent transparency,”
NVIDIA, Tech. Rep., 2001.

[19] H. Gruen and N. Thibieroz, “Oit and indirect illumination
using dx11 linked lists,” in GDC, 2010.

PLACE
PHOTO
HERE

Murat Arikan is a Ph.D. student at the Insti-
tute of Computer Graphics and Algorithms of
the Vienna University of Technology. He re-
ceived his M.Sc. degree in Mathematics from
Vienna University of Technology in 2008. His
current research interests are real-time ren-
dering, point-based rendering, and interac-
tive modeling.

PLACE
PHOTO
HERE

Reinhold Preiner received his B.Sc. degree
in Computer Science from Graz University
in 2008 and his M.Sc. degree in Computer
Science from Vienna University of Technol-
ogy in 2010. His research interests include
reconstruction, geometry processing, and in-
teractive global illumination. He is now an
assistant professor and doctoral researcher
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology.

PLACE
PHOTO
HERE

Michael Wimmer is an associate professor
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology, where he received an M.Sc. in 1997
and a Ph.D. in 2001. His current research
interests are real-time rendering, computer
games, real-time visualization of urban en-
vironments, point-based rendering and pro-
cedural modeling. He has coauthored many
papers in these fields, and was papers co-
chair of EGSR 2008 and Pacific Graphics

2012, and is associate editor of Computers & Graphics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2015.2430333

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Adaptively Layered Statistical Volumetric Obscurance

Quintjin Hendrickx1 Leonardo Scandolo1 ∗ Martin Eisemann1,2 † Elmar Eisemann1 ‡

1Delft University of Technology 2TH Köln

Figure 1: Ambient Occlusion without shading. We can render images at 320 fps (1280x720 resolution, 294 MPixels/s) on a GTX 770.

Abstract

We accelerate volumetric obscurance, a variant of ambient occlu-
sion, and solve undersampling artifacts, such as banding, noise or
blurring, that screen-space techniques traditionally suffer from. We
make use of an efficient statistical model to evaluate the occlusion
factor in screen-space using a single sample. Overestimations and
halos are reduced by an adaptive layering of the visible geome-
try. Bias at tilted surfaces is avoided by projecting and evaluating
the volumetric obscurance in tangent space of each surface point.
We compare our approach to several traditional screen-space am-
bient obscurance techniques and show its competitive qualitative
and quantitative performance. Our algorithm maps well to graphics
hardware, does not require the traditional bilateral blur step of pre-
vious approaches, and avoids typical screen-space related artifacts
such as temporal instability due to undersampling.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: SSAO, Summed Area Tables, global illumination

1 Introduction

Efficient computation of global illumination is still one of the hard-
est problems in computer graphics. In consequence, real-time ap-
proximations often make very simplifying assumptions. Ambient
Occlusion (AO) is an example and focuses on the evaluation of am-
bient light reaching a point on a surface [Landis 2002] by consid-
ering only local geometry as occluders in the scene. Attenuating

∗e-mail:l.scandolo@tudelft.nl
†e-mail:martin.eisemann@fh-koeln.de
‡e-mail:e.eisemann@tudelft.nl

the ambient light term based on local occlusion creates important
contact cues improving overall depth perception.

Historically, AO was first applied in static scenes where its effect
could be baked into occlusion maps [Landis 2002]. However, this
approach does not work well for dynamic scenes and would need
be applied per frame. In recent years, advances in graphics hard-
ware and the development of screen-space approximations have led
to real-time implementations of AO [Mittring 2007; Shanmugam
and Arikan 2007]. These screen-space ambient occlusion (SSAO)
techniques compute the amount of occlusion as a postprocessing
pass based on a depth image from the camera’s point of view. Tra-
ditionally, the occlusion factor is approximately estimated per pixel
using a few samples and smoothed using a subsequent bilateral blur
step. Most current rendering engines incorporate such solutions.

We aim at an approach that has the low computational complexity
of screen-space ambient occlusion (SSAO) approaches, but avoids
the usual drawbacks, such as banding, noise or blurriness caused
by undersampling. In order to eliminate these artifacts, we have to
account for all of the local geometry visible in screen-space. To this
extent, we reverse the typical order of operations applied in exist-
ing SSAO approaches. Instead of taking samples and blurring the
result afterwards, we compute a statistical model of the surround-
ing geometry at a pixel’s world position and use it directly for AO
computation. Because we do not use traditional sampling there is
no need for randomization or blurring of the result [Mittring 2007].

Specifically, our contributions are:

• A screen-space ambient-occlusion approximation, evaluated
using a single sample;

• An adaptive depth-slicing technique to efficiently compute
this model;

• A GPU-friendly and highly-parallel implementation

In the following, we introduce an approximation for volumetric ob-
scurance and how to compute it efficiently (Sec. 3) and describe
how to improve quality via depth slicing (Sec. 4). For acceleration
purposes, we introduce an adaptive technique (Sec. 5) and remove
bias in the result by incorporating the surface normal into the com-
putation (Sec. 6). We introduce important optimizations, like ap-

proximate summed-area tables (SAT) and differential SAT compu-
tation (Sec. 7). We evaluate and compare our approach to common
screen-space ambient occlusion and volumetric-obscurance tech-
niques (Sec. 8), before concluding (Sec. 9).

2 Related Work

The idea of approximating ambient illumination to account for local
geometry was first described by Zhukov ([Zhukov et al. 1998]) and
Landis [Landis 2002] showed the importance of AO in improving
depth perception through contact cues and soft shadows. [Luft et al.
2006] employed a similar idea for artistic purposes. AO has since
gathered a significant amount of interest resulting in numerous tech-
niques. The algorithms can be divided in roughly two categories,
geometry-based and screen-space ambient occlusion.

Geometry-based ambient occlusion incorporates all available
geometry into the AO computation. Geometrical data in form of
surface elements can be conveniently grouped in a hierarchy based
on their distance to evaluate local AO [Bunnell 2005]. Alterna-
tively, AO contributions can be scattered by each primitive via sur-
rounding occlusion volumes [McGuire 2010]. While providing
high-quality results the performance depends heavily on the geo-
metrical complexity and AO radius. Density information can also
be used for computing AO ([Hernell et al. 2010], [Grottel et al.
2012]) in the context of volume rendering.

Screen-space ambient occlusion techniques compute occlu-
sion based on information in the depth buffer leading to (almost)
geometry-independent evaluations. Such an approach was intro-
duced by Crytek [Mittring 2007]. They sampled a sphere around
a pixel’s world position and reprojected the samples into the depth
map to determine if they were occluded by geometry. For real-
time performance the approach requires aggressive undersampling,
which subsequently leads to noise artifacts that require an addi-
tional and costly bilateral blur step [McGuire et al. 2012].

Line sampling [Loos and Sloan 2010] improved upon the Cry-
tek implementation by taking samples in the 2D projection of
the sphere and integrating over line segments, thus computing
the amount of geometry inside the sample sphere. Concurrently,
[Szirmay-Kalos et al. 2010] presented a volumetric approach for
estimating ambient occlusion based only on screen space depth val-
ues. Horizon-based AO [Bavoil et al. 2008] aims at finding a maxi-
mum horizon angle at which light can reach the sample point. Rays
in randomized directions are marched and the maximum elevation
angle of these are averaged to estimate the occlusion. Line-sweep
AO [Timonen 2013] computes oclussion along a set of principal di-
rections and is efficient due to sharing samples between the screen
pixels aligned along these directions.

Statistical approaches aim at improving undersampling issues
which arise when balancing performance and quality in SSAO-
oriented methods. An example is the use of Summed-area tables
(SAT), which are an efficient data structure to compute local aver-
ages of the depth values per pixel that can be used to approximate
AO [Slomp et al. 2010; Dı́az et al. 2010]. However, naively apply-
ing SATs leads to strong artifacts at depth discontinuities (halos or
overestimations). We build upon these approaches and show how
to remove such artifacts using adaptive depth layers.

Multiple depth layers have been used to improve AO and global
illumination effects. Vardis et al. [2013] use depth information from
different views to improve the estimate of ambient occlusion. Deep
screen space [Mara et al. 2014] is a technique to create a depth

buffer containing non visible fragments that can be used to com-
pute ambient occlusion and indirect illumination effects. Deep G-
Buffers [Nalbach et al. 2014], which contain the first two visible
layers in the scene, use the enhanced geometrical information to
compute global illumination effects. Altough our layering scheme
only uses visible surfaces, applying our method to multiple depth
layers could be explored in the future.

3 Statistical Volumetric Obscurance

3.1 Background

AO improves upon standard ambient illumination terms in popular
shading models by capturing variations due to subtle shadowing
caused by surrounding geometry. The amount of ambient occlusion
at a point x on a surface is related to the ratio of outgoing rays that
are able to leave a sample volume as opposed to rays that are being
blocked by surrounding geometry (Fig. 2a) [Loos and Sloan 2010].
AO is formally defined as:

AO(x,~n) =
1
π

∫
Ω

ρ(d(x, ~ω))~n ·~ωd~ω , (1)

where x is the position in the scene, and ~n the normal at x. Here,
Ω represents the sample directions, usually a surface aligned hemi-
sphere, and d is the distance to the first intersection.

The fall-off function ρ is used to simulate rays with a limited extent
to model only local occlusion. In practice a piecewise constant,
linear or quadratic fall-off function is used.

While an exact evaluation of AO based on this definition can be
computationally costly, different models exist that can approximate
the correct result. In particular, Volumetric Obscurance (VO) [Loos
and Sloan 2010] estimates the amount of occlusion using the geo-
metric density within a surrounding sample sphere S:

VO(x) =
1

Vol(S)

∫
S

ρ(d(x,s))O(s)ds , (2)

where the occupancy function O is 0 if s is inside of the geometry
and 1 otherwise and Vol(S) is the volume of the sample sphere S.

The assumption used by the VO model is that if a large portion
of the sample sphere is inside a closed geometry, it will be less
probable for ambient light rays to reach x. While this intuition does
not relate to a physical process, results are similar to AO in practice.

The normal ~n, if known, can be used to restrict S to a hemisphere,
thus eliminating occlusion caused by geometry below the sample.

3.2 Overview of our method

The method we will present is based on a statistical estimation of
volumetric obscurance. For each pixel we define a sampling vol-
ume and approximate the amount of space in that volume which is
inside the geometry of the scene. We present a model that uses that
approximation to compute volumetric obscurance.

Initially we show how to efficiently average the depth of all pixels
within a screen aligned sample box centered at each pixel. That
sample box may contain pixels representing distant points in 3D
space, which will wrongly influence the average depth value. We
show how to solve this problem by separating the pixels in different
layers and computing a different average per layer.

Finally, we demonstrate how to account for the surface normal by
shifting our focus into computing the average of the view space
pixel coordinates and projecting the average to the surface normal.

Z-bu�er

(a) Screen Space Ambient
Occlusion

Z-bu�er

Ω

a

e

fd

c

b

(b) Point sampling

Z-bu�er

a e fdc b

Ω

(c) Line sampling

Z-bu�er

Ω

a0

b, c, d

a1 a2 a3

(d) Horizon-based sampling

Z-bu�er

S

(e) Volumetric obscurance

Figure 2: Screen Space Ambient Occlusion: (a) SSAO at a sample point is defined by the ratio of rays that can escape the sample volume.
Point sampling (b) and line sampling (c) approximate local ambient occlusion by sampling points within a sample volume. Horizon-based
sampling (d) marches in randomized directions to compute the maximum angle at which rays can escape the sample volume. (e) Volumetric
obscurance approximates ambient occlusion by computing the percentage of the sample volume that is inside a closed geometry.

3.3 Our Model

SSAO techniques, such as the one presented in this paper, work
solely on the depth map of the rendered image, optionally with an
additional normal map. Our solution is based upon the VO model
but introduces some important changes that make it more suitable
for current graphics hardware and avoids sampling artifacts.

First, we use a sample box (Fig. 3a) instead of a sample sphere to
estimate geometric density. The VO assumption is the same, i.e. we
determine the percentage of the box which is filled with geometry
and assume that it correlates with the amount of occlusion.

Second, we estimate the 3D obscurance function in Eq. (2) with a
2D version as follows. We assume that the geometry in the scene is
composed of a single surface whose depth is a continuous function
G : R2→ R with G(x,y) = dx,y where the values at each pixel po-
sition x,y are stored in our Z-buffer. Therefore, every sample point
whose depth is greater than what is stored in the Z-buffer is assumed
to be occupied, and conversely each sample point whose depth
value is less than the corresponding z-value in the depth buffer is
deemed unoccupied. The key observation is that we can average
the depth function G(x,y) around a sample point and use this value
to approximate the occupancy.

The mean value µ of G over a domain V is:

µ =
1

AV

∫
V

G(x)dx , (3)

where AV is the area of the integration domain. The mean value
µ(x) of the screen space depth within a sample box is then used
to estimate the geometric occupancy around a pixel (Fig. 3a). Let
zB(x) be the depth value of the bottom face of the sample box and
zT (x) that of the top face. As we are only interested in the relative
amount of occupancy, we can cancel AV out and define our statisti-
cal volumetric obscurance (StatVO) model as:

StatVO(x) = ψ

(
zB(x)−µ(x)
zB(x)− zT (x)

)
. (4)

The function ψ(x) clamps the final value to 0 for negative values
of x and behaves linearly for values in [0,1], but will drop off to
0 with a user-defined slope for values greater than 1 (Fig. 3a). In
consequence, the VO value results in zero, if the average depth is
too far from the surface value, which reflects that the considered
sample points fall outside the sample box.

The extent of the sample box in screen-space is computed based on
its world position (the screen-space extent of sample boxes should

V

Z B

Z T

μ

(a)
10

μ

StatVO

(b)

Figure 3: Statistical volumetric obscurance: Our method (a) ap-
proach computes the volume integral of a box as an approximation
of ambient occlusion. The graph at the right shows how occlusion
increases as the average µ rises, after the average leaves the sam-
ple box, occlusion falls-off back to zero.

be large nearby and smaller far away). To derive the size of its rect-
angular projection, we rely on the pixel’s linearized depth value.
Next, to estimate the occlusion, we need a way to quickly com-
pute the mean depth value inside such screen-aligned rectangle of
arbitrary size. To this extent, we make use of Summed-Area Ta-
bles [Crow 1984]. They allow us to retrieve, at a constant cost, the
average in an arbitrary rectangular region around a pixel. In each
pixel, they store the sum of all pixels in the upper left quadrant of
the texture. The construction can be done using a fast recursive
algorithm[Hensley et al. 2005]. To query the average of a rectan-
gular region, the sum of all its interior pixels can be retrieved by
combining the values from its four corners.

Approximating the VO via a mean value implies that the fall-off
function in Eq. (2) cannot be applied to each sample separately.
Furthermore, note that in Eq. (4) the sample box is not restricted in
the z coordinate, meaning that sample points outside of the sample
box influence µ as well. We would want to reduce the influence of
samples that are far from the surface point. In the next section, we
explain how to incorporate this idea.

4 Depth Layering

Not applying a fall-off function to each sample when computing
volumetric obscurance leads to an overestimation at depth discon-
tinuities, which leads to halos (Fig. 6a). To counteract overestima-
tion, we divide the depth map into m uniformly arranged layers or-
thogonal to the viewing direction based on the maximum and min-
imum view-space depths. Each depth pixel is assigned to the layer
which overlaps with the corresponding depth value (Fig. 4). Non-

L 1

V
μ L 2

L 1

V

μ1

μ2

(a) (b)

Figure 4: Depth Layering: While a single layer will result in a sin-
gle average over all geometry (a), we can slice our scene in multiple
depth layers to obtain averages for each layer separately (b).

assigned pixels are set to 0. The depth buffer is processed and split
among these multiple layers. During the splitting operation, we use
an additional (color) channel to keep track of sample/pixel validity,
i.e., the channel is one if a depth sample was assigned to the cor-
responding pixel and zero otherwise. We then generate SAT’s for
each layer and channel separately. Contributions from each layer Li
overlapping with the sample volume V are weighted by the corre-
sponding sample count ni (the number of samples assigned to Li),
to account for the missing values, and combined into a final obscu-
rance value StatVOLayered(x) as follows:

StatVOLayered(x) =
1

∑i∈V ni(x) ∑i∈V StatVOi(x)ni(x) , (5)

where StatVOi is the statistical volumetric obscurance defined in
Eq. (4) computed on layer Li.

Because of function ψ in Eq. (4), depth slices with depth values
significantly different from the surface depth will have no influence
on the final computed obscurance. However, the computational ef-
fort is linear in the number of layers m and larger scenes require a
high number of depth layers, resulting in computation times that are
no longer competitive compared to other real-time AO techniques.
For example, we found that the Sibenik cathedral requires around
64 layers for good results (Fig. 6e).

5 Adaptive Depth Slicing

To improve upon the linear depth-slicing approach, we propose to
use depth layers which adapt to the local geometry. We drew in-
spiration from higher-dimensional filtering approaches [Gastal and
Oliveira 2012] as our technique also builds on a recursive process
that partitions the current depth map of a layer into two disjoint
sets in each recursion. The intuition behind this step is that as long
as pixels with very different depth values are further apart than the
screen-space size from the corresponding sample area then they do
not influence each other during the obscurance computation.

Our algorithm Fig. 5) works as follows: Initially we have the orig-
inal depth map and its corresponding SAT. Using this SAT, we can
compute the average depth value µ around each pixel, as described
in Sec. 3, which amounts to having a smoothed version of the orig-
inal depth map. We then assign each depth value of the original
depth buffer to the upper or lower layer based on its relative depth
value compared to µ , hereby often successfully separating locally
far and near samples. The intuition behind this approach is that
around depth discontinuities, pixels closer to the camera will all
have a depth value smaller than the average, and pixels further away
will have a depth that is greater than the average. Once each pixel is

L2

L1

smoothed Z-bu�er

V

μ1

μ2

Figure 5: Adaptive Depth Slicing: In each recursion a smoothed
Z-buffer is constructed, each depth sample is either assigned to the
upper (red) or lower layer (green).

(a) 1 layer (b) 64 layers (c) 4 adaptive layers

(d) 1 layer, 1 ms (e) 64 layers, 55 ms (f) 4 adaptive layers, 2-
3 ms

Figure 6: Comparison: Using a single layer (a) results in dark
halos at depth discontinuities (d). Splitting the scene into multiple
layers solves this problem. (b) However, this impacts performance
(e). Using adaptive slicing adds additional layers only at depth
discontinuities (c). This allows us to eliminate halos and achieve
good performance (f).

assigned to one of the two layers, we compute a new SAT for each
layer. As in the uniform depth slicing approach (Sec. 4), we keep
track of the amount of active pixels by using an additional chan-
nel in these new SATs as well. Once we have the two new SATs,
the process can be repeated for each newly created layer in order to
further differentiate samples.

During rendering we simply evaluate all layers using Eq. (5). The
fall-off function ψ automatically adjusts the influence of each layer,
hereby reducing the influence of samples outside the sample box.

The adaptive depth slicing dramatically reduces the number of re-
quired layers. As few as four adaptive layers can achieve results
that are comparable to the naive 64 uniform layers implementation
(Fig. 6e and 6f) for our test scenes.

6 Surface Normal Incorporation

Until now, the sample box was always aligned with the viewing
direction. However, when viewing a surface from a grazing angle
a bias is introduced into our VO approximation when parts of this
surface are hidden in the depth map by pixels closer to the cam-
era (Fig. 7a and b). In Fig. 7a the mean value of layer L1 (green) is
only slightly above the sample position. In Fig. 7b the mean value is

L2

L1

Ω

μ1

μ2

L 2
L 1

Ω
μ1

μ2

L 2
L 1

Ω

h

∆μ1

∆μ2

n

X1

X2

X

(b)

(a)

(c)

Figure 7: Normal Integration: (a) and (b) Considering only the
hemisphere/hemibox around a surface point in the viewing direc-
tion leads to different occlusion results depending on the slope of
the surface. (c) Projection of the mean of all depth samples in 3D
space onto the surface normal removes this bias.

higher since the object in layer L2 hides a part of the surface under-
neath. Performing VO computation only for the positive half-space
in the direction of the surface normal can enhance the perception
of finer scale details [Loos and Sloan 2010]. We make use of the
surface normal by extending our approach to 3D and orienting the
sample box, so its bottom side is aligned with the surface (Fig. 7c).

After the adaptive layer computation from Sec. 5, we reproject each
depth value in each layer into view space to acquire its 3D position.
We save the results in RGB maps and compute the corresponding
SATs for each. Instead of computing an average depth value, we
now compute the average position x̄ of all reprojected depth sam-
ples and project it onto the surface normal ~n, which conveniently
reveals the average height of all samples along the surface normal:

∆µ = (x̄−x) ·~n , (6)

where x is the surface position. The oriented statistical surface ob-
scurance StatVOi per layer Li is then:

StatVOi = ψ

(
∆µ

h

)
, (7)

where h is the height of the sample box. Eq. (5) is used to compute
the final obscurance value.

Further improvement regarding the approximation quality can be
achieved by evaluating four quadrants of the sample region around
the pixel separately. The region can be split into four equally-sized
parts, for which the result is evaluated independently, by retrieving
nine (corners, midpoints, center) instead of four values from the
SATs. The final VO value is then computed by averaging the results
(Fig. 8). The overall cost increases by roughly 25% to 40%.

A
A A
A A

1 21

3 4

Figure 8: Left: One region, right: four quadrants. All other images
in the paper rely on a single region

(a) Full resolution (b) Half resolution (c) Quarter resolution

Figure 9: Approximate SATs

1
1

2
3

2
6

1
2

L - 0
S1,0

1
1 1

2
1

2
L1,0 S = 1,1

0
2

2
2

40

L1,1

Computed
and stored

Computed
and stored

Computed
during
StatVO

evaluation

L1,0

S0L 0

S - 0 S1,0

Figure 10: Differential SAT Computation: We can spare the com-
putation of one depth layer (L) and one SAT (S) in each partitioning
step as they can be reconstructed from their parents and siblings.

7 Optimizations

We introduce two important performance improvements for our
technique; approximate SATs and differential SAT computation.

7.1 Approximate SATs

The most costly computation of our algorithm is the SAT cre-
ation. While we experimented with other prefiltering techniques
such as Mipmaps, N-Buffers [Décoret 2005] or Y-Maps [Schwarz
and Stamminger 2008], SATs provided the highest quality.

Instead of computing full-resolution SATs, we downsample the in-
put by a factor of 2-4 in both width and height by averaging the
depth values, reducing computation times by a factor of 4 to 16
with little impact on quality. We then upscale the low-resolution
SATs with linear interpolation to approximate the full resolution
input. It is important to note that the additional channel used for
sample counting must be handled carefully during downsampling to
keep track of the sample count. As linear interpolation is hardware-
accelerated, upsampling the SATs is very fast. Fig. 9 shows a com-
parison between using a full-resolution SAT and downsampled ver-
sions. The SAT is queried with sample rectangles, which makes this
acceleration suitable for our context. For other sampling strategies,
such a solution can be harmful (compare supplementary material).

7.2 Differential SAT Computation

Let L0 be the (downsampled) original depth map, and L1,0 and L1,1
be the first two adaptive sublayers resulting from partitioning L0.
Each subdivision of a layer requires the computation of a corre-
sponding SAT S. An important observation here is that while the
samples contained in L0 are distributed among the sublayers L1,0
and L1,1, their total sum does not change. Thus, subtracting SAT
S1,0 from S0 results in S1,1 (Fig. 10) removing the need to compute
it explicitly. Alg. 1 shows the pseudo-code for the SAT generation
routine of four adaptive layers when using differential SATs.

For four adaptive layers, we need to compute only four out of seven
SATs explicitly (for more layers the ratio approaches 1:2). During
rendering, we compute the value of the missing SATs on-the-fly by
subtracting all ancestral and the sibling layer from the root SAT S0.
The pseudo-code in Alg.2 shows how to query the SAT for all four
leaf layers S2,0,S2,1,S2,2 and S2,3 given only S0,S1,0,S2,0 and S2,2.

8 Results

(a) 11 line samples (1.47ms) (b) StatVO (0.93ms)

Figure 11: Comparison to Line Sampling: Both figures evaluate
the occlusion at full resolution of 1280×720. Line sampling (a)
using 8 samples with a 4×4 randomization kernel with an 8×8 bi-
lateral blur applied. StatVO (b) with 4 adaptive layers with quarter
resolution SATs.

We have implemented our technique using OpenGL/C++. All
statistics were measured at 1280×720-pixel resolution on an Intel
Core i5 4590 with 8GB of RAM and an NVIDIA GTX 770 graphics
card. We implemented the SAT generation algorithm as an OpenGL
compute shader [Sellers et al. 2013].

Performance Table 1 shows a detailed performance analysis of
our algorithm with four adaptive layers and using full resolution
SATs and half resolution in width and height. As the SAT computa-
tion is the most costly part of our algorithm, performance increases
by a factor of four if width and height are halved. We found that in
many scenes, the overall quality loss was small even when reducing

Algorithm 1 Pseudo-code to compute the needed SATs with 4
adaptive layers.

Given: depth buffer D0

S0 ← computeSAT(D0)
D1,0← partition(D0,S0)

S1,0← computeSAT
(
D1,0

)
D2,0← partition

(
D1,0,S1,0

)
D2,2← partition

(
D1,1,S1,1

)
S2,0← computeSAT

(
D2,0

)
S2,2← computeSAT

(
D2,2

)

Algorithm 2 Pseudo-code to compute the areas in a two level dif-
ferential SAT hierarchy

Given: S0, S1,0, S2,0, S2,2 computed previously

A0 ← sampleSAT(S0)
A1,0← sampleSAT

(
S1,0
)

A1,1← A0−A1,0
A2,0← sampleSAT

(
S2,0
)

A2,1← A1,0−A2,0
A2,2← sampleSAT

(
S2,2
)

A2,3← A1,1−A2,2

Step Tfull (ms) Thalf (ms) Speed-up

Downsample depth buffer 0.13 0.05 ×2.6
Compute root SAT 1.40 0.32 ×4.4
Compute first level SAT 1.86 0.43 ×4.3
Compute second level SATs 3.72 0.84 ×4.4
Evaluate StatVO 1.65 0.50 ×3.3

Total 8.86 2.14 ×4.1

Table 1: Performance evaluation: Breakdown of computational
cost of our algorithm for full resolution SATs and half resolution
SATs when using 4 adaptive layers.

the resolution along each axis by a factor of four (Fig. 9). Aggres-
sive downsampling can result in temporal flickering around depth
discontinuities due to undersampling when the camera moves.

Memory requirements For our four final SATs, we use four
32bit floating point channels, the first three are used to store view-
space coordinates and one is used to mark valid samples in each
layer. When computing SATs in full HD, using quarter resolution
in width and height, we require a total of 8MB of memory.

Comparison to other techniques We compare our technique to
the classic point and line sampling SSAO techniques, which are the
most commonly used [Mittring 2007; Loos and Sloan 2010]. By
choosing a very high sample count (256 point samples per pixel),
we additionally generated a reference image for volumetric obscu-
rance. In Fig. 13, we show that our technique can generate results
that are comparable in quality.

In Fig. 12, we compare our technique to point and line sampling.
We chose the number of samples so that all approaches produce vi-
sually similar quality. Using a quarter resolution SAT our approach

(a) VO reference (b) StatVO

Figure 13: Comparison to a Reference VO: (a) Reference from
256 point samples without a randomization kernel or a blur filter.
Our method (b) shows comparable results using 4 adaptive layers
and full resolution SATs.

(a) 17 point samples (2.0ms) (b) 12 line samples (1.7ms) (c) StatVO (1.6ms)

Figure 12: Comparison to Point and Line Sampling: (a) uses a point sampling approach with 17 samples and a 4×4 randomization kernel,
occlusion is evaluated at half resolution and a bilateral upsampling with 7× 7 blur kernel is applied. (b) achieves similar results but only
uses 12 line samples. In (c) we evaluate occlusion at the full resolution using 4 adaptive layers with quarter resolution SATs.

(a) 16 point samples (0.77ms) (b) StatVO (0.65 ms)

Figure 14: Comparison to Point Sampling:(a) shows a close-up
of a point sampling configuration were occlusion is evaluated at
half resolution, using 16 samples with a 4×4 randomization kernel.
The result is upsampled and an 8×8 bilateral blur filter is applied.
(b) StatVO evaluated at full resolution with 4 adaptive layers and
quarter resolution SATs.

is slightly faster than both. Increasing the AO radius our perfor-
mance stays the same, whereas the performance of line and point
sampling decreases, due to an increase of the required samples and
bilateral blur radius, which is mandatory to diminish the increasing
undersampling artifacts. This means that our algorithm scales well
to higher resolutions compared to point and line sampling (Note
that we used a relatively small image resolution of 1024×768 pix-
els and a similar sample region on a higher resolution image would
have to be scaled up).

If only few samples are computed for point or line-sampling (e.g.,
for very high performance), visible undersampling artifacts appear
(Fig. 14). Our approach does not suffer from undersampling and
leads to more details, e.g., on the wall.

Fig. 15 shows a comparison of our method to scalable ambient oc-
clusion (SAO) [McGuire et al. 2012], which is currently one of the
fastest methods for computing ambient occlusion. SAO exhibits a
large amount of blurring due to its usage of mipmapping during
sampling and a bilateral blurring step. Although our approach is
around 50% slower, it produces crisp results at all depths. Further,
our approach does rely on SATs instead of mipmaps, which leads
to an additional cost, but proved more stable for animation.

Limitations of screen-space approaches The approach we
present is subject to some of the usual limitations associated with
screen space AO methods, namely the need for a guard band and
the inability to account for surfaces occluded from the view. Due

(a) Scalable Ambient Occlusion

(b) StatVO

Figure 15: Comparison to Scalable Ambient Occlusion: (a)
shows part of a scene rendered with SAO, (b) shows the same scene
rendered with our approach using quarter resolution SATs. Our
method does not exhibit blurring despite using downsampled SATs.

to the statistical nature of our approach, the contribution of thin
surfaces parallel to the viewing direction may be underrepresented
in the AO computation. Also, as stated previously, downsampling
the depth buffer and SATs too aggressively may result in a small
amount of temporal flickering. Nonetheless, even when reducing
resolution by a factor of 1/4 along each axis, in most areas of the
image, there are no visible differences. This result stems from our
algorithmic design. An adaptive downsampling strategy could be a
promising direction for future research.

9 Conclusion

Statistical Volumetric Obscurance is an alternative to traditional
screen-space ambient occlusion, which does not rely on typical
sampling. Due to the usage of a sample box, the evaluation of local
obscurance is reduced to a simple mean-value computation over the
sample area, which is efficiently computed on the GPU using spe-
cialized summed-area tables. Previous approaches in this direction
suffered from artifacts such as halos. The adaptive depth slicing
avoids these and preserves fine-scale features, leading to a quality

similar to previous approaches with many more samples.

For best results the amount of nearby depth discontinuities should
be limited. An extreme case, like looking along a row of aligned
pillars, breaks this assumption and small halos and dark creases are
introduced. Still, our method performs well in these cases (com-
pare accompanying video). Locally adaptive layering would be an
interesting future work to address such issues.

As with any SSAO technique, the depth map represents only the
visible geometry, whereas important information of the overall
scene is lost. Rendering the occluded geometry into the depth lay-
ers after they have been created would allow us to incorporate even
these occluded parts for more precise results beyond the capabilities
of traditional SSAO techniques.

10 Acknowledgements

The work was partially funded by the EU FP7-323567 project Har-
vest4D, and the Intel VCI at Saarland University. The Sibenik
cathedral scene used is a project by Marko Dabrovic and the Sponza
atrium scene is freely distributed by Crytek.

References

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008
Talks, 22:1–22:1.

BUNNELL, M. 2005. Dynamic ambient occlusion and indirect
lighting. Gpu gems 2, 2, 223–233.

CROW, F. C. 1984. Summed-area tables for texture mapping. ACM
SIGGRAPH computer graphics 18, 3, 207–212.

DÉCORET, X. 2005. N-buffers for efficient depth map query. In
Computer Graphics Forum, vol. 24, Wiley Online Library, 393–
400.

D ÍAZ, J., VÁZQUEZ, P.-P., NAVAZO, I., AND DUGUET, F. 2010.
Real-time ambient occlusion and halos with summed area tables.
Computers & Graphics 34, 4, 337–350.

GASTAL, E. S., AND OLIVEIRA, M. M. 2012. Adaptive manifolds
for real-time high-dimensional filtering. ACM Transactions on
Graphics (TOG) 31, 4, 33.

GROTTEL, S., KRONE, M., SCHARNOWSKI, K., AND ERTL, T.
2012. Object-space ambient occlusion for molecular dynam-
ics. In Pacific Visualization Symposium (PacificVis), 2012 IEEE,
209–216.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed-area table generation and
its applications. In Computer Graphics Forum, vol. 24, Wiley
Online Library, 547–555.

HERNELL, F., LJUNG, P., AND YNNERMAN, A. 2010. Local
ambient occlusion in direct volume rendering. Visualization and
Computer Graphics, IEEE Transactions on 16, 4, 548–559.

LANDIS, H. 2002. Production-ready global illumination. Siggraph
course notes 16, 2002, 11.

LOOS, B. J., AND SLOAN, P.-P. 2010. Volumetric obscurance. In
Proceedings of the 2010 ACM SIGGRAPH symposium on Inter-
active 3D Graphics and Games, ACM, 151–156.

LUFT, T., COLDITZ, C., AND DEUSSEN, O. 2006. Image en-
hancement by unsharp masking the depth buffer. In ACM SIG-
GRAPH 2006 Papers, 1206–1213.

MARA, M., MCGUIRE, M., NOWROUZEZAHRAI, D., AND LUE-
BKE, D. 2014. Fast global illumination approximations on deep
g-buffers. Tech. rep., NVIDIA Corporation.

MCGUIRE, M., MARA, M., AND LUEBKE, D. 2012. Scal-
able ambient obscurance. In Proceedings of the Fourth ACM
SIGGRAPH / Eurographics Conference on High-Performance
Graphics, EGGH-HPG’12, 97–103.

MCGUIRE, M. 2010. Ambient occlusion volumes. In Proceedings
of High Performance Graphics 2010.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’07, 97–121.

NALBACH, O., RITSCHEL, T., AND SEIDEL, H.-P. 2014. Deep
screen space. In Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
I3D ’14, 79–86.

SCHWARZ, M., AND STAMMINGER, M. 2008. Quality scalability
of soft shadow mapping. In Graphics Interface 2008, 147–154.

SELGRAD, K., DACHSBACHER, C., MEYER, Q., AND STAM-
MINGER, M. 2014. Filtering multi-layer shadow maps for accu-
rate soft shadows. In Computer Graphics Forum, Wiley Online
Library.

SELLERS, G., WRIGHT, R., AND HAEMEL, N. 2013. OpenGL
SuperBible: Comprehensive Tutorial and Reference, sixth ed.
Addison-Wesley Professional.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games, I3D
’07, 73–80.

SLOMP, M., TAMAKI, T., AND KANEDA, K. 2010. Screen-space
ambient occlusion through summed-area tables. In Networking
and Computing (ICNC), 2010 First International Conference on,
IEEE, 1–8.

SZIRMAY-KALOS, L., UMENHOFFER, T., TOTH, B., SZECSI, L.,
AND SBERT, M. 2010. Volumetric ambient occlusion for real-
time rendering and games. Computer Graphics and Applica-
tions, IEEE 30, 2, 70–79.

TIMONEN, V. 2013. Line-sweep ambient obscurance. Computer
Graphics Forum 32, 4, 97–105.

VARDIS, K., PAPAIOANNOU, G., AND GAITATZES, A. 2013.
Multi-view ambient occlusion with importance sampling. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’13, 111–118.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An ambient
light illumination model. In Rendering Techniques ’98. 45–55.

Smooth, Interactive Rendering Techniques on Large-Scale, Geospatial Data in
Flood Visualisations

Christian Kehl, Tim Tutenel and Elmar Eisemann
Computer Graphics and Visualisation Group

Delft University of Technology
Email: [c.kehl, t.tutenel, e.eisemann]@tudelft.nl

Abstract—Visualising large-scale geospatial
data is a demanding challenge that finds applic-
ations in many fields, including climatology and
hydrology. Due to the enormous data size, it is
currently not possible to render full datasets
interactively without significantly comprom-
ising quality (especially not when information
changes over time).
In this paper, we present new approaches to

render and interact with detail-varying Light
Detection and Range (LiDAR) point sets. Fur-
thermore, our approach allows the attachment
of large-scale geospatial meta information and
the modification of point attributes on the fly.
The core of our algorithm is a dynamic GPU-

based hierarchical tree data structure that is
used in conjunction with an out-of-core, Level-
of-Detail (LoD)-Point-based Rendering (PBR)
algorithm to modify data on the fly. This com-
bination makes it possible to augment the ori-
ginal data with dynamic context information
that can be used to highlight features (e.g.,
routes, marked areas) or to reshape the entire
data set in real-time.
We showcase the usefulness of our algorithm

in the context of disaster management and
illustrate how decision makers can discuss a
flood scenario covering a large area (spanning
300 km2) and discuss hazards, as well as related
protection measures, interactively. One of our
presented reference point sets includes parts of
the AHN2 data set (14 TB of LiDAR data in
total). Previous rendering algorithms relied on
a long offline preprocessing (several hours) to
ensure a quick data display. This step made any
changes to the data impossible. With our new
approach, we can modify point sets without
requiring a new preprocessing run.

Introduction
An increasing amount of 3D geographic inform-

ation has recently become available as Digital
Elevation Model (DEM), height maps and LiDAR
point scans. These data are used in many do-
mains, such as climatology [12], [6] and hydrology
[7], [17], [10], to help in the decision making
processes. Topographic measurements, geospatial
meta data (i.e. area selections) and domain-
specific data (e.g. fluid simulation results, water

currents and cloud simulation data and measure-
ments) are combined in an illustrative manner.
Recent geographic point data, often captured

with terrestrial and aerial LiDAR technology, are
too large to be rendered directly. The data neither
fit in arendering-dedicated graphics memory, nor
in a workstation’s main memory. We refer to such
data sets as massive point sets.
Many tree- and graph-based solutions for ren-

dering large data sets [15], [4], [1], [11], [5], and
LiDAR data in particular [9], [8], [3], are already
available. Graph-based solutions continuously re-
quest new data nodes for the areas in view. The
data is often structured in trees in which nodes
correspond to a set of points in the corresponding
scene area. By limiting the descent in the tree,
the point density can be adjusted. We similarly
rely on a tree structure that allows us to ensure
a rendering-on-budget paradigm, such as explored
by Goswami et al.[5], to address the rendering of
massive, coloured LiDAR datasets. Further, we
avoid common popping artifacts that result from
adding/removing the points in a node and rather
add/remove them progressively, hereby ensuring
a smooth appearance.
Besides the rendering, interaction is another

key component for using massive point sets in a
decision making process. In this context, we refer
to "interaction" as the possibility to modify data
attributes (e.g. position, colour, visibility) on-the-
fly to highlight or adapt information and to get
instantaneous visual feedback of the performed
operation. Massive point sets are usually modified
in an offline process. This procedure is time con-
suming and not suitable for collaborative decision
making. The interactive modification of massive
point sets is currently not possible without visual
quality loss. Available point set editors [18], [14]
can only facilitate interactive modifications for
data as far as they fit in the computer’s main
memory. Wand et al. [15] presented an improved
system with the capability to process massive data
set in a batch-process manner using a tree hier-

archy. A main assumption of current approaches is
that modifying operations are permanently valid.
Regarding decision making processes and the goal
to provide techniques for collaborative, on-the-fly
information exchange, we assume that modifica-
tions are only temporarily valid.
The combination of the two presented tech-

niques makes it possible to augment the ori-
ginal data with dynamic context information that
can be used to highlight features (e.g., routes,
marked areas) or to reshape the entire data
set in real-time. We showcase the applicability
of our approach in the domain of flood haz-
ard management. Three use cases are presen-
ted that demand such large-scale modifications.
Our approach is able perform operations interact-
ively that formerly demanded substantial prepro-
cessing. We also briefly present first performance
assessment results.

Methods
Rendering-on-Budget
Our initial approach spatially subdivides the

point set into tiles of 1000 metre by 1250 metre.
Each tiles’ points are distributed uniformly along
the levels of details [2], [7]. Using this technique,
lots of points need to be loaded as a bucket imme-
diately if the user approaches higher detail levels.
Our method always loads at least the roughest
detail level for each bucket in the dataset. This
results in spatial limitations on the presentable ex-
tent of LiDAR datasets in practice. This could be
solved by employing additional, view-dependent
criteria. As formerly discussed [7], this bucket-
loading behaviour leads to visual discontinuities
that irritate the user.
In our new approach, we apply the rendering-

on-budget paradigm to provide a constant render-
ing speed for large point sets [16]. Hence, The cur-
rently available budget depends on the data size
and the technical capabilities of the rendering sys-
tem. The budget is adapted using a Proportional-
Integral-Differential (PID) controller, which keeps
track of the number of rendered points in relation
to total rendering time.
During the rendering, we traverse the LoD tree

structure in breadth-first order. For each node in
the tree, we render its points as long as rendering
budget is still available. We use the local density
as a measure to decide which particular should
be rendered next. Because the rendering decision
is taken on per-point-basis rather than the per-
node point bucket of the initial approach, the new

technique offers a smooth LoD transition while
preserving rendering speed.

On-line Modification of Large-Scale, Geospatial
LiDAR point sets
We adapt the point attributes via GPU shaders

in an indirect manner. In order to describe the
modifications, we use interactively-places, tex-
tured 2D polygons. One can imagine that these
are defined on a map of the point-cloud region and
the changes will affect all points that are covered.
They include line-like structures for route descrip-
tions and polygons definitions for areas. These
geometric shapes are stored as structured vector
lists. In contrast to Scheiblauer and Wimmer [13]
the vector format is independent of the point
cloud. Further, it is not limited to a uniform grid
size (such as geometry, given as Volume Images).
Our approach allows us to achieve an accurate
rendering at varying scales. Nevertheless, we want
to avoid preprocessing the data set, which would
result in hours of computation. Instead, we resolve
the issue at runtime. For each rendered point, we
test whether it falls in one of the polygons and
then modify its attributes according to the regions
definition.
During the rendering stage, we can not evaluate

the bare polygon geometry because the point
vertices and the polygon vertices are part of the
same global vertex set. Hence, to overcome this
drawback, we store the polygon geometry in a
texture that can subsequently be evaluated for
each point cloud vertex.
As a first step, we need to find the polygon each

point belongs to. In this case, each point needs to
be tested with each polygon for an intersection.
We need to do this because there is no other
reference information available (apart from the
point’s 3D position) to establish a point-polygon
relation. If this localisation succeeds, we can apply
our attribute modification. Our initial algorithm
presented in Alg. 1.
Calculating the intersection of a point and a

polygon is computationally expensive and existing
implementations of this procedure do not map
well on GPU architectures. It is thus not practical
to use a point-in-polygon check for the number
ofLiDAR points and annotations we intend to
handle. Hence, we simplify Alg. 1 by transforming
the polygons into 2D triangular meshes. This
exchanges the PointPolygonIntersection-test with
a PointTriangleIntersection-test, which is much
simpler to compute and implement on a GPU.

Algorithm 1 Apply point attribute modification
function ModifyAttribute(pointlist, polygons)

for all point ∈ pointlist do
for all polygon ∈ polygons do

if PointPolygonIntersect(point, polygon)
is true then

attribute← GetAttribute(polygon)
else

attribute← 0
end if
ApplyAttribute(point, attribute)

end for
end for

end function

On the other hand, transforming the 2D poly-
gon to a valid triangular mesh that includes ex-
clusively triangles inside the (possibly concave)
polygonal border is another challenge. We ap-
proach this problem by first computing a con-
strained 2D Delaunay Triangulation. This guar-
antees that the polygonal borders are part of
the triangulation. The triangulation generates a
convex mesh representation, which means it may
also include exterior triangles outside of the poly-
gon constraint. In a second step, we consequently
eliminate the unnecessary triangles. We extract
the triangles for each polygon separately. Thus,
we know which polygon each triangle belongs to.
The resulting meshes for an example region are
shown in Fig. 1(a)- 1(b).

(a) (b)

Figure 1. polygon-conform constrained 2D Delaunay Tri-
angulation: A straight implementation of the constrained
2D Delaunay Triangulation creates exterior triangles (a),
which need to be eliminated. We do this by testing if each
triangle is inside the polygon. The result is a polygon-
conform 2D mesh (b).

Due to the massive point sets and the numerous
triangles, it is still not possible to test each point
with each triangle for intersections while main-
taining interactive frame rates. We incorporate
the triangles in a quadtree data structure in order
to reduce the number of triangles that needs to be
checked. In the quadtree construction, we start off
with a single cell and sequentially add triangles to

the quadtree. If the number of triangles in a cell
exceeds a limit X (X = 4 in our experiments), we
split the cell into 4 equal parts. We continue the
subdivision up until a certain maximum depth Y
(Y = 5 in our experiments). Applying this max-
imum depth limits the tree traversal processed
and proved efficient in our implementation.
During runtime, we traverse the tree to de-

termine for each point its respective quadtree
node. After extracting a reduced list of candidate
triangles (resp. leafs of the final node) for each
point, we perform the aforementioned PointTri-
angleIntersection-test to accurately establish a
point-triangle relation while maintaining interact-
ive frame rates.
At this point, we have access to the triangle

attributes (such as colour and texture coordin-
ates) and their textures. By applying the stored
triangle colour or evaluating its texture coordinate
inside the texture, we can recover the modification
operation for the given point.
Currently, we support the following operations:
• colour a point according to the triangle colour
• discard a point if it is inside the triangle
• colour a point according to the triangle’s

texture
• displace a point according to a displacement

map
The final algorithm is shown in Alg. 2 and 3.

Results
In a first use case, we apply our algorithm

together with the discard-operation to create a
historic visualisation of the 1953 North Sea flood
in the Dutch provinces of South Holland, North
Brabant and Zeeland. This visualisation spans an
area of 45 km by 60 km, containing around 2
TB of coloured LiDAR data. The problem for a
historic visualisation is the amount of landscape-
and water protection changes that occurred since
1953, in comparison to the acquired data we
currently have. In order to recreate the scenario,
we have to adapt the landscape and cut out struc-
tures that were added since then. Without the
presented approach, this would mean to re-process
the 2 TB dataset and discard unavailable points
in the process. This process takes several days of
computing time. With our current method, we
can define the areas we want to exclude from
the visualisation, and all point vertices that are
covered by the defined areas are discarded by the
GPU during rendering. The result is shown on
parts of the data set in Fig. 2(a) and 2(b).

Algorithm 2 triangle texture generation
function PolygonToTriangleMesh(polygon)

ConstrainedDelaunay2D(polygon)
for all triangles ∈ trianglelist do

if triangle not inside polygon then
Delete(triangle,trianglelist)

end if
end for
return trianglelist

end function

function MeshToTexture(trianglelist)
. converts mesh into a quadtree, then encodes

as texture
create quadtree with root node
for all triangles ∈ trianglelist do

locate node in quadtree for triangle
if depth(node) < Y then

if length(siblings(node)) > X then
sibling ← SplitNode(node)
node← sibling

end if
end if
AddTriangleLeaf(node,triangle)

end for
texture← Texture1D()
SerialiseQuadTree(quadtree, texture)
return texture

end function

Algorithm 3 point attribute modification on the
GPU
for all point ∈ pointlist do

function GetAttribute(pointlist, texture)
quadtree← Texture1D(texture)
node← root
while (depth > 5) ∧ (point ∈ node) do

node← Sibling(point, node)
if node = NULL then

attribute← 0
return attribute

end if
end while
for all triangle ∈ node do

if PointTriangleIntersect(point,
triangle) is true then

attribute← GetAttribute(triangle)
return attribute

end if
end for
attribute← 0
return attribute

end function
ApplyAttribute(point, attribute)

end for

(a) (b)

Figure 2. Visualisation of the 1953 North Sea Flood:
originally acquired data (a) and historically adapted data
(b)

In a second use case, flood hazard managers
can use the system to interactively discuss dyke
adaptation strategies. For this case, we generate a
displacement map together with the area marking.
The displacement can be modified during the
runtime to update the point vertex displacement
at the dyke. This allows interactive discussions on
future adaptation strategies. In combination with
the flood simulation visualisation, it allows first
estimates of the discussed measures’ applicability.
The adapted point cloud can be seen in Fig. 3(b),
the related displacement map in Fig. 3(a).

(a) (b)

Figure 3. Dyke adaptation to discuss water protection
policy measures, with applied displacement (a) and the
resulting point cloud of the dyke (b).

In the final use case, we show an area of 15
km by 20 km near the Dutch city of Barneveld.
In this use case, policy managers can discuss
protection strategies by marking different areas
of importance interactively. For this use case,
we colour the point cloud according to polygon
colours that are given by a GoogleMaps KML-
file. This allows policy managers to use familiar
interfaces via mobile devices in order to interact
with the point cloud data. In the example shown
in Fig. 4(a) and 4(b), we distinguish between an
industrial area and the residential parts of the city
(marked in red respectively green).
Our initial performance assessment on the in-

teractive point cloud modification reveals a tight
correlation between the rendering speed and the
geometric complexity of the polygon (i.e. the num-

(a) (b)

Figure 4. Interactive colouring of big LiDAR data (b) using GoogleMaps interfaces (a).

ber of triangles resulting from the triangulation).
For the assessment, we have chosen data sets of
3, 10 and 20 areas, including 20, 42, and 298
triangles. Renderings of these data sets are shown
in Fig. 5. The speed measurements are presented
in Fig. 6. The test system was a workstation with
a 6 x 3.2GHz Intel Xeon processors (HT), 16GB
of main memory and an NVIDIA GeForce GTX
680 graphics adapter.

Figure 6. rendering speed measurements for geo-
information integration with 3, 10 and 20 areas.

Conclusions
We presented an approach to render and inter-

act with massive aerial LiDAR point sets.
Our rendering-on-budget approach results in

a smooth level-of-detail transition at real-time
frame rates.
With our on-line modification algorithm and

its implementation, we have shown that even
out-of-core datasets allow on-the-fly modification

without tedious preprocessing procedures. The al-
gorithm is a first step towards more elaborate pro-
cedures that allow on-the-fly marker placement
and interaction as well as full 3D-modification via
volume images or 3D polygons.
Our system, combining all discussed methods,

enables decision makers in flood hazard manage-
ment to collaboratively discuss protection scen-
arios and devise new protection measures.

Acknowledgements
This project was funded by the Dutch Re-

search Program Knowledge for Climate (KfC) and
partially supported by the Intel VCI, and the
European Project Harvest4D.

References
[1] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and

Elmar Eisemann. GigaVoxels: ray-guided streaming
for efficient and detailed voxel rendering. In Proceed-
ings of the 2009 symposium on Interactive 3D graphics
and games, I3D ’09, pages 15–22, New York, NY,
USA, 2009. ACM. Cited by 0115.

[2] G. de Haan. Scalable visualization of massive
point clouds. Nederlandse Commissie voor Geodesie
KNAW, 49:59–67, 2009.

[3] Zhenzhen Gao, Luciano Nocera, and Ulrich Neu-
mann. Fusing oblique imagery with augmented aerial
LiDAR. In Proceedings of the 20th International
Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’12, pages 426–429, New York,
NY, USA, 2012. ACM.

[4] Enrico Gobbetti, Fabio Marton, and JosÃľ Antonio Ig-
lesias GuitiÃąn. A single-pass gpu ray casting frame-
work for interactive out-of-core rendering of massive
volumetric datasets. The Visual Computer, 24(7–
9):797–806, 2008.

[5] Prashant Goswami, Fatih Erol, Rahul Mukhi, Renato
Pajarola, and Enrico Gobbetti. An efficient multi-
resolution framework for high quality interactive ren-
dering of massive point clouds using multi-way kd-
trees. The Visual Computer, February 2012.

[6] H. Jänicke, M. Bottinger, and G. Scheuermann.
Brushing of attribute clouds for the visualization of
multivariate data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(6):1459–1466, 2008.

(a) (b) (c)

Figure 5. Geo-information integration use cases: 3 (a), 10 (b) and 20 (c) area data set

[7] Christian Kehl and Gerwin de Haan. Interactive simu-
lation and visualisation of realistic flooding scenarios.
In Intelligent Systems for Crisis Management, 2012.

[8] Bostjan Kovac and Borut Zalik. Visualization of
LIDAR datasets using point-based rendering tech-
nique. Computers & Geosciences, 36(11):1443–1450,
November 2010.

[9] Oliver Kreylos, Gerald W. Bawden, and Louise H.
Kellogg. Immersive visualization and analysis of
LiDAR data. In George Bebis, Richard Boyle,
Bahram Parvin, Darko Koracin, Paolo Remagnino,
Fatih Porikli, Jörg Peters, James Klosowski, Laura
Arns, Yu Ka Chun, Theresa-Marie Rhyne, and Laura
Monroe, editors, Advances in Visual Computing, num-
ber 5358 in Lecture Notes in Computer Science, pages
846–855. Springer Berlin Heidelberg, January 2008.

[10] Wenqing Li, Ge Chen, Qianqian Kong, Zhenzhen
Wang, and Chengcheng Qian. A VR-Ocean system
for interactive geospatial analysis and 4Dvisualization
of the marine environment around antarctica. Com-
puters & Geosciences, 37(11):1743–1751, November
2011.

[11] Ruggero Pintus, Enrico Gobbetti, and Marco Agus.
Real-time rendering of massive unstructured raw
point clouds using screen-space operators. In Proceed-
ings of the 12th International conference on Virtual
Reality, Archaeology and Cultural Heritage, VAST’11,
pages 105–112, Aire-la-Ville, Switzerland, Switzer-
land, 2011. Eurographics Association.

[12] W. Ribarsky, N. L. Faust, Z. J. Wartell, C. D. Shaw,
and J. Jang. Visual query of time-dependent 3D
weather in a global geospatial environment. 2002.

[13] Claus Scheiblauer and Michael Wimmer. Out-of-core
selection and editing of huge point clouds. Computers
& Graphics, 35(2):342–351, 2011. <ce:title>Virtual
Reality in Brazil</ce:title> <ce:title>Visual
Computing in Biology and Medicine</ce:title>
<ce:title>Semantic 3D media and content</ce:title>
<ce:title>Cultural Heritage</ce:title>.

[14] Michael Wand, Alexander Berner, Martin Bokeloh,
Arno Fleck, Mark Hoffmann, Philipp Jenke, Benjamin
Maier, Dirk Staneker, and Andreas Schilling. Inter-
active editing of large point clouds. In Proceedings
of Symposium on Point-Based Graphics (PBG 07),
pages 37–46, 2007.

[15] Michael Wand, Alexander Berner, Martin Bokeloh,
Philipp Jenke, Arno Fleck, Mark Hoffmann, Benjamin
Maier, Dirk Staneker, Andreas Schilling, and Hans-
Peter Seidel. Processing and interactive editing of
huge point clouds from 3d scanners. Computers &
Graphics, 32(2):204 – 220, 2008.

[16] Berend Wouda. Visualization on a budget for massive
lidar point clouds. Master’s thesis, Delft University of

Technology, 2011.
[17] Izham Mohamad Yusoff, Muhamad Uznir Ujang, and

Alias Abdul Rahman. 3D dynamic simulation and
visualization for GIS-based infiltration excess over-
land flow modelling. In Jiyeong Lee and Sisi Zlatan-
ova, editors, 3D Geo-Information Sciences, Lecture
Notes in Geoinformation and Cartography, pages 413–
430. Springer Berlin Heidelberg, 2009.

[18] Matthias Zwicker, Mark Pauly, Oliver Knoll, and
Markus Gross. Pointshop 3D: an interactive system
for point-based surface editing. ACM Trans. Graph.,
21(3):322–329, July 2002.

Visibility Sweeps for Joint-Hierarchical Importance Sampling
of Direct Lighting for Stochastic Volume Rendering
Thomas Kroes∗

Delft University of Technology
Martin Eisemann†

Delft University of Technology
Elmar Eisemann‡

Delft University of Technology

Uniform
MSE 19.16
x 10-3

Environment
MSE 11.48
x 10-3

Our two-step
MSE 5.73 x 10-3

Uniform
MSE 3.20 x 10-3

Environment
MSE 3.00 x 10-3

Our two-step
MSE 1.57 x 10-3

Environment
MSE 4.01 x 10-3

Our two-step
MSE 3.05 x 10-3

Uniform
MSE 4.43 x 10-3

Environment
MSE 4.26 x 10-3

Our two-step
MSE 2.35 x 10-3

Uniform
MSE 17.48
x 10-3

Figure 1: We compute the product of approximated visibility and environment map lighting in a stochastic Monte Carlo volume renderer
to steer a joint importance sampling of the direct lighting. Our proposed two-step approach is well suited for dynamic changes in visibility
and lighting functions due to a fast sweeping-plane algorithm to estimate visibility. The insets show how our technique (blue) achieves faster
convergence with less samples compared to a uniform sampling (red) and importance sampling of the environment map (yellow). Here, 64
samples per pixel have been used. The Manix data set consists of 512×512×460 voxels.

ABSTRACT

Physically-based light transport in heterogeneous volumetric data is
computationally expensive because the rendering integral (particu-
larly visibility) has to be stochastically solved. We present a visibil-
ity estimation method in concert with an importance-sampling tech-
nique for efficient and unbiased stochastic volume rendering. Our
solution relies on a joint strategy, which involves the environmental
illumination and visibility inside of the volume. A major contribu-
tion of our method is a fast sweeping-plane algorithm to progres-
sively estimate partial occlusions at discrete locations, where we
store the result using an octahedral representation. We then rely on
a quadtree-based hierarchy to perform a joint importance sampling.
Our technique is unbiased, requires little precomputation, is highly
parallelizable, and is applicable to a various volume data sets, dy-
namic transfer functions, and changing environmental lighting.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

1 INTRODUCTION

Stochastic volume rendering is computationally intensive. To eval-
uate the rendering equation, many samples (rays) are required in
order to compute the light distribution within a volume. In practice,

∗e-mail: t.kroes@tudelft.nl
†e-mail: m.eisemann@tudelft.nl
‡e-mail: e.eisemann@tudelft.nl

rays are sent from the camera through the volume and a scattering
event occurs at random positions along the ray based on the cur-
rent transfer function, which maps the volume’s density values to
material properties. Each scattering event requires generating one
or more sample rays to evaluate the rendering equation via Monte
Carlo (MC) integration. These rays are ultimately absorbed or po-
tentially hit a light source, e.g., the environmental light. Using stan-
dard sampling techniques at the scattering events can be inefficient,
as no knowledge about the volume absorption or light characteris-
tics is used. As a result, many rays might contribute little or nothing
to the final image.

Importance-sampling techniques [7, 5, 23] incorporate knowl-
edge about the scene to place more effort on potentially light-
carrying paths to accelerate the convergence of the result. Some
approaches combine information about the material and light posi-
tions. However, one important factor, the (volumetric) scene, and,
hence, visibility is not taken into account. Previously, visibility
approximations were only used directly in the shading evaluation,
resulting in biased images [26]. Furthermore, a brute-force visibil-
ity precomputation is costly and transfer-function changes require
a complete reevaluation.

In this work, we focus specifically on evaluating direct light-
ing for a volume data set with arbitrary and interactively changing
transfer functions defining varying diffuse materials in the context
of an unbiased MC-based stochastic volume renderer. The volume
is lit by a natural illumination in the form of environmental lighting.

The key idea of our approach is to use environmental light and
visibility represented as a joint probability density function (pdf),
Fig. 2. As a result, the sampling process, steered by this pdf,
becomes more efficient than in previous work, while keeping the
result unbiased. The sampling technique allows us to evaluate the

strong
light weak

light

L

light
sampling

visibility
sampling

no light

scattering event

dense
volume

less dense
volume joint

sampling

Figure 2: Problem Statement: For efficient sampling, samples
with both strong light and strong visibility need to be found. Sam-
pling according to the lighting only (red) may give bad results as
the samples get absorbed, sampling only according to the visibility
(blue) might miss important lights. Product sampling (green) solves
the problem. Unfortunately, the visibility is usually unknown be-
forehand.

direct light at any scattering event within the volume. While our
results could be generalized, we illustrate the application to single
scattering.

Our contributions are as follows:

• An efficient sweeping-plane algorithm to compute approxi-
mate visibility within a 3D volume;

• A product importance sampling solution based on joint envi-
ronmental light and visibility information;

• A GPU-adapted and highly-parallel implementation.

Our technique is useful for any volumetric renderer with dynam-
ically changing content, such as environmental light, transfer func-
tions, etc., making it an interesting addition to visualization and
rendering systems aiming for unbiased results.

2 RELATED WORK

The literature on volumetric-illumination techniques is vast, which
is why we will focus only on certain aspects to put our approach in
perspective. A recent survey on this topic can be found in [10].

Ambient Occlusion helps to better perceive certain shapes and
their relative positions by measuring the light accessibility for each
scene point. Luminance is linked to the degree of local occlu-
sion [34]. Multi-resolution variants [16], and even dynamic am-
bient occlusion variants [28], which allow changes to the transfer
function, have been considered. Nonetheless, ambient occlusion
computes only a statistical scalar value to approximate the ambient
light, which means that directional information is lost. We incor-
porate full directional support for high-quality unbiased physically-
based rendering.

Visibility Approximation for Semi-Transparent Structures
are most common in physically-based volume rendering. Opac-
ity shadow maps [11] are an extension of shadow maps [33] us-
ing a stack that stores alpha values instead of depth values to sup-
port shadow computation for complex, potentially semi-transparent
structures. Deep shadow maps [17] are a more compact representa-
tion, which store a shadow-function approximation per pixel. They
have quickly been adopted for volume rendering [9, 27].

All such techniques are fast but inapplicable in our scenario of
stochastic MC volume rendering. First, using approximate visibil-
ity directly for shading introduces a bias, which is unacceptable for
certain applications. Second, these techniques support only point
and directional light sources, whereas we aim for environmental
lighting. Third, visibility is costly to compute and even approxi-
mating it can usually involve many rays, although not all locations
might ultimately contribute to the image. Our approach computes
visibility in a coarse 3D grid and uses it only to carefully steer the
sample generation. In this way, our result remains unbiased, exact,
and supports arbitrary environmental lighting.

Basis-Function Techniques decouple light-source radiance
and visibility, which allows for dynamically changing the illumina-
tion. Spherical harmonics (SH) are prominent basis functions, used
for example for precomputed radiance transfer [30], and were first
used in the context of volume rendering to precompute and store
isosurface illumination [2]. They have also been used to store vis-
ibility for volume rendering under natural illumination [26]. Other
research in this area mostly aimed at generalizations to support ad-
vanced material properties [15] or reduce memory costs [14].

While SH are well suited to represent low-frequency functions,
their direct use for visibility is a strong approximation and intro-
duces bias. Further, only low-frequency illumination is supported,
in contrast to our solution.

Image Plane-Sweep Volume Illumination Approaches
move a virtual plane through a scene to invoke the shading com-
putations for all positions within the plane in parallel. The paral-
lelism makes these approaches highly applicable to modern archi-
tectures, such as the GPU. Using carefully-chosen approximations
(e.g., a forward peaked phase function, single point or directional
light source), single and forward multiple scattering effects can be
simulated at interactive frame rates [31]. We decouple the plane
sweep from a particular light source to enable general illumination
and efficient sampling in stochastic MC volume rendering.

Recently, iterative convolutions on volume slices have been used
to approximate direct lighting [22]. The results are approximate,
some parameter settings have to be carefully chosen, and only par-
ticular light-source configurations are efficiently supported (e.g.,
usually Gaussian and behind the observer).

MC Ray Tracing for volume rendering gained attention with
the advances of modern GPUs, which made interactive progressive
rendering possible. First attempts sacrificed generality for perfor-
mance [25] and did not support translucent materials. New ap-
proaches, such as Exposure Render [13] achieve images of very
high realism. They employ all the benefits of physically-based MC
techniques: arbitrary natural illumination, real-world cameras with
lens and aperture (e.g., for depth-of-field effects). We implemented
our approach building upon this open source solution. Only re-
cently, specialized algorithms have been developed to efficiently
handle participating media by splitting the evaluation into an ana-
lytical and a numerically evaluated part [20].

Importance Sampling is a powerful sampling technique to
render objects illuminated by natural or complex lighting [7] un-
der an environmental illumination. An efficient method for non-
specular materials is to place pre-integrated directional lights at
the brightest locations [1, 12, 21]. These methods work extremely
well in the absence of occlusion, but shadowed regions may appear
noisy. When materials are increasingly specular, a large number
of lights is needed to adequately represent the environment map.
Consequently, many physically-based MC techniques sample the
environment map directly to avoid any artifacts and its intensity
can even be used as a pdf to steer the sampling [23].

If also visibility or material properties are to be included, the
pdfs can be combined in a single MC estimator via multiple impor-
tance sampling (MIS) [32]. MIS is most efficient if only one of the

sampled functions is complex and will pick the best one. If both
are complex, MIS provides little advantage and is likely to waste
samples in regions with little influence. Visibility and lighting can
both be complex and only a joint sampling of both functions can
be efficient (Fig. 2). A first step towards this direction was taken
in [3]. Their technique importance samples the environment map to
produce a candidate sample. Its probability is then evaluated again
using a special pdf involving the BRDF to determine if an evalua-
tion is triggered. Such a sampling can quickly become costly, due
to potential high rejections rates (in the order of 90%) [3].

More related to our sampling approach are techniques for joint
importance sampling that compute the BRDF/environment-map
product [5, 6, 4] and BRDF/visibility/environment-map product
[29] to steer sample placement. In the context of participating
media, joint importance sampling can also be employed to opti-
mize volumetric paths [8]. In this article, we focus on efficient
visibility/environment-map sampling. Nonetheless, we also rely on
a quadtree-based product to hierarchically warp samples [4].

3 OVERVIEW

In the following, we will describe our algorithm in detail. First,
we provide the necessary background knowledge (Sec. 3.1). Then,
we describe our actual solution, starting with our data structures
and data representations (Sec. 3.2), which are designed with GPU-
efficiency in mind. Our visibility-sweep algorithm (Sec. 3.3) is used
to compute an approximate visibility within the volume. It is then
used in conjunction with the scene illumination to yield a joint sam-
pling technique to steer the MC evaluation (Sec. 3.4). Finally, we
describe the necessary implementation details (Sec. 3.5). The ben-
efits for convergence behavior and the support of dynamic lighting
and transfer-function changes will be demonstrated in Sec. 4.

3.1 Background and Goal
We adopt the notation from [26] for the emission-absorption
volume-rendering equation [18] in an isotropic medium:

L =

∞∫
0

A(t)E(x(t))dt. (1)

It describes the recorded radiance L along a camera-ray position
x(t) parameterized by t, where

A(t) = exp

−
t∫

0

τα (D(x(s)))ds

 (2)

E(x(t)) =
∫
Ω

τρ (D(x(t)))V (x(t),ω)Li(ω)dω. (3)

E is the emission and A(t) is the absorption up to position x(t). The
volume density at location x(t) is denoted as D(x(t)). The visibil-
ity at a position x(t) in direction ω is denoted as V (x(t),ω). The
incoming light Li(ω) from direction ω , integrated over all possible
directions Ω, is assumed to be independent of x(t), i.e., we assume
an environmental light. A transfer function τ maps a density value
y to an extinction coefficient τα (y) and scattering albedo τρ (y). For
brevity, we will omit the ray parameter t and write only x to denote
a certain location.

We use stochastic ray marching to solve the integral in Eqs. (1)
and (2) based on [13]. To solve Eq. (3) stochastically, MC integra-
tion is applied:

E(x) =
1
N

N

∑
j=1

τρ (D(x))V (x,ω j)Li(ω j)

p(x,ω j)
.

Here, p is a pdf that is used to weigh and generate the random sam-
ple vectors ω j. The MC integration can become highly inefficient
with a bad choice of the pdf p as it may create many samples ω j
which contribute little to the final result, Fig. 2.

The focus of this paper is on choosing an effective pdf p and its
efficient computation. In order to achieve this, we split p into two
components

p(x,ω) =
1

W (x)
pV (x,ω)pLi(ω).

pV is a pdf based on the visibility, which changes locally through-
out the volume based on the location x, pLi is a pdf based
on the position-independent environmental lighting and W (x) =∫

pV (x,ω)pLi(ω)dω is a normalization factor to produce a valid
pdf. pLi is known and based on the intensity of the environmen-
tal lighting, normalized by its overall intensity. The representation
of these functions, the computation of pV (x,ω), p(x,ω), and how
to draw samples from p(x,ω) are the core of our method and ex-
plained in the following sections. We explain the data structures,
then the visibility approximation, which will be used to derive pV ,
before combining all the elements.

3.2 Octahedral Representation
Before explaining the algorithmic part of our approach, we will fo-
cus on the chosen data structures. They were developed to ensure
an efficient evaluation on modern hardware and to simplify gener-
ation, sampling, and product computation. These elements will be
necessary to drive the MC sampling process.

As we are dealing with potentially semi-transparent media in
volume rendering, we assume V to be locally smooth with respect
to x and ω . This allows us to estimate V at discrete positions xd
and a few discrete directions ωd . We arrange the locations within
a 3D voxel grid of user-defined size encompassing the original vol-
ume. These local estimates are then interpolated during rendering
to obtain an approximation of the actual visibility in each location.

For a fixed location x our functions V and Li and their respective
pdfs pV and pLi are spherical functions, i.e., they solely depend on a
direction vector ω . Given that we only consider piecewise-constant
pdfs, we will represent these functions as octahedral maps, which
is a discrete image-based area-preserving representation [24] and
can be saved/accessed as a 2D texture (Fig. 3). Each texel p in
these maps is associated with one direction ωd(p) and indicates the
accumulated volumetric visibility in direction ωd(p) from the maps
location. We will refer to these visibility maps for each discrete
location xd as visibility voxels Vd .

3.3 Visibility Approximation
In this section, we describe how to compute the entries of the vis-
ibility voxels via our sweeping plane algorithm. The visibility is

Figure 3: Octahedral representation: We present spherical func-
tions using an octahedral representation. (a) 3D representation, (b)
unfolded 2D representation.

projected
volumevisibility voxels

Figure 4: Visibility Sweeps: We compute the absorption of sam-
ple rays starting at plane n along direction ωd up to the positions
coinciding with a sweeping plane, which is orthogonal to the main
component of ωd . To compute the absorption at a visibility voxel
in direction −ωd we reproject its position onto Pd and query the
interpolated absorption value. All components can be efficiently
computed on the GPU.

computed for one direction ωd(p) at the time. In each step, one
slice of Vd is evaluated in parallel. Previous results are reused,
making only a few value lookups per step necessary. Therefore, the
amortized cost over all xd is very low. After all directions were
treated, the resulting Vd is used to derive the pdf pV , which will
guide the sampling process. An illustration of a single sweep step
is given in Fig. 4 and described in the following.

Here, we describe the process for one given direction ωd , for
brevity we omit the direction parameter in brackets. First, a plane
Pd with normal ωd is defined, the orthogonal projection of the
data volume’s bounding box defines its size. We then create a set
of r rays at uniformly distributed positions within this projection
having the same direction as ωd . To coordinate the ray traversal, we
introduce a sweeping plane Sd which is orthogonal to one of the
main axes of the original volume data. This axis is chosen based on
the main direction of ωd (defined as the maximum of the absolute
values of its three components). Sd is initialized to intersect the
first 2D slice of Vd , so that it coincides with the position of the
visibility voxels within this slice. We traverse the volume along
the rays starting at P and accumulate visibility changes until they
hit S . This accumulation effectively keeps track of all relevant
information that lies behind the ray when reaching a new visibility
voxel.

The main loop of the algorithm moves Sd forward along the
main direction by one visibility-voxel slice at a time until all slices
are processed. After each step of Sd , the rays advance via ray
marching from their previous position until they reach Sd again.
On their way, the absorption values along the ray are accumulated
and, when reaching Sd , stored in a 2D texture mapped onto the
initial positions on Pd . Please note that the resolution of the visi-
bility voxel grid and the original volume can be different. Next, the
visibility voxels coinciding with Sd (now reached by the rays) are
updated by querying the interpolated absorption values produced
by the rays. This gathering operation is highly parallelizable and
more efficient than a scattering strategy.

After the algorithm finishes and all directions have been pro-
cessed, we have a discrete approximation Vd of the visibility within
the volume, which, if normalized, results in the pdf pV . We add
a small ε-value beforehand to prevent zero probabilities, which
would introduce a bias. The main observation is that this iterative

update is more efficient than individual visibility computations per
visibility voxel.

3.4 Joint Importance Sampling

At a scattering event during rendering, we want to make use of a
joint importance sampling combining visibility and environmental
lighting. We have explained how to produce the pdfs for pV and
pLi . Here, we explain how to combine both. The computation is
divided into a preprocess, taking place whenever the environment
map or the transfer function changes, and an online process, taking
place whenever a scattering event occurs during rendering.

Preprocess For the preprocess, we assume that the environ-
ment map is also given as an octahedral map, otherwise we convert
it first. As a reminder, pLi is defined as the normalized intensity
value of the environmental lighting, giving higher importance to
the brighter parts. In general, the resolution of the octahedral maps
of pLi will be higher than for pV . To combine both, we first adapt
the resolution of pLi . To simplify explanations, we assume that the
resolution in width and height is chosen to be a power of two.

Similar to [4], we create a multiresolution pdf in the form of a
quadtree, i.e., each node saves the average of its four child nodes,
with the leaves being the individual pixels. To match the resolution
between lighting and visibility, we choose a level l in pLi whose
resolution is equal to the directional resolution of a single visibility
voxel. We then multiply all entries in Vd with the respective infor-
mation in pLi at level l. The result is an unnormalized joint pdf of
the combined product.

Rendering In the rendering phase, we create a final combined
pdf p for each scattering event at location x. This pdf is used to draw
a single sample, as this strategy is often more efficient in a stochas-
tic volume renderer with semi-transparent media [13]. Nonetheless,
the sampling algorithm naturally extends to any number and distri-
bution of initial samples, including quasi-MC methods [19].

To derive the pdf p, we first linearly interpolate the neighboring
visibility voxels which now carry the information of both visibility
and lighting as described in the preprocess. Initially, this interpo-
lated result is not a pdf. Nevertheless, we do not normalize it right
away, but compute a multiresolution representation in the form of a
quadtree where each node is the average of its child nodes. Follow-
ing the hierarchical warping technique [5], we can then transform a
uniformly distributed [0,1)2-variable into one that is distributed ac-
cording to p by passing the sample down in the quadtree according
to the local probabilities. In contrast to [5], we need to normalize
each 2×2 tile that we encounter during the quadtree sampling but
as we only draw a single sample per scattering event the effort is
only O(logn) compared to O(n) if we would create a complete pdf
for the interpolated visibility voxel. Here, n is the number of texels
in the lowest level of the quadtree.

In case the environment map has a high resolution, we propose to
use a two-step approach that continues the descent on the remaining
quadtree of the higher resolved environment map [6, 4]. This step
is especially beneficial for complex high-frequency illumination,
which is otherwise not well taken into account during the sampling.

3.5 Implementation Details

We found that using 8× 8 maps to represent the visibility at each
xd is generally a good memory/performance trade-off. The amount
of visibility voxels should be based on the scene/feature size and
Vd should be chosen slightly larger to encompass the original vol-
ume and ensure a correct boundary sampling. The number of ray-
marching steps along the ray should be based on the resolution of
the data set and the number of visibility voxels. The maximal step
size should be equal to the voxel size in the original data set in order
to not miss any details.

For improved cache usage, we actually do not compute all
visibility-voxel octahedral maps in advance. Instead, we avoid that
rays write to different textures during the ray traversal in the visi-
bility precomputation and store the occlusion values for a direction
ωd in a separate 3D texture. Once the pass for ωd is completed, we
perform the multiplication with the environment map as explained
above and keep this texture in memory. During the rendering pro-
cess, when a scattering event occurs, it might not lie directly on a
visibility voxel. We thus retrieve the interpolated values using hard-
ware filtering from these 3D textures and construct the visibility-
voxel octahedral map on the fly. Although this might sound costly,
it turned out that in practice, this cost is outweighed by the cache
advantages due to a better data locality and we avoid constructing
visibility voxels in areas where no scattering occurs. Nonetheless,
on future hardware a first reconstruction pass might become prefer-
able.

4 RESULTS

We integrated our algorithms into the stochastic CUDA-based vol-
ume renderer from [13]. All images have been generated on a
64bit Intel c© CoreTM i7 920 with 2.67GHz, 12GB of RAM, and
an NVIDIA GeForce GTX 760.

We compare the performance and do a qualitative comparison
between the existing and our approach. We compute the mean-
squared error (MSE) and compared to reference solutions using
8196 samples per pixel with uniform sampling. Our environment
maps all had a resolution of 2048× 2048 pixels (in the octahedral
representation). For all tests, the joint importance pdf p was con-
structed on the fly for each scattering event via interpolation of eight
visibility voxels.

Timings and Parameters The overhead during rendering us-
ing our visibility sweeps is low compared to the gain in quality, es-
pecially as the sweeping-plane algorithm to update the visibilities in
Vd is evoked only if the transfer function or illumination changes.
As standard parameters, we use a 82 directional map for each visi-
bility voxel and set one visibility voxel for each 43 voxel subset of
the original data volume. The overhead during rendering is roughly
only 10%, compared to rendering the same number of samples per
pixel using plain uniform sampling. This includes interpolating the
visibilities, creating the multiresolution 2D pdf representation on
the fly and the joint importance sampling itself.

We compared our visibility sweeps approach to a brute-force
computation of the visibility where each entry for the visibility vox-
els is computed exactly using ray marching. Table 1 shows a com-
parison of the timings for different parameters. For our proposed
standard parameters and a reasonable number of absorption rays
our approach is approximately 6× faster than the brute-force com-
putation. It is important to note that this factor becomes larger with
an increasing number of visibility voxels (up to a factor of 15 in our
tests in Table 1). Further, the test scene (Manix) resembles and iso-
surface due to its very steep transfer function, hence, the brute-force
ray marching stops if the ray hits the isosurface. In our sweeping-
plane algorithm the rays need to traverse the whole volume. So, we
deliberately chose a difficult scenario - the benefit will be even big-
ger for a higher number of visibility voxels and more transparent
volumes.

Additionally, we checked our assumption that we can interpolate
the queried visibility during the reprojection step in the sweeping-
plane algorithm. It should be pointed out that the results will always
remain unbiased, independent of the resolution because the values
are only used to guide the sampling process. To this extent, we re-
duced the number of absorption rays that are traversed through the
volume shown in Fig. 5, which is of size 512× 512× 373 voxels.
Consequently, the visibility voxels will have to rely on an interpo-
lated result. The number of rays influences the result only slightly
and no visible errors are introduced. This result indicates that we

Vis. Voxels 256x256x230 128x128x115 64x64x57 32x32x28

Memory 964.7 120.6 15.0 1.8

Sweep (162) 3.76 1.93 0.76 0.53
Sweep (322) 3.89 1.97 0.79 0.54
Sweep (642) 4.05 2.03 0.79 0.55
Sweep (1282) 4.31 2.40 1.04 0.59
Sweep (2562) 6.36 3.23 1.63 1.41

Brute-Force 97.35 15.17 2.79 0.57

Table 1: Memory requirements (MB) and timings (seconds) for the
visibility sweep algorithm and varying input parameters in compar-
ison to a brute-force visibility computation. We shoot 162, 322,
642, 1282 and 2562 absorption rays per sweeping direction. All ex-
periments are performed on the Manix data set (512× 512× 460
voxels).

32x32 Rays 64x64 Rays 128x128 Rays 256x256 Rays

Figure 5: Influence of the visibility sampling precision (number of
absorption rays) on the result.

can rely on a relatively cheap preprocess to approximate the visibil-
ity, which reduces the additional overhead in our approach.

Qualitative Evaluation We compare our approach to uniform
sampling, importance sampling of the environment map only, im-
portance sampling of the visibility only, a combined approach,
where the visibility pdf is multiplied with the downsampled pdf
from the environment map of the same resolution, as well as our
combined two-step approach, which makes use of the combined
sampling but switches to the full environment-map resolution as
soon as a leaf in the combined pdf representation is reached to fur-
ther support high-frequency lighting.

Fig. 8 shows an equal-time comparison of all the techniques after
10 s render time, excluding the visibility precomputation. For com-
parison, we show the computed number of samples per pixel (SPP)
and the Mean-Squared Error (MSE) for each approach. Though the
number of samples is lower, due to the computational overhead in-
duced by the joint sampling, the noise is significantly reduced with
our approach. Due to a lower ray coherency the uniform sampling
creates less samples per pixel in the same time than most of the
other approaches.

Figs. 1 and 6 show an equal sample comparison. Fig. 7 shows an
equal quality comparison, where we precomputed the result for var-
ious power-of-two number of samples and illustrate the ones closest
to the indicated error.

Additionally, we provide error plots for the Statue and Engine
Block scene with respect to the number of samples in Figs. 9 and 10.
As expected, uniform sampling performs worst. Interestingly, the
visibility sampling alone performs better in the beginning but has
a worse convergence. We found that the images also contain a lot
more firefly artifacts. We, therefore, believe the reason for the con-
vergence behavior lies in the approximate visibility function at oc-
clusion boundaries. If a direction is supposed to be occluded it is
sampled with a low probability and therefore a high weighting. If it
accidentally hits a bright light source behind it, high energy samples
are added to the result which result in the fireflies. As the direction
around this occlusion boundary is rarely sampled it takes a lot of

MSE 0.0517

MSE 0.0104

MSE 0.0028

MSE 0.0410

MSE 0.0131

MSE 0.0048

MSE 0.0421

MSE 0.0111

MSE 0.0033

MSE 0.0309

MSE 0.0057

MSE 0.0016

4
SPP

32
SPP

128
SPP

Statue

Reference

MSE 0.0525

MSE 0.0167

MSE 0.0052

Uniform Environment Visibility Combined Two-step
Environment map

Figure 6: Equal Sample Comparison: We compare our proposed two step importance sampling technique (dark blue) using 4, 32 and
128 samples to uniform sampling (red) and importance sampling of the environment map only (yellow), the visibility only (green), and the
combined low-resolution product (light blue). All images are unbiased and a reference, as well as the environment map are shown on the left.

8 SPP

64 SPP

256 SPP

16 SPP

128 SPP

512 SPP

16 SPP

128 SPP

512 SPP

4 SPP

32 SPP

128 SPP

MSE
22.0

x10-3

MSE
3.4

x10-3

MSE
1.0

x10-3

Engine Block

Reference

64 SPP

512 SPP

2048 SPP

Uniform Environment Visibility Combined Two-step
Environment map

Figure 7: Equal Quality Comparison: We compare our proposed two step importance sampling technique (dark blue) to uniform sampling
(red) and importance sampling of the environment map only (yellow), the visibility only (green), and the combined low-resolution product
(light blue). All images are unbiased and a reference, as well as the environment map are shown on the left. For approximately the same
quality, our two-step approach requires significantly less samples.

Uniform
MSE: 10.6 x 10-3

SPP: 112

Combined
MSE: 7.2 x 10-3

SPP: 101

Environment
MSE: 4.9 x 10-3

SPP: 130

Two-step
MSE: 3.0 x 10-3

SPP: 99

Reference

Visibility
MSE: 9.6 x 10-3

SPP: 115

Figure 8: Equal time comparison: All images, except the refer-
ence image, have been created using 10 seconds of rendering time.

0 50 100 150 200 250
10 −4

10 −3

10 −2

10 −1
Statue

Samples per pixel

M
ea

n−
Sq

ua
re

d
Er

ro
r

Uniform
Environment
Visibility
Combined
Two−step

Figure 9: Convergence graphs for the Statue scene (Fig. 6)

0 50 100 150 200 250
10 −4

10 −3

10 −2

10 −1

10 0
Engine

Samples per pixel

M
ea

n−
Sq

ua
re

d
Er

ro
r

Uniform
Environment
Visibility
Combined
Two−step

Figure 10: Convergence graphs for the Engine Block scene (Fig. 7).

samples to correct for these errors. If the lighting is incorporated in
the pdf, these cases are taken care of sufficiently. Environment map
and the low-resolution combined sampling perform almost equally
well on the Statue scene. Presumably, importance sampling the
light wastes a lot of samples that are absorbed within the volume.
The combined sampling approach suffers to some extent from the
low resolution of the visibility function and, therefore, the com-
bined pdf is not able to capture the high frequency details of the
environment map. This disadvantage is compensated by the two-
step approach, which can make use of both the visibility and the
high-frequency illumination information and shows better conver-
gence rates even at high sampling rates. The results suggest that it is
highly beneficial to incorporate the proposed visibility sweeps and
joint sampling in the two-step approach for stochastic MC volume
rendering.

5 CONCLUSION

We presented a joint sampling approach relying on visibility and
lighting information within an interactive unbiased stochastic vol-
ume renderer. The core of our solution is an efficiently-computed
visibility approximation based on a sweep-plane algorithm. Its per-
formance allows us to change environmental lighting and transfer
functions dynamically. We carefully designed our algorithm for
GPU execution and have demonstrated its applicability to different
volume data sets.

Visibility sweeps could prove beneficial for traditional
boundary-representation rendering as well. To some extent this is
illustrated by using transfer functions, which lead to very sharp
features. Our approach usually lowers the amount of needed
samples significantly compared to previous solutions at equal
quality, which is an important result as the evaluation of samples is
a very costly element in most production and rendering contexts.

There are still some options for minor optimizations for the
traversal algorithm. First, a pruning of the absorption rays that do
not intersect with the volume at all, and second, an early exit strat-
egy for rays that are already fully absorbed, could potentially result
in a traversal speed-up at the cost of a more complex algorithm.
Though not yet implemented, interactive clipping (slicing) of the
volume is naturally supported in our approach, as it simply requires
disregarding the intensity values in front of the slicing plane during
the visibility computation. A remaining challenge is the incorpora-
tion of non-diffuse media. For isotropic media one could precom-
pute several pdfs based on the angle of the incoming and outgoing
ray and interpolate these during rendering, but general reflection
models remain future work.

ACKNOWLEDGEMENTS

This work was partially supported by the FP7 European Project
Harvest4D and the IVCI at Saarland University.

REFERENCES

[1] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen. Struc-
tured importance sampling of environment maps. ACM Trans. Graph.,
22(3):605–612, 2003.

[2] K. M. Beason, J. Grant, D. C. Banks, B. Futch, and M. Y. Hussaini.
Pre-computed illumination for isosurfaces. In Conference on Visual-
ization and Data Analysis, pages 1–11, 2006.

[3] D. Burke. Bidirectional importance sampling for illumination from
environment maps. Master’s thesis, UBC, 2004.

[4] P. Clarberg and T. Akenine-Möller. Practical product importance sam-
pling for direct illumination. Computer Graphics Forum (Proceedings
of Eurographics), 27(2), 2008.

[5] P. Clarberg, W. Jarosz, T. Akenine-Möller, and H. W. Jensen. Wavelet
importance sampling: Efficiently evaluating products of complex
functions. ACM Trans. Graph., 24(3):1166–1175, 2005.

[6] D. Cline, P. K. Egbert, J. F. Talbot, and D. L. Cardon. Two Stage Im-
portance Sampling for Direct Lighting. In Eurographics Symposium
on Rendering, 2006.

[7] P. Debevec. Rendering synthetic objects into real scenes: Bridg-
ing traditional and image-based graphics with global illumination and
high dynamic range photography. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’98, pages 189–198. ACM, 1998.

[8] I. Georgiev, J. Křivánek, T. Hachisuka, D. Nowrouzezahrai, and
W. Jarosz. Joint importance sampling of low-order volumetric scat-
tering. ACM Transactions on Graphics (TOG), 32(6):164, 2013.

[9] M. Hadwiger, A. Kratz, C. Sigg, and K. Bühler. GPU-accelerated deep
shadow maps for direct volume rendering. In Proceedings of the 21st
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, GH ’06, pages 49–52. ACM, 2006.

[10] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski. A Survey of
Volumetric Illumination Techniques for Interactive Volume Render-
ing. Computer Graphics Forum, 33(1):27–51, 2014.

[11] T.-Y. Kim and U. Neumann. Opacity shadow maps. In In Proceedings
of the 12th Eurographics Workshop on Rendering Techniques, pages
177–182. Springer-Verlag, 2001.

[12] T. Kollig and A. Keller. Efficient illumination by high dynamic range
images. In Rendering Techniques, volume 44, pages 45–51. Euro-
graphics Association, 2003.

[13] T. Kroes, F. H. Post, and C. P. Botha. Exposure render: an interactive
photo-realistic volume rendering framework. PLoS ONE, 7(7), 2012.

[14] J. Kronander, D. Jönsson, J. Löw, P. Ljung, A. Ynnerman, and
J. Unger. Efficient Visibility Encoding for Dynamic Illumination in
Direct Volume Rendering. IEEE TVCG, 18(3):447–462, 2012.

[15] F. Lindemann and T. Ropinski. Advanced light material interaction
for direct volume rendering. In IEEE/EG International Symposium on
Volume Graphics, pages 101–108. Eurographics Association, 2010.

[16] P. Ljung, C. Lundström, and A. Ynnerman. Multiresolution interblock
interpolation in direct volume rendering. In Proc. of EuroVis, pages
259–266. Eurographics Association, 2006.

[17] T. Lokovic and E. Veach. Deep shadow maps. In Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pages 385–392. ACM Press/Addison-

Wesley Publishing Co., 2000.
[18] N. Max. Optical models for direct volume rendering. IEEE Transac-

tions on Visualization and Computer Graphics, 1(2):99–108, 1995.
[19] H. Niederreiter. Random Number Generation and quasi-Monte Carlo

Methods. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1992.

[20] J. Novák, A. Selle, and W. Jarosz. Residual ratio tracking for estimat-
ing attenuation in participating media. ACM Transactions on Graphics
(TOG), 33(6):179, 2014.

[21] V. Ostromoukhov, C. Donohue, and P.-M. Jodoin. Fast hierarchical
importance sampling with blue noise properties. ACM Trans. Graph.,
23(3):488–495, 2004.

[22] D. Patel, V. Šoltészová, J. M. Nordbotten, and S. Bruckner. Instant
convolution shadows for volumetric detail mapping. ACM Transac-
tions on Graphics (TOG), 32(5):154, 2013.

[23] M. Pharr and G. Humphreys. Physically Based Rendering, Second
Edition: From Theory To Implementation. Morgan Kaufmann Pub-
lishers Inc., 2nd edition, 2010.

[24] E. Praun and H. Hoppe. Spherical parametrization and remeshing.
ACM Trans. Graph., 22(3):340–349, 2003.

[25] C. Rezk Salama. GPU-based monte-carlo volume raycasting. In Proc.
Pacific Graphics, pages 411–414, 2007.

[26] T. Ritschel. Fast GPU-based Visibility Computation for Natural Illu-
mination of Volume Data Sets. In P. Cignoni and J. Sochor, editors,
Short Paper Proceedings of Eurographics 2007, pages 17–20, 2007.

[27] T. Ropinski, J. Kasten, and K. H. Hinrichs. Efficient shadows for
GPU-based volume raycasting. In Proceedings of the 16th Interna-
tional Conference in Central Europe on Computer Graphics, Visual-
ization and Computer Vision (WSCG 2008), pages 17–24, 2008.

[28] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and
K. Hinrichs. Interactive volume rendering with dynamic ambient oc-
clusion and color bleeding. Comput. Graph. Forum, 27(2):567–576,
2008.

[29] F. Rousselle, P. Clarberg, L. Leblanc, V. Ostromoukhov, and P. Poulin.
Efficient product sampling using hierarchical thresholding. The Visual
Computer, 24(7-9):465–474, 2008.

[30] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments.
In ACM Transactions on Graphics (TOG), volume 21, pages 527–536.
ACM, 2002.

[31] E. Sundén, A. Ynnerman, and T. Ropinski. Image Plane Sweep Vol-
ume Illumination. IEEE TVCG(Vis Proceedings), 17(12):2125–2134,
2011.

[32] E. Veach and L. J. Guibas. Optimally combining sampling techniques
for monte carlo rendering. In Proceedings of the 22Nd Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
’95, pages 419–428. ACM, 1995.

[33] L. Williams. Casting curved shadows on curved surfaces. SIGGRAPH
Comput. Graph., 12(3):270–274, 1978.

[34] S. Zhukov, A. Iones, and G. Kronin. An ambient light illumination
model. In Rendering Techniques, Proceedings of the Eurographics
Workshop, pages 45–56. Springer, 1998.

Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

Level-of-Detail Streaming and Rendering using Bidirectional
Sparse Virtual Texture Functions

Christopher Schwartz, Roland Ruiters and Reinhard Klein

University of Bonn, Germany

Abstract
Bidirectional Texture Functions (BTFs) are among the highest quality material representations available today
and thus well suited whenever an exact reproduction of the appearance of a material or complete object is re-
quired. In recent years, BTFs have started to find application in various industrial settings and there is also a
growing interest in the cultural heritage domain. BTFs are usually measured from real-world samples and easily
consist of tens or hundreds of gigabytes. By using data-driven compression schemes, such as matrix or tensor
factorization, a more compact but still faithful representation can be derived. This way, BTFs can be employed for
real-time rendering of photo-realistic materials on the GPU. However, scenes containing multiple BTFs or even
single objects with high-resolution BTFs easily exceed available GPU memory on today’s consumer graphics
cards unless quality is drastically reduced by the compression. In this paper, we propose the Bidirectional Sparse
Virtual Texture Function, a hierarchical level-of-detail approach for the real-time rendering of large BTFs that re-
quires only a small amount of GPU memory. More importantly, for larger numbers or higher resolutions, the GPU
and CPU memory demand grows only marginally and the GPU workload remains constant. For this, we extend
the concept of sparse virtual textures by choosing an appropriate prioritization, finding a trade off between factor-
ization components and spatial resolution. Besides GPU memory, the high demand on bandwidth poses a serious
limitation for the deployment of conventional BTFs. We show that our proposed representation can be combined
with an additional transmission compression and then be employed for streaming the BTF data to the GPU from
from local storage media or over the Internet. In combination with the introduced prioritization this allows for the
fast visualization of relevant content in the users field of view and a consecutive progressive refinement.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction
The realistic rendering of surface materials plays an impor-
tant role in the generation of photo-realistic as well as pre-
dictive synthetic images. The appearance of real-world ma-
terials is often the result of complex light scattering inter-
action within small geometric structures on and under the
surface. For a restricted set of materials, such as perfect mir-
rors, some metals or plastics, a visually pleasing rendering
can be achieved by employing physically motivated analyti-
cal reflection models. However, the majority of the rich va-
riety of material classes encountered in everyday life cannot
as easily be represented by simple analytical models.

In 1997, Dana et al. [DvGNK97] proposed an image-
based approach to acquire the appearance of real-world ma-
terials, the Bidirectional Texture Function (BTF). The six

Figure 1: A scene with 14 objects, all textured with BTF ma-
terials with up to 2048× 2048 texels, rendered on the GPU
at interactive frame-rates using our BSVTF approach.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

Figure 2: Screenshots of a fly-through animation in a vir-
tual scene with 100 different measured BTF material having
a size of 512× 512 texels. The scene renders with 35FPS
at 1280× 720 pixel on a NVIDIA GeForce GTX 680 GPU.
While the total amount of the factorized BTF data is 6.2GB,
the memory footprint on the GPU using BSVTFs is 1.7GB.

dimensional Bidirectional Texture Function ρ(x,ωl ,ωv) de-
scribes the ratio of differential radiance that is scattered at
a point x on a surface into direction ωv to differential ir-
radiance from direction ωl . In contrast to the related Spa-
tially Varying Bidirectional Reflectance Distribution Func-
tions (SVBRDF), which are often represented as either spa-
tially varying parameters of an analytical BRDF or spa-
tially varying mixtures of a set of analytical or measured
BRDFs, the BTF is characterized by a unique Apparent
BRDF (ABRDF) at each point of the surface. Unlike the
BRDF, the ABRDF may violate assumptions such as reci-
procity or energy conservation and show a more general dis-
tribution of the reflected light. This way, the BTF is able to
encode position dependent non-local effects, like interreflec-
tions, shadows, masking or subsurface scattering, cast from
neighboring geometry onto the material surface.

Because of this property, BTFs are an excellent choice
for the representation of many real-world materials. In re-
cent years, BTFs have started to find application in industrial
settings and in the domain of cultural heritage, as in these
cases the exact reproduction of the appearance of materials
or complete objects is desired. Although raw BTFs exhibit
rather unhandy file-sizes of several tens to hundreds of Giga-
bytes – recent publications show high resolution BTFs with
up to 500GB – several compression techniques are available
to cope with this problem. Among those, matrix factoriza-
tion based approaches are capable of reducing the file-size
up to a factor of 500 while still preserving the unique ap-
pearance of the BTF and allowing rendering in real-time.

Therefore, these factorized BTFs are currently the repre-
sentation of choice for high quality materials in interactive

applications as well as real-time graphics. Unfortunately, so
far the usefulness of BTFs in real-time graphics is greatly
hampered by the still rather large data sizes of up to sev-
eral hundreds of megabytes per material. An additional en-
tropy coding or lossy compression can be employed to im-
prove the compression ratio over the factorized BTF, e.g.
for the fast transmission over the internet. However, the data
needs to be unpacked into the factorized representation again
to support efficient random access for real-time rendering.
In [SRWK11], using a lossy wavelet compression for trans-
mission, factors of 10 for no perceivable up to 60 for a no-
ticeable but still acceptable error were achieved. The authors
reported that a BTF with a compressed size of 46.39MB for
the transmission had then to be stored in 2.5GB of GPU
memory. Therefore, rendering even a small scene containing
a few objects with high resolution BTF materials on the GPU
is simply impossible due to the high memory requirements
that can even be hardly met by the latest professional hard-
ware. When considering the trend towards high quality 3D
graphic on tablets and mobile phones, which nowadays have
performant graphics chips but a drastic shortage of memory,
the problem of GPU memory consumption becomes even
more severe. However, the familiar problem of rendering
very large textures that exceed the available memory has al-
ready been successfully handled by employing a technique
that is known as Clipmapping [TMJ98] or Sparse Virtual
Texturing (SVT) [Bar08]. SVT utilizes a level-of-detail hi-
erarchy in the spatial domain to only keep the required parts
of the texture in the necessary resolution in GPU memory.

In this paper, we propose the Bidirectional Sparse Virtual
Texture Function (BSVTF), an adaption of the SVT tech-
nique to the context of real-time BTF rendering. In contrast
to plain textures, which only have a level-of-detail hierar-
chy in their spatial resolution, a factorized BTF representa-
tion inherently includes a second level-of-detail domain of
the ABRDF approximation quality. In this work, we demon-
strate that both level-of-detail hierarchies can be combined
in a consistent manner by reducing them to a single spatial
level-of-detail problem. We show that this way the bottle-
neck of GPU memory can effectively be circumvented. In
contrast to several tens to hundreds of Megabytes per high-
resolution BTF, in our case the CPU and GPU memory de-
mand is very moderate. More importantly, the memory de-
mand grows only marginally with higher resolution and with
increasing number of materials only additional storage space
for the angular part of the factorized matrix is needed. Fur-
thermore, the computational overhead on the GPU intro-
duced by the approach remains constant regardless of the
number of BSVTFs, allowing for rich virtual scenes that are
textured with several high-resolution materials, such as the
scene shown in Fig. 1. We demonstrate that BSVTFs can
also be used for the efficient streaming over the Internet, al-
lowing to display scenes with multiple high resolution ma-
terials without considerable delay. For this, we apply an ad-
ditional streaming compression that utilizes the redundancy
found in the level-of-detail hierarchy. To facilitate the fast

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

start of rendering, we interleave the angular factorization
components with the transmission of the level-of-detail tiles
of the spatial information.

In summary our contributions are
• A hierarchical level-of-detail approach for memory

friendly real-time BTF rendering.
• An automatic weighting of the BTF compression approx-

imation error and the spatial level-of-detail error of the
SVT by formulating the approximation problem as a uni-
fied error minimization.
• A streaming approach utilizing a transmission compres-

sion based on the level-of-detail hierarchy, allowing ren-
dering of scenes with BTF materials transmitted over a
network without significant loading times.

2. Related Work
To the best of the authors knowledge, there exists no pre-
vious literature on a similar level-of-detail application on
BTFs. However, there is a large body of related work in the
fields of level-of-detail rendering as well as real-time render-
ing and streaming of BTFs.

Hierarchical level-of-detail: As early as 1976, Clark intro-
duced the concept of hierarchical level-of-detail on geomet-
ric models [Cla76]. Here, the problem of considering only
that parts of the geometry of a synthetic scene that are ac-
tually relevant for rendering the users viewport is solved by
using an object hierarchy. The hierarchy holds the geometry
of objects in the scene in different levels of detail. A graph-
ical working set is built from the hierarchy by choosing ex-
actly those objects that are visible on the screen in a level
of detail that is sufficient for the required rendering resolu-
tion of the object. Since then, hierarchical level-of-detail has
found a lot of application for scene geometries and terrain
visualization and also for streaming these types of data over
the Internet. More information on these research topics can
be found in [LWC∗02].

In real-time graphics, another level-of-detail hierarchy has
also found very wide-spread application: in combination
with trillinear interpolation, mip-maps of a texture, first in-
troduced in [Wil83], are commonly applied to avoid alias-
ing artifacts arising from under-sampling textured area. In
[TMJ98], Tanner et al. first make use of the mip-map hier-
archy to allow for arbitrarily large virtual textures maintain-
ing an active working set, similar to Clark. While Tanner et
al. propose the use of a specialized graphics workstations,
the concept of virtual texturing has in recent years regained
popularity (e.g. [Bar08]) due to the increasing flexibility and
general availability of GPUs.

BTF compression, streaming, and rendering: For the
task of real-time rendering of BTF materials, a number of
different solutions have been proposed. For a comprehen-
sive overview we refer to [HF11]. At their core, almost all
approaches have in common that they aim to reduce the huge
amount of data in a BTF description to a more compact rep-
resentation that will eventually fit on the GPU. One approach

is to fit SVBRDFs to the BTF data. While this representation
is well suited for evaluation on the GPU, the quality can suf-
fer drastically by the reduction to an SVBRDF as the non-
local effects of the light scattering in the material are lost. In
a recent publication [WDR11], Wu et al. therefore combine
a mixture of several fitted SVBRDF models with residual
ABRDFs and propose to compress those via vector quanti-
zation. A second group of compression techniques is based
on factorization. Here, the BTF is considered as a matrix or
tensor of which a low-rank approximation is found. Recent
comparisons [PSR13] indicate that on BTF data, Full Matrix
Factorization (FMF) [KM03] often yields the best RMSE for
a given compression ratio. The only mentioned exception is
a BTF compression scheme based on K-SVD [RK09] that
outperforms the FMF by a factor of 3 to 4 at comparable
quality. However, an efficient real-time rendering technique
for this compression has not yet been found. In [GMSK09],
Guthe et al. employ a perceptually motivated BTF compres-
sion based on matrix factorization. Compression rates of
about 500 : 1 are achieved with a high approximation qual-
ity. The authors observe that GPU memory can be saved
by employing lower downsampled levels-of-details for some
of the factorized data. In our paper, we will also save GPU
memory by exploiting the fact that lower resolution versions
of factorization components can be used. However, instead
of reducing the level-of-detail once at compression-time,
based on assumptions about viewing distance and angles,
we store the factorized BTF data at multiple precomputed
levels-of-detail. This allows us to dynamically decide at run-
time which level-of-detail is necessary and can thus consider
the actual view-point of the user.

Recently, data-driven compression methods for BTFs that
are not based on factorization have been proposed as well.
In [HF07], the authors follow a statistical modeling approach
that achieves impressive compression ratios but in its nature
is not capable of exactly reproducing the surface features of
a given BTF. While this might be tolerable or even desired
for the purpose of texture synthesis, it would for example
not be applicable in the case of virtual surrogates for cultural
heritage. In [HFM10], Havran et al. employ a compression
based on multi-level vector quantization and in [TFLS11]
Tsai et al. propose to use a decomposition in multivariate
radial basis functions. Both methods provide high quality
results for the reproduction of material appearance at real-
time frame-rates. Unfortunately, no direct quality compar-
isons to FMF are given. However, the reported compression
ratios are in the same region as achieved with FMF, so it is
not to be expected that these techniques will reduce mem-
ory demand sufficiently to eliminate the memory issues of
BTF rendering. In this paper, we use FMF compression, as it
greatly facilitates the simplicity of the proposed progressive
streaming and L2-norm based error-approximation for tile-
prioritization. In future work one might consider the appli-
cability of other compression methods for BSVTFs as well.

In [SRWK11], FMF compression is used for rendering
BTFs in the Webbrowser via WebGL on commodity hard-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

ware (NVIDIA GeForce 8800). The authors utilize the level-
of-detail hierarchy implicated by the factorization to per-
form a progressive streaming of the BTF data over the in-
ternet. They employ an additional lossy image compres-
sion for the efficient transmission. However, the image com-
pression does not allow fast random-access reconstruction
of the compressed data any more, which is mandatory for
the purpose of real-time rendering. Therefore, after trans-
mission, the factorized data is unpacked into GPU memory
again, occupying up to 2.5GB for a single high quality BTF
with 4Megapixel. In contrast, with our proposed technique,
scenes that contain several 4Megapixel BTF materials with
comparable compression ratios (660 : 1 in our case versus
428 : 1 in [SRWK11]), such as the one shown in Fig. 1 and
4, can be rendered in real-time with a much lower memory
footprint (483MB and 229MB for the total scene).

Out-of-core rendering of reflectance data: For their edit-
ing system BTFShop [KBD07], Kautz et al. proposed an out-
of-core rendering architecture for BTFs. For this, the un-
compressed BTF data is split into tiles which are succes-
sively streamed to memory for editing and rendering. How-
ever, BTFShop is an editing application and not ment for
real-time viewing purposes. The rendering relies on lazy up-
dates and assumes that usually only a subset of pixels on
the screen are changed and light and view directions remain
constant. A slight rotation around the object would require to
completely swap the cached tiles. This severely restricts the
achievable frame-rates and prohibits streaming over a lim-
ited bandwidth network connection. In contrast, using the
proposed BSVTFs allows changing the light and view direc-
tions even for scenes with many BTF materials in real-time
with moderate bandwidth requirements.

On the related topic of surface light-field (SLF) render-
ing, Chen et al. presented the technique of light field map-
ping [CBCG02]. Here, the authors proposed to perform a
spatial partition of the object’s surface. In combination with
factorization, vector quantization and image compression
this allowed combining the SLFs for each such spatial part
into textures that are suitable for rendering with the GPU.
Images are then generated using multi-pass rendering, ras-
terizing the triangles of one spatial part at a time. While
this algorithm allows for memory-friendly out-of-core ren-
dering, it does not include level-of-detail and therefore re-
quires the costly successive swapping of all textures for the
visible parts of the object’s surface in every frame.

3. Sparse Virtual Texturing
In this section, we briefly discuss the SVT algorithm [Bar08]
and introduce our notation and implementation details.

We consider gray-scale images with M×N pixels depend-
ing on their context either as a matrix I = RM×N or as a
function I : (s, t) ∈ [0,M)× [0,N)⊂ R2 7→ i ∈ R, mapping
from the continuous pixel-domain [0,M)× [0,N) ⊂ R2 to
intensity values in R by bi-linear interpolation of the matrix
entries at the respective discrete rows and columns.

SVT considers the problem of representing a very large
image I using a considerably smaller matrix C = RO×P,
O� M and P� N as a cache. The technique exploits the
fact that the display resolution itself is usually much smaller
than the dimensions of I. For rendering, it is therefore suffi-
cient to hold only those parts of the image in memory, i.e. in
the cache C, that are visible on the screen at a given time.
Additionally, they parts only have to be held in memory
at the screen resolution, which has the additional benefit of
avoiding aliasing artifacts due to under-sampling.

To this end, the original image I is decomposed into a set
of disjoint tiles T= {Ti ∈ RT×T ⊂ I|∀i6=jTi∩Tj = ∅∧ I =⋃

Ti} of size T . The tiles Ti are indexed by a two dimen-
sional multi-index i. More sets of tiles are generated for dif-
ferent resolutions l = 0, . . . ,L by down-sampling the image
I, with L referring to the highest resolution, and are then de-
noted as Tl . In case portions of the image can sufficiently
be represented in a lower resolution l, tiles from the set Tl
can be used. Note that tiles from this set will allow a larger
coverage of the virtual image I at the same size T . We com-
pute and decompose all down-sampled versions of the orig-
inal image with resolutions of M

2L−l × N
2L−l , l = [0,1, ...,L]

until its content can eventually be expressed using the sin-
gle tile in T0 = {T(0,0)}, i.e. max(M

2L ,
N
2L)≤ T . The content

of the cache C is then compiled from that subset of tiles
that form the visible part of the image I at a sufficient res-
olution. Hence, C is also referred to as the tilecache. If all
space in the cache is already occupied on arrival of a new
tile, free space will be made available by unloading existing
tiles based on their priority (see Section 5.2). Tiles from mul-
tiple virtual textures are handled in a single tilecache. In our
implementation, we take special care when manipulating the
tilecache that at all times all parts of I are covered at least on
a low-resolution level. This strategy prevents drawing errors
due to cache misses in case of rapid user interaction.

To determine the information which tiles of which level
have to be displayed, a Feedback-image F : (x,y) ∈ [0,X)×
[0,Y) 7→ (i, l,τ) ∈ R4 is computed in regular intervals. Let
Π :R2→R2 be a texture-mapping function that maps screen
pixel coordinates (x,y) to texel coordinates (s, t) ∈ [0,M)×
[0,N). For each pixel (x,y), the down-sampling level l and
the index i of the tile Ti with the content for that pixel can
be computed as

l = L− log2 max
(∥∥∥∥∂Π(x,y)

∂x

∥∥∥∥ ,∥∥∥∥∂Π(x,y)
∂y

∥∥∥∥) (1)

i =
(

mod
(⌊

2l s
M

⌋
,2l
)
,mod

(⌊
2l t

N

⌋
,2l
))T

. (2)

A pixel-shader is used to evaluate Equations 1 and 2. To
support for multiple texture-images an additional texture-
index τ is stored in the fourth channel.

In order to reassemble the original appearance of I from
the possibly fragmented tiles that might also exhibit dif-
ferent resolutions, an indirection has to be performed for
all texture-fetches during rendering. For each screen pixel
(x,y), the texel coordinates (s, t) = Π(x,y) are mapped to

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

coordinates in the tile-cache where the value for I(s, t) is
stored. This requires to locate the appropriate tile in the tile-
cache and find the correct offset within the tile itself. For this
purpose, we maintain a lookup-table L : N2→R3 that holds
the level l′ in which a tile for (s, t) is available in the tile-
cache (which might differ from the optimal level l) and the
texel coordinates i′ of its top-left corner in C. Please note
that L is considerably smaller than the original texture I, as
only one entry for every T 2-th texel is required. From this in-
formation, the coordinate x of the texel in the tilecache that
needs to be fetched is computed as

x = i′+
(

2l′s−M
⌊

2l′ s
M

⌋
,2l′ t−N

⌊
2l′ t

N

⌋)T
. (3)

We employ a separate lookup-table for each virtual texture.

4. BTF Real-time Rendering
We consider the discretized Bidirectional Texture Function
ρ(x,ωl ,ωv) to be written as a matrix Bi, j with row indices
i enumerating all combinations of view-/light-directions
ωl,ωv and column indices j specifying the position x on
the surface. For example, our highest resolution test datasets
have 2048×2048 texels of spatial resolution, 151 view- and
151 light directions and three color channels. When arrang-
ing the colors as part of the ABRDFs, this results in a BTF
matrix B ∈ R68,403×4,194,304 with about 287 billion entries.
Compactly storing the matrix in half-precision floating point
values, results in a datasize of 534.4GB, which is certainly
not applicable for real-time rendering.

In this paper, we build on the more compact FMF rep-
resentation that can be obtained from B via singular value
decomposition (SVD) [KM03]. Given the full SVD B =
UΣVT , a low-rank approximation is obtained by truncating
the matrices U and V after C columns. Being a diagonal
matrix, Σ can be multiplied with V prior to truncation, i.e.
V := VΣ. According to the Eckart-Young-Theorem [EY36]
the SVD computes the best possible rank-C approximation
of the original matrix under the L2-norm:

arg min
{Uc,Vc}

∥∥∥∥∥B−
C

∑
c=1

UcΣc,cVT
c

∥∥∥∥∥
2

F

(4)

Here Uc and Vc denote the c-th column of the matrix U and
V respectively, which in the context of BTFs are also re-
ferred to as Eigen-ABRDFs and Eigen-Textures, and Σc,c
denotes the c-th singular value. This way, only the more
compact truncated matrices U′ and V′ have to be stored
and an approximation of the BTF value can be obtained as
B≈ B′ = U′V′T .

In the context of real-time rendering, the factorized rep-
resentation has the important benefit of allowing random ac-
cess to arbitrary values of the BTF without the necessity to
reconstruct the full matrix B′. Consider the c-th column of
the matrices U′ and V′ as images Uc and Vc. Then the BTF
ρ can be approximated as

ρ
′(x,ωl ,ωv) =

C

∑
c=1
Uc(ωl ,ωv) · Vc(x). (5)

If U and V are stored as textures on the GPU, Equation 5 can
be efficiently evaluated in a shader-program. For directions
and positions other than the discrete samples stored in B, the
values have to be interpolated. Instead of having to perform
a costly 6D interpolation, in the factorized case a 2D inter-
polation for x in the spatial domain can be performed inde-
pendently from a 4D interpolation in the angular domain.

We rely on the texture-units of the GPU to perform the
spatial 2D interpolation for us when accessing the textures
V , by choosing a suitable layout of the Eigen-Textures. The
four dimensional bidirectional interpolation in U , however,
has to be performed explicitly in the shader. For this, we fol-
low an idea presented in [ND06] and pre-compute two sepa-
rate two-dimensional Delaunay triangulations Dl and Dv for
the sets of light and view direction samples of the BTF given
in parabolic coordinates. We then raster each triangulation
D into two RGB textures D and B, containing the three di-
rection indices of the enclosing Delaunay triangle and the
three barycentric weights respectively. This way, during ren-
dering the interpolated value for arbitrary view and light di-
rections given in parabolic coordinates, can be evaluated in
a GPU shader: For all 9 combinations of direction indices
from Dl(ωl) and Dv(ωv), we perform a lookup into U and
blend the values according to the barycentric weights. The
small GPU memory overhead re-introduced by the index and
weight textures can further be reduced in the case of render-
ing multiple BTF with the same angular sampling by sharing
the textures between them.

5. Extension of SVT to BSVTFs
While for curved surfaces and perspective cameras almost
all entries of the bi-directional reflectance properties in U′

have to be accessed, the utilization of parts of the Eigen-
Textures stored in V′ follow the same consideration as con-
ventional textures. Therefore, the idea of sparse virtual tex-
turing could be directly applied in this case. The Eigen-
Textures could be treated as an image with C channels and
a spatial level-of-detail hierarchy can be constructed and de-
composed into tiles.

However, this would not provide the best approximation
as it does not take advantage of the property that the SVD
compacts most of the information in the first few columns
of U′ and V′, so that the contribution of later columns to the
quality of the approximation decreases quickly. This obser-
vation has already found application in [SRWK11], where
the columns of U′ and V′ were transmitted sequentially. In
our case, the situation is far more general. Using SVT intro-
duces a new degree of freedom, since every column of V′

could be stored in a different spatial resolution.
We aim to combine both the spatial resolution and the ap-

proximation rank level-of-detail in a consistent manner. In-
stead of considering the matrix V′ as one texture with multi-
ple channels, we regard every column as an individual virtual
2D texture V ′c. This way, the tiles of different columns are
weighted against each other for utilization of the tilecache.

In principle, the goal of hierarchical level-of-detail ren-
dering can be defined as the minimization of the rendering

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

error that can result from the restriction to a fixed tilecache
size. In the case of BTFs, possible sources of error are an
insufficient spatial resolution or insufficient number of fac-
torization components for the low-rank approximation. Let
image S denote the content of the screen when directly us-
ing the factorized BTF B′ for rendering and S̃ the content
using SVT to access V′. The rendering error under the L2
norm can be expressed as

Y−1

∑
y=0

X−1

∑
x=0

(S(x,y)−S̃(x,y))2, (6)

i.e. the sum of squared differences over all screen pixels.
In our implementation, we do not directly minimize this

term but instead propose a simplification. Let Π be the
texture-mapping function used during rendering that maps
from screen pixels (x,y) to the spatial position x in the
BTF. Let furthermore Ax(ωi,ωo) = ρ

′(x,ωi,ωo) denote the
ABRDF encoded at that position in the factorized BTF. Then

Y−1

∑
y=0

X−1

∑
x=0

∥∥∥AΠ(x,y)− ÃΠ(x,y)

∥∥∥2

=
Y−1

∑
y=0

X−1

∑
x=0

∥∥∥∥∥ C

∑
c=0

U′cV ′c(Π(x,y))−
C

∑
c=0

U′cṼ ′c(Π(x,y))

∥∥∥∥∥
2

denotes the L2 error of the ABRDF for every pixel recon-
structed directly from the factorization (designated A) and
reconstructed using SVT (designated Ã). Utilizing the SVD
property of matrix U′ being unitary, it is sufficient to con-
sider the error for every individual virtual 2D texture V ′c.

E =
∥∥(V ′c(Π(x,y))−Ṽ ′c(Π(x,y))

)∥∥2
. (7)

Our proposed algorithm minimizes this error under the con-
straint of limited memory.

Please note, that even though the different columns in
U′ and V′ have different importance for the quality of the
BTF approximation, using the proposed minimization for-
mulation we elegantly avoid the introduction of additional
weighting-terms to balance the individual textures against
each other. Furthermore, the proposed simplification of the
rendering error minimization to an ABRDF error minimiza-
tion has the additional advantage that the lighting in the vir-
tual scene can be changed without the necessity to change
anything in the tilecache utilization. Changes in view direc-
tion benefit from the availability of ABRDFs as well, as not
all tiles in the tilecache have to be exchanged but only those
which are affected by changes in visiblity or mip-level.

Without loss of generality, in the remainder of this paper
we will assume that the individual Eigen-textures V ′c are laid
out side-by-side in a large enough virtual texture I that will
be used for SVT.

5.1. Level-of-detail strategy
While in the case of level-of-detail on geometry a variety of
strategies for the artifact free refinement without inconsis-
tencies exists, for SVT not too many details can be found

in the literature. In this work, we essentially distinguish be-
tween two operations: add and swap.

The operation add will insert a tile T at free space in the
tilecache. As a post-condition, we check whether any ances-
tor tile of T in the tile-hierarchy is now completely covered
by its children. If so, the ancestor is removed from the tile-
cache, as it will not contribute to the pixels drawn on screen
any more. add operations are only performed on tiles that
have an ancestor in the tilecache. After the operation one or
none (if an ancestor has been removed) of the free entries in
the tilecache will be occupied.

The operation swap will remove two tiles Ti1,l1 ,Ti2,l2
from the tilecache and instead insert a tile Ti′,l′ from a
lower level l′ < min(l1, l2) in the tile-hierarchy that covers
those parts of I that were shown in Ti1,l1 and Ti2,l2 , that is

i′ =
⌊

2l′−l1 i1
⌋
=
⌊

2l′−l2 i2
⌋

. This operations will result in
one free entry in the tilecache.

After all operations have been performed, the entries in
the lookup-table are updated accordingly.

5.2. Tile prioritization
In order to minimize the ABRDF error from Equation 7, we
weight the possible tiles that can be loaded into the tile-
cache against each other. For this, we roughly follow two
measures:
1. The number of the pixels on the screen covered by the tile
2. The average reduction of the approximation error E for a

pixel covered by the tile
As long as there is still free space in the tilecache we perform
the add operations on tiles prioritized by these two criteria.
For this we set the priority P of a tile Ti at level l as P =
w(i, l, l−1) · v(i, l), where

w(i, l, l′) = 1
T 2

T−1

∑
x=0

T−1

∑
y=0

(
Ti,l(x,y)−T2l−l′ i,l′

(
x′,y′

))2

(8)
denotes the maximum L2 difference of the tile to its lower
resolution ancestor at level l′ in the tile-hierarchy and

v(i, l) =
∣∣∣{(i′, l′) ∈ F|l′ ≥ l∧ i =

⌊
2l−l′ i′

⌋}∣∣∣ (9)

denotes the number of votes, i.e. pixels in the feedback im-
age (see Section 3) that show the index values i and l of the
tile or its descendants in the tile-hierarchy. (x′,y′) in Equa-
tion 8 denote the point in the lower resolution tile T2l−l′ i,l′
that maps to the same point in the virtual texture as (x,y)
does in Ti,l . The value P approximates the reduction in the
error E in Equation 7 if Ti,l would be in the tilecache.

This definition for P is only valid for add operations on
tiles of level l for which the parent at level l − 1 is cur-
rently visible. Otherwise computing the votes v would be
more complex, as several in-between steps would have to be
considered. Since, add operations for a tile with a directly
available parent are favorable for the application of stream-
ing in Section 6, we restrict ourselves to the simple case.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

BSVTF (244MB) FMF BTF (316MB) uncompressed (167GB)
C = 100, 40322 pixel tilecache size C = 100

Figure 3: BTF renderings using BSVTFs (left), FMF compression (center) and no compression (right). Upper and lower half of
the images are lit from different light directions. All of the materials (front to back: leather, gravel, sponge, wood, velvet) exhibit
complex view and light dependent material appearance. Whereas the uncompressed materials appear to be visibly sharper,
there is hardly any noticeable difference between our technique and the FMF.

While w is pre-computed for every tile of every Eigen-
Texture, the pixel votes v, obtained at runtime from the feed-
back buffer, are simply repeated in the spatial layout of the
components. This particular choice of v will also make sure
that no space is wasted on tiles with unnecessarily high res-
olutions, i.e. levels that are higher than the ones in the feed-
back buffer, since those will have a priority of P = 0.

In case there is no free space left in the tilecache but fur-
ther tiles could be added, we have to decide whether a swap
operation should be performed to free space or not. Natu-
rally, the swap operation will increase the error E, as it
replaces higher resolution tiles Ti,l with a lower resolution
substitute Ti′,l′ . We can approximate the rise in error by

c(l′, i, l) = ∑
l
k=l′ w(

⌊
2k−l i

⌋
,k,k−1)v(i, l)

≈ w(i, l, l′)v(i, l)
, (10)

which is the accumulated approximated error of the por-
tion of all in-between tiles with levels k = l′, . . . , l that are
currently covered by pixels from the high resolution tile
and would therefore be revealed in case of a swap. Even
though this particular approximation is not very accurate,
it has the benefit that only one weight value w(i, l, l − 1),
which is the same as the weight that we employ for com-
puting P, has to be computed and stored per tile. Since we
will replace exactly two tiles Ti1,l1 and Ti2,l2 , the total in-
crease in error or cost of this operation can be expressed by
c = c(l′, i1, l1)+ c(l′, i2, l2).

In order to decide whether to perform a swap operation,
we first find the three swap-candidates with the lowest cost
c? and compare this value with the highest priority P? of the
tiles that could be added. If c? < P?, this means that the ap-
proximated error of not having the tile with priority P? in the
tilecache is higher than the error induced by performing the
swap operation with cost c?. Hence, we will reduce the total
error E by first performing the least costly swap operation
to obtain free space and then performing the highest priority
add operation. Otherwise, we already found the best solu-
tion and will not perform any operation.

6. Streaming
Similar to other hierarchical level-of-detail techniques, the
proposed BSVTFs are very well suited for streaming over a
network. Tiles that have to be inserted into the tilecache by
the swap or add operation are in this case requested from a
streaming server.

To facilitate the transmission of tiles over a low-
bandwidth network, we employ an additional compression
to the tiles prior to submission that is inverted before the
tile is inserted into the tilecache. As observed in [SRWK11],
the Eigen-Textures obtained by the SVD show similar im-
age statistics as natural images. Therefore, in principle ev-
ery image-compression technique could be employed for
this purpose. For example, in [KM03] Koudelka et al. uti-
lize JPEG compression while in [SRWK11] Schwartz et al.
employed a wavelet codec similar to JPEG2000.

For the compression we perform a discrete cosine trans-
formation (DCT) on 8×8 pixel blocks of the tile-images and
then apply a quantization with respect to a quality thresh-
old similar to JPEG. The quantized data is then stored us-
ing deflate. The only mentionable difference to other off-
the-shelve implementations is the fact that our compression
operates on floating point values (half-precision).

To further improve the compression ratio and exploit the
large redundancy present in the sets of tiles for different res-
olutions, instead of directly compressing the tiles, we com-
press the differences T ′ of a tile to its up-sampled parent
in the tile-hierarchy T ′i,l(x,y) = Ti,l(x,y)−Tb 1

2 ic,l−1(
x
2 ,

y
2).

This procedure exploits the fact that due to our construction
of the tile-hierarchy, most of the low-frequency components
of the DCT are already covered by the parent tile. Thus,
the amount of information that needs to be compressed is
drastically reduced by using the difference image. The com-
pressed size of a compressed tile depends on the choice of T
and the user-determined quality threshold for the quantiza-
tion. In our experiments we were able to obtain a compres-
sion ratio up to 6 : 1 with no perceivable artifacts.

In order to unpack the DCT compressed difference images
after transmission, the respective parent tile is required. Dur-
ing an add operation this does not pose a problem, since we

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

decided in Section 5.2 that this operation should only be per-
formed if a parent of the tile is still in the tilecache and hence
available at the client side. In case of the swap operation, in
the worst case all ancestor tiles will have to be requested as
well in order to sequentially unpack all of them until the par-
ent is available. However, in order for a swap operation to
be possible, higher resolution tiles had to be added to the
tilecache first. In turn this means that the full branch of the
level-of-detail hierarchy up to this resolution and thus also
all ancestors of the tile that has to be swapped in, had to be
previously transmitted to the client. We therefore employ a
least recently used caching strategy to keep as many tiles
that have been received as possible in the client-side RAM.

Even before applying the transmission compression the
size of the tiles is only in the order of a few Kilobytes. The
Eigen-ABRDFs in U′ on the other hand have a size of a
few Megabytes per color channel (4.4MB for the UBO2011
objects). Fortunately, in contrast to the tiles that have to be
swapped in and out on demand, U′ only has to be transmitted
once and does not change during the rendering process. Still,
loading this amount of data for multiple objects in advance
over a low-bandwidth connection is not a good solution.

We therefore transmit the columns U′c sequentially and
interleave them in the tile-datastream. This way, only a few
hundred Kilobytes have to be transmitted at once, allowing
to start rendering considerably faster. In this case, the vectors
U′c have to be prioritized in a similar fashion as the tiles to
decide whether to stream the next tiles or another column of
U′. From Equation 5, it becomes apparent that U′c can only
contribute to the BTF approximation if V′c is available as
well. We can therefore approximate the priority of the Eigen-
ABRDFs by the sum of votes for all tiles Ti,l in the tilecache
that are currently used to represent Ṽ ′c, weighted by the aver-
age intensity of the tile, i.e. ∑v(i, l)‖Ti,l‖2

F . This weighting
can be understood as the contribution the tile makes to not
having a value for V′c available at all, which would in turn
render the request for U′c pointless.

7. Evaluation
To assess the feasibility of our approach, we tested
the level-of-detail rendering and streaming on sev-
eral high-resolution BTFs from the OBJECTS2011 and
OBJECTS2012 databases of the University of Bonn
[SWRK11] as well as a collection of 100 measured BTFs
obtained from material samples. Please see the additional
multimedia material to get an impression of the complex ma-
terial appearance effects captured in the BTF datasets.

All of our BTF materials have a high dynamic range and
are represented in RGB color. In all cases, the angular sam-
pling contained the same set of 151×151 directions ωv,ωv.
Before uploading U to the GPU we furthermore compute
an additional 152-th basis illumination in which we stored a
pre-integrated value of all other lights for the efficient eval-
uation of a view-dependent ambient term in the fragment
shader. The spatial resolution of the datasets varies from
512× 512 to 2048× 2048 texels (see Table 1 for details).

resolution uncomp. FMF BSVTF pre-proc.

Buddha, Donkey, Minotaur, Terracotta Soldier
20482 px 534GB 813MB 460MB 20min

Almond Horn, Apple, Moulage 2, Pudding Pastry
Strawberry

16002 px 326GB 501MB 262MB 12.5min

Chess Piece, Ganesh, Moulage 1, Shoe
10242 px 133GB 213MB 168MB 5min

Santa, 100 Materials
5122 px 33GB 63MB 53MB 1min

Table 1: The employed datasets (Fig. 1 and 2). Uncom-
pressed, FMF and BSVTF gives the filesizes for the different
levels of compression. Here, BSVTF refers to the streaming
ready file including headers, pre-computed weights, level-of-
detail hierarchy and DCT compression. The pre-processing
time refers to computing the BSVTF from the FMF BTF.

As factorization compression we compute the SVD on the
full BTF matrix B to obtain a rank C = 100 approximation
according to Equation 4, which we will denote FMF BTF.

From the FMF BTFs, we generate the BSVTF by first cre-
ating a layout of the Eigen-Textures. To save texture-lookups
in the shader, we store four values V ′(x) per pixel as RGBA
channels. Then we compute the sets of tiles for different res-
olutions Tl . In our experiments, we use a tile-size T = 64.
We additionally extend the tile with 4 pixels of padding at
each border to allow for trilinear filtering using the tilecache
texture. This results in 40.5KB per tile when employing 16
bit floating point numbers. Using the DCT compression this
size is reduced to about 7KB to 10KB. We also pre-compute
the weights between direct descendents w(i, l, l − 1) from
Equation 8 and store them as 16 bit float as well. Finally,
the Eigen-ABRDFs with 151× 151 angular directions are
stored for the three color channels. Here we employ the strat-
egy of packing four components into the RGBA channels as
well, resulting in packets of 534KB for interleaving with the
tile transmission. Details on the processing times and the re-
sulting total file-sizes can be found in Table 1. The costs
for generating the level-of-detail representation from factor-
ized BTFs is negligible compared to the time requirements
of the factorization. While computing the FMF compression
for a 512× 512 texel BTF took 20 minutes using a highly
optimized GPU implementation, generating the DCT com-
pressed tiles with a single-threaded CPU implementation
took only one additional minute on a 2.4GHz Intel Xeon.

We compiled six test-scenes from the available datasets:
1. all 100 materials, arranged on a grid of tori (Fig. 2),
2. all available objects from OBJECTS2011 and

OBJECTS2012 on a BTF textured plane (Fig. 1),
3. the four 4 Megapixel objects (Fig. 4 and 5),
4. five selected materials, presented on cylinders (Fig. 3),
5. only the Buddha object,
6. only the Terracotta Soldier object.
The performance of the BSVTFs was measured using fly-
through animations. Please see the videos in the additional
multimedia material for an impression of the animations.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

BSVTF (77MB) BSVTF (229MB) FMF (227MB) FMF (3.17GB) uncompressed (2.1TB)
C = 100, 10082 tilecache C = 100, 40322 tilecache C = 7 C = 100

Figure 4: Quality comparison on a scene with four 4Megapixel BTFs that would exceed the memory of most GPUs. With a too
small tilecache size (first image), our technique is not able to resolve the fine mesoscopic details. Using an appropriate tilecache
size (second image), the BSVTFs still have a small GPU memory footprint and at the same time achieve a comparable quality
to directly rendering the FMF BTF data (fourth image). The third image demonstrates the loss in quality when using FMF with
a higher compression ratio to achieve the same small memory footprint. Due to the insufficient number of C = 7 columns, this
rendering shows blurred meso-structure details, washed-out highlights and false-colors.

Rendering with a screen resolution of 1280× 720 and us-
ing a tilecache the size of 4032× 4032 pixels, we achieve a
comparable quality to FMF BTFs at real-time frame-rates.
All tests were conducted on an Intel Core i7 950 with an
NVIDIA GeForce GTX 680 GPU with 4GB of GPU mem-
ory. Details on rendering performance and GPU memory
consumption can be found in Table 2.
In all of our experiments with BSVTFs, the average total
CPU utilization of the system was at 23% with 51% of the
time spent on rendering and GUI, 46% on evaluating the
feedback-image and deriving the list of operations, 2.4% in
image decompression and the remaining 0.6% in network-
or disk-IO. As expected, rendering with FMF BTFs resulted
12% CPU load, since here no other tasks than rendering and
GUI had to be performed. The recorded frame-rates suggest
that rendering with BSVTFs is about 28% less efficient than
using FMF BTFs while requiring 23%-93% less GPU mem-
ory. In both cases the performance is mainly correlated with
the triangle count of the scenes, not the number of BTFs.

Fig. 3 and 4, which depict scene 4 and 3 respectively, of-
fer a qualitative comparison of BSVTFs with FMF BTFs
and uncompressed BTFs. Whereas the uncompressed BTFs
appear to be visibly sharper, there is hardly any noticeable
difference between BSVTFs and FMF BTFs. Note that ren-
dering the uncompressed BTFs has been performed using
deferred shading from out-of-core data and is prohibitively
costly. The hard-disk is a severe bottle-neck, resulting in sev-
eral hours for one image with solely local illumination.

While we employed a tilecache with 4032× 4032pixels
for our evaluation of the performance, the GPU mem-
ory footprint could be reduced even further by choosing a
smaller cache size. Fig. 4 demonstrates the influence of a re-
duced tilecache size. Although the most obvious difference
can be observed in the spatial resolution of surface details,
the quality of the reflectance also suffers for too small tile-
cache sizes. For example, the copper parts of the Minotaur
object show a shift in color and appear more dull. For more

FPS GPU Memory
∆ BTFs BSVTF FMF BSVTF FMF

1 180K 100 34 ±10 - 1.7GB 6.2GB
2 3.7M 15 10 ±2 - 483MB 6.6GB
3 2.3M 4 18 ±5 - 229MB 3.2GB
4 4.6K 5 72 ±16 106 ±23 244MB 316MB
5 50K 1 46 ±9 69 ±14 181MB 0.8GB
6 1.1M 1 24 ±3 29 ±6 181MB 0.8GB

Table 2: Results of the performance evaluation on the test-
scenes described in Section 7. The columns #∆ and #BTF de-
note the number of triangles and BTF materials in the scene.
FPS are the average and standard deviation on the tested an-
imation sequence. FPS for FMF BTFs are only available for
scenes that fit into the GPU memory of our test system.

tilecache size comparison images, please refer to the addi-
tional multimedia material.

In Fig. 5 we demonstrate the streaming over the network.
After a transmission of 25MB the scene already achieves
a perceptual similarity, measured by the structural similarity
index (SSIM) [WBS∗04], of 95.4% to the converged BSVTF
(i.e. no add or swap operation would further reduce the
error). After transmitting about 100MB the images become
virtually indistinguishable.

Limitations: Although our evaluation shows that the pro-
posed BSVTF is applicable in a number of scenarios and
performs very well, the method also has a few limitations
that need to be considered as well. First, the additional buffer
updates, the regular texture-data uploads, and the additional
texture fetches due to the indirection in the fragment shader
show an unavoidable and significant impact on the frame-
rate. Second, our current approach only uses a level-of-detail
hierarchy on the Eigen-Textures. While this is very feasible
for few but high resolution BTFs (e.g. scenes 2 and 3), it is
less efficient in scenes with many but comparably low spa-
tial resolution materials (e.g. scene 1). It will not help at all if
instead of spatial resolution a high angular resolution of the
BTF data would become the bottleneck. Finally, unless the

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

C. Schwartz, R.Ruiters & R. Klein / Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions

10MB, SSIM 89.8% 25MB, SSIM 95.4%

100MB, SSIM 99.8% 206MB, converged

Figure 5: Rendering quality after streaming different
amounts of data over the network. The SSIM values predict
the perceptual similarity between the images and are com-
puted with respect to the converged version.

movement of the user is somehow anticipated, a pre-fetching
of data is hard to implement and resolution popping artifacts
can not completely be eliminated, especially when streaming
from a network connection with high latency.

8. Conclusion and Future Work
In this paper, we demonstrated that by adapting sparse vir-
tual textures to factorized BTFs it becomes possible to ren-
der scenes with a large number of high resolution BTFs ef-
ficiently on the GPU. For this, we suggested a strategy to
trade of spatial resolution and the accuracy of the reflectance
representation. Furthermore, we demonstrated that this tech-
nique can be combined with an additional image compres-
sion codec and used for network transmission.

An important consideration of the proposed BSVTFs with
regard to GPU memory is that only the spatial domain is cov-
ered by the level-of-detail hierarchy. We envision to over-
come this limitation by extending the level-of-detail ap-
proach to the Eigen-ABRDFs as well, keeping only those
that are most important to the current view-point in GPU
memory. For this, a hierarchical factorization could be used,
in which first the whole BTF is represented by a small num-
ber of columns C and then the residuum is subdivided into
smaller subsets which are factorized individually.
Another direction of future research will be improving the
network streaming by integrating a progressive refinement
of the tiles, similar to [SRWK11]. This would allow smaller
tile-sizes and thus faster responses to changes in view-point
over low-bandwidth networks.

Acknowledgements: We would like to thank Nils Jenniche for
his groundwork on the combination of SVT with BTFs. The re-
search leading to these results was funded by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n◦ 323567 (Harvest4D); 2013-2016.

References
[Bar08] BARRETT S.: Sparse virtual texture memory. In Game Devel-

oper Conference (2008). 2, 3, 4
[CBCG02] CHEN W.-C., BOUGUET J.-Y., CHU M. H.,

GRZESZCZUK R.: Light field mapping: efficient representation
and hardware rendering of surface light fields. In SIGGRAPH (2002),
pp. 447–456. 4

[Cla76] CLARK J. H.: Hierarchical geometric models for visible sur-
face algorithms. Commun. ACM 19, 10 (1976), 547–554. 3

[DvGNK97] DANA K. J., VAN GINNEKEN B., NAYAR S. K., KOEN-
DERINK J. J.: Reflectance and texture of real-world surfaces. In IEEE
Conference on Computer Vision and Pattern Recognition (1997),
pp. 151–157. 1

[EY36] ECKART C., YOUNG G.: The approximation of one matrix by
another of lower rank. Psychometrika 1 (1936), 211–218. 5

[GMSK09] GUTHE M., MÜLLER G., SCHNEIDER M., KLEIN R.:
Btf-cielab: A perceptual difference measure for quality assessment
and compression of btfs. Computer Graphics Forum 28, 1 (2009),
101–113. 3

[HF07] HAINDL M., FILIP J.: Extreme compression and modeling of
bidirectional texture function. PAMI 29, 10 (2007), 1859–1865. 3

[HF11] HAINDL M., FILIP J.: Advanced textural representation of
materials appearance. In SIGGRAPHAsiaCourses (2011). 3

[HFM10] HAVRAN V., FILIP J., MYSZKOWSKI K.: Bidirectional tex-
ture function compression based on multi-level vector quantization.
CGF 29, 1 (2010), 175–190. 3

[KBD07] KAUTZ J., BOULOS S., DURAND F.: Interactive editing and
modeling of bidirectional texture functions. In SIGGRAPH (2007). 4

[KM03] KOUDELKA M. L., MAGDA S.: Acquisition, compression,
and synthesis of bidirectional texture functions. In Texture 2003 Work-
shop (2003), pp. 59–64. 3, 5, 7

[LWC∗02] LUEBKE D., WATSON B., COHEN J. D., REDDY M.,
VARSHNEY A.: Level of Detail for 3D Graphics. Elsevier Science
Inc., New York, NY, USA, 2002. 3

[ND06] NGAN A., DURAND F.: Statistical acquisition of texture ap-
pearance. In EGSR (2006), pp. 31–40. 5

[PSR13] PAJAROLA R., SUTER S. K., RUITERS R.: Tensor approx-
imation in visualization and computer graphics. In EG Tutorials
(2013). 3

[RK09] RUITERS R., KLEIN R.: Btf compression via sparse tensor
decomposition. EGSR (2009), 1181–1188. 3

[SRWK11] SCHWARTZ C., RUITERS R., WEINMANN M., KLEIN R.:
Webgl-based streaming and presentation framework for bidirectional
texture functions. In VAST (2011), pp. 113–120. 2, 3, 4, 5, 7, 10

[SWRK11] SCHWARTZ C., WEINMANN M., RUITERS R., KLEIN R.:
Integrated high-quality acquisition of geometry and appearance for
cultural heritage. In VAST (2011), pp. 25–32. 8

[TFLS11] TSAI Y.-T., FANG K.-L., LIN W.-C., SHIH Z.-C.: Mod-
eling bidirectional texture functions with multivariate spherical radial
basis functions. PAMI 33, 7 (2011), 1356–1369. 3

[TMJ98] TANNER C. C., MIGDAL C. J., JONES M. T.: The clipmap:
a virtual mipmap. In SIGGRAPH (1998), pp. 151–158. 2, 3

[WBS∗04] WANG Z., BOVIK A. C., SHEIKH H. R., MEMBER S.,
SIMONCELLI E. P., MEMBER S.: Image quality assessment: From
error visibility to structural similarity. IEEE Transactions on Image
Processing 13 (2004), 600–612. 9

[WDR11] WU H., DORSEY J., RUSHMEIER H.: A sparse parametric
mixture model for btf compression, editing and rendering. Computer
Graphics Forum 30, 2 (2011), 465–473. 3

[Wil83] WILLIAMS L.: Pyramidal parametrics. In SIGGRAPH (1983),
pp. 1–11. 3

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

	Kehl et al ICT_Open_2013.pdf
	References

