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1 EXECUTIVE SUMMARY 

1.1 INTRODUCTION 

This deliverable describes the publications that resulted from Task 4.2, and how they fit into the 

work plan of the project. 

The objective of Task 4.2 is to develop algorithms for bringing data coming from different 

modalities into a single coherent coordinate frame. This entails the fusion of multiple range maps 

to create a 3D model of the world as well as registering images to the model, enabling 

information transfer between the 2D images and 3D geometry. For example the registered images 

can be used to infer material properties of the real surface using the techniques developed in 

Work Package 7.  

So far there are three publications that are mainly attributable to Task 4.2, two of which can be 

found in the appendix of this deliverable and one in the restricted section of the webpage. 

Additionally, there are two publications which are related to this deliverable. These are only 

mentioned but not discussed here since they stronger belong to other deliverables. The latter, 

related papers are available on the Harvest4D webpage or in other deliverables. 

1.2 PUBLICATIONS 

The following publications can be found in the appendix: 

 Matteo Dellepiane, Roberto Scopigno 

Global refinement of image-to-geometry registration for color projection. 

Digital Heritage 2013 Int. Conf. Proc., pp 39-46, Nov. 2013 

 Paolo Pingi, Massimiliano Corsini, Fabio Ganovelli, Roberto Scopigno 

Fast and Simple Automatic Alignment of Large Sets of Range Maps. 

Elsevier Computer & Graphics, Volume 47, April 2015, Pages 78–88 

At the time of delivery of this deliverable, the following working paper still contains original 

unpublished work. Therefore, it can only be accessed through the restricted section of the 

webpage (for papers under submission, conditionally accepted papers, etc.): 

 Tobias Plötz, Stefan Roth 

Registering Images to Untextured Geometry using Average Shading Gradients. 

submitted to ICCV 2015 
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The following related publications can be found on the webpage or in other deliverables: 

 Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, Michael Wimmer 

Large-Scale Point Cloud Visualization through Localized Textured Surface Reconstruction. 

IEEE Transactions on Visualization & Computer Graphics, 2014. 

 Murat Arikan, Reinhold Preiner, Michael Wimmer 

Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction. 

IEEE Transactions on Visualization & Computer Graphics, 2015. 

2 DESCRIPTION OF PUBLICATIONS 

2.1 OVERVIEW 

The main objective of Task 4.2 is to develop registrations algorithms that enable the alignment of 

data coming from different modalities to a single 3D model of the world. Once the data, say 

images, is registered it could be exploited in a multitude of application scenarios ranging from 

texturing the 3D geometry to temporal change detection or refinement of the existing geometry. 

In order to have a common coordinate system within which we can align the incoming data, we 

need to build a 3D model of a scene. One way to do that is by fusing multiple range scans, each 

showing a different part of the scene, into a single point cloud. This registration task is tackled in 

the paper “Fast and simple automatic alignment of large sets of range maps” [Pigni et al. 2015]. 

The resulting point cloud often lacks texture information. Hence it is beneficial to align colored 

images with the geometry to infer texture information. The second paper of this task, “Registering 

images to untextured geometry using average shading gradients” [Plötz & Roth, 2015], proposes a 

solution to this challenging cross-model registration problem, building on the insights collected 

from the earlier work in Task 4.1 [Plötz et al. 2014]. The proposed fully-automated algorithm 

produces registration hypotheses that may still lack the accuracy to transfer high-quality texture 

information from the image to the 3D model. The hypotheses, however, can be used as 

initialization for the algorithm presented in the third paper, “Global refinement of image-to-

geometry registration for color projection” [Dellepiane & Scopigno, 2013], that refines the 

alignment of multiple images for the purpose of texturing the 3D model. Together, the results of 

this task enable the integration of images and range scans into a single model of the world in a 

fully automated fashion – hence catering to the application scenarios of the Harvest4D project. 

2.2 FAST AND SIMPLE AUTOMATIC ALIGNMENT OF LARGE SETS OF RANGE MAPS 

In Harvest4D, incoming data should be registered to a common, potentially time-varying model of 

the 3D world. Hence, it is necessary to build this 3D model in the first place. 3D scans are a 

popular approach to acquire 3D geometry information. However, for larger scanning campaigns 

several range scans covering parts of the scene are necessary and manually aligning them 
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becomes intractable. This paper proposes a method to register large sets of range scans in an 

automated fashion within a few minutes and thus enables the creation of 3D reference models to 

which newly arriving data from other modalities can be aligned later on. 

The algorithm iteratively selects a pair of range maps that get aligned to each other, exploiting a 

compact and GPU-friendly descriptor specifically designed for the alignment of range scans. The 

pairs are selected based on their maximal pixel-wise correlation considering all possible 

translations of the range maps, which can be efficiently computed using the Fast Fourier 

Transform. This procedure is repeated until the pairs of aligned scans form a spanning tree and 

hence for each pair of range scans the relative translation and rotation is known. To avoid false 

registrations the paper proposes an efficient method of validating the alignment of two range 

scans. Finally, the global registration can be refined using ICP to get a high-quality point cloud. An 

exemplary result is shown in Figure 1. 

 

Figure 1: Range maps before the alignment (left) and registration results obtained after the computation with the 
proposed methods (right).  

2.3 REGISTERING IMAGES TO UNTEXTURED GEOMETRY USING AVERAGE SHADING 

GRADIENTS 

The core of this task is to use a 3D model of the world, e.g. acquired through the method 

described above, and integrate information coming from different sources of data. Before 

information transfer is possible, the incoming data needs to be aligned to the 3D model. This 

paper deals with the challenging multimodal registration problem of aligning images to an 

untextured 3D model. While most existing methods require human interaction in order to get a 

careful initialization for the registration process, the paper proposes a fully automated algorithm 

as user interaction is not feasible for large streams of incoming data, which Harvest4D is aiming 

at.  

Registering images and untextured 3D geometry is challenging for two reasons. First, the two 

modalities live in spaces of different dimensionality – 2D vs. 3D – and second, the image shows 

the 3D model with its real texture as well as under unknown lighting conditions. The paper deals 

with the first issue by representing the 3D world with a set of renderings. From these renderings 
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newly developed average shading gradients are extracted that correspond well to gradients on 

the image due to shading changes, thus addressing the second issue. The missing texture 

information on the 3D model calls for a robust registration process. Hence, first coarse 

registration hypotheses are found that are refined and verified later on. The algorithm is able to 

register images showing 3D models of varying scales without the need of any user input, and also 

is able to indicate when a registration could not be performed successfully. Figure 2 shows some 

example results of the registration process. 

 

Figure 2: Example results of the fully automated image-to-geometry registration. The input image is shown on the 
left and the best scoring verified hypothesis on the right, respectively. 

2.4 GLOBAL REFINEMENT OF IMAGE-TO-GEOMETRY REGISTRATION FOR COLOR 

PROJECTION 

The method described above can be used to register images to an untextured model of the 3D 

world. Having done so, a natural example of cross-modal data integration in the context of 

Harvest4D is to use the algorithms developed in work package 7 to transfer color information or 

other material properties from the image to the model. However for color transfer, the initial 

registration lacks the desired accuracy and hence the third paper in this task is concerned with 

refining an existing registration of a set of images in order to colorize the model. A core part of 

the method itself is the cross-modal fusion of geometric and color information into a single data 

representation. As a result of the algorithm, the quality of the color projection is improved, 

especially when dealing with small details, as can be seen in Figure 3. 
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Figure 3: Color project before (left) and after (right) the global refinement. 

Beginning from an initial estimate of the camera pose for each image in the input set, the 

proposed method iteratively selects an image and refines its registration by maximizing the 

Mutual Information – a statistical measure of dependency – between the image and a rendering 

of the 3D model. The rendering fuses both color information from the other images as well as 

geometric information from the model to achieve maximal accuracy of the refined registration. 

The refinement is repeated for all nodes. 

2.5 OTHER RESULTS 

Beyond these three papers, two papers [Arikan et al. 2014, Arikan et al. 2015] mainly attributed 

to task 8.1 have a connection to this deliverable. While the papers in this deliverable deal with the 

registration of individual images to a given geometry, they do not solve the problem of which 

image to select in areas where multiple images overlap. This is handled by the two mentioned 

publications in 8.1: the methods presented there assume already registered images, and solve an 

optimization problem to select for each pixel on screen the image leading to the highest overall 

image quality. 
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4 APPENDIX 

The following pages contain all the publications that are directly associated with this deliverable. 

Other publications referenced in this deliverable can be found in the public Harvest4D webpage 

(for already published papers), or in the restricted section of the webpage (for papers under 

submission, conditionally accepted papers, etc.). 



Global refinement of image-to-geometry registration
for color projection

Matteo Dellepiane and Roberto Scopigno
Visual Computing Laboratory ISTI - CNR
Via G. Moruzzi 1, 56124 Pisa (PI), Italy

Email: surname@isti.cnr.it

Abstract—The management, processing and visualization of
color information is a critical subject in the context of the
acquisition and visualization of real objects. Especially in the
context of Cultural Heritage, artifacts are so complex or hard-
to-handle that the appearance information has to be extracted
from a set of images.
The images usually have to be registered to the 3D model
of the objects, in order to transfer the needed information.
Hence, the problem of image-to-geometry registration has been
thoroughly studied by the Computer Graphics and Computer
Vision community. Several methods have been proposed, but a
fully automatic and generic solution is still missing. Moreover,
small misalignments often lead to visible artifacts in the final
colored 3D models.
In this paper, we propose a method to refine the alignment of a
group of images which has been already registered to a 3D model.
Taking advantage of the overlapping among the images, and
applying a statistical global method based on Mutual Information,
the registration error is distributed among all the elements of
the dataset. Hence, the quality of color projection is improved,
especially when dealing with small details.
The method was tested on a number of heterogeneous Cultural
Heritage objects, bringing to a visible improvement in the
rendering quality. The method is fully automatic, and it does
not need powerful hardware or long processing time. Hence, it
represents a valid solution for a wide application on CH artifacts.

I. INTRODUCTION

Accurate registration of images on geometry is an
important kernel operation among the technologies for
Cultural Heritage. This is related to a number of different
applications, and is often needed due to the necessity to
integrate data coming from different acquisition devices.
The main application is related to the projection and
visualization of color information on a 3D model, but
registered images are important also in the fields of
material properties estimation, referenced images navigation,
annotation for monitoring or restoration.
One of the main problems is how to cope with the small
misalignments remaining after the registration process. These
errors can be due both to the methods used, and to the
quality of the initial datasets, and they can result in annoying
artifacts.
In this paper we proposed a refinement technique which aims
at removing the above cited errors, by applying a global
approach where the camera parameters are slightly modified
in order to obtain a perfect projection. The method starts
from a set of images aligned to a 3D model. It uses Mutual
Information to refine each image by taking into account

the corresponding projection of all the other images on the
model. The camera parameters are refined until convergence,
so that the alignment error is distributed among the images,
and globally minimized. One of the advantages of the method
(which is totally automatic) is that no assumption about the
quality of the initial dataset is made: the method will try to
obtain the best projection regardless of the quality of both 2D
and 3D data. The method was tested on a number of artifacts,
showing that the quality of the color projection is greatly
improved, especially when dealing with fine decorative details.

II. RELATED WORK

The problem of image-to-geometry registration has been
thoroughly studied, and a number of different solutions have
been proposed. In the following we tried to divide the methods
in groups. We start from the assumption that the images
have been taken in a different moment w.r.t. the geometry
acquisition, hence we do not take into account methods based
on co-located cameras [1], [2], [3].

Semi-automatic methods. A very robust approach is based on
setting several 2D-3D correspondences: the correspondences
are then used to estimate the camera parameters using a
minimization algorithm. Although new procedures to speed
up the process were proposed [4], the approach can be very
time-consuming, especially when tens or hundreds of images
need to be aligned. Automatic planning of the images required
could minimize image acquisition and remove the need for reg-
istration [5], but this approach can only be used in controlled
environments.

Features and Silhouette-based methods. The geometric fea-
tures of the object can be used to find the registration of
images. Features can be points, lines, rectangles [6], edge
intensities [7], or the silhouette of the object [8], [9], [10].
However, these methods rely on the presence of these features
on the object, hence they could be best applied on peculiar
types of artifacts (e.g. architectural scenes, if using clusters of
orthogonal lines).

Color-based methods. Another feature that can be used (if
present) is the reflectance value (laser intensity) or color infor-
mation that some 3D scanners acquire. This helps the feature
extraction and the establishment of correspondences [11]. Yang
et al. [12] made their co-located camera approach robust using
this method. Wu et al. [13] exploited color information to align
two 3D scenes even from significant viewpoint changes.



Statistical methods. Other approaches try to catch the non-
linear correlations between the image and the geometric prop-
erties of the target surface. A measure which is extensively
used in medical imaging (see [14] for a survey) is called
Mutual Information (MI). It was pioneered by Viola and
Wells [15] and by Maes et al. [16]. Viola and Wells [15]
suggested to compare the gradient variations of the image and
a rendering of the 3D models showing the surface normals.
Corsini et al. [17] extended this algorithm by including other
geometric properties, such as ambient occlusion and reflection
directions, in the alignment algorithm. Cleju et al. [18] also
extended Viola and Wells’s work to align more than one image
simultaneously. We propose a similar approach to refine the
global registration, based on a different optimization frame-
work.

Multi-view methods. Almost all the above mentioned methods
are based on the alignment of a single image on the geometry.
A more recent group of works rely on the fact that if a group
of images has to be aligned on a model, it is possible to
take advantage also on the relations between images. Several
works exploit Structure From Motion (SFM) during 2D/3D
registration process, like those of Zhao et al. [19], Stamos et
al. [20] (which is an extension of the work of Liu et al. [21]),
Zheng et al. [22], Pintus et al. [23], and Corsini [24].

Refinement of existing registrations. Our method aims at
refining an initial registration of a group of images. Hence
the results of any of the above methods could be a starting
point for the refinement. Other methods aimed at improving
the color projection by modifying the initial image set, using
for example Optical Flow methods [25], [26]. These methods
can obtain extremely accurate results, but they are limited
by the resolution of the images, or by the need of advanced
hardware and very long processing time. Our method aims at
improving the camera parameters without modifying the rest
of the dataset. We make use of Mutual Information, but on a
more global and interconnected way w.r.t. the usual statistical
methods.

III. GLOBAL REFINEMENT USING MUTUAL INFORMATION

The input of our method is composed by:

• A 3D model

• A set of images

• A set of camera parameters associated to each image
of the dataset. In our case, each camera is defined by
seven parameters: three for camera position, three for
camera orientation, and one for the focal length (see
next Section for details).

The assumption is that an initial registration of the images
on the 3D model is already provided. The registration can
be obtained using any of the above mentioned methods, or
it could come from external systems (like multi-view stereo
reconstruction tools).
The goal of the method is to modify the camera parameters
of all the images so that the global Mutual Information will
be maximized. This means that each of the images will have
the maximum Mutual Information Value w.r.t. all the other
images projected on the 3D model. In order to do this, we
will treat the system of registered images as a graph, and

we will try to distribute the alignment error in the graph by
improving all its nodes.
This approach has several points in common with the one by
Pulli [27], which aimed at the global refinement of groups of
range maps. It obtained this by treating the system of range
maps as a graph, and improving the alignment of a range
map at a time, trying to distribute the alignment error in a
balanced way.

A. Using Mutual Information to align a single image

Mutual Information (MI) measures the information shared
by two random variables A and B. The Mutual Information
MI between two images IA and IB can be defined as:

MI(IA, IB) =
∑
(a,b)

p(a, b) log

(
p(a, b)

p(a)p(b)

)
(1)

where p(a) (p(b)) is the probability that the value of the pixel
IA (IB) is a (b) and p(a, b) is the joint probability of the
event (a, b). The joint probability distribution can be easily
estimated by evaluating the joint histogram of the two images
and then dividing the number of occurrences of each entry
by the total number of pixels. A joint histogram is a bi-
dimensional histogram made up of N×N bins; the occurrence
(a, b) is associated with the bin (i, j) where i = ba/mc and
j = bb/mc and m is the width of the bin. This value can be
seen as an expression of the nonlinear correlation between the
variables A and B.

The image-to-geometry registration problem in this case
can be defined as the estimation of the camera parameters that
produce a rendering IB of the 3D model that maximizes MI
with respect to the image to align (IA). The generation of the
rendering is the main issue to be solved, since generally there’s
a lack of knowledge of not only the color and materials of the
object but also of the lighting conditions. At the same time,
since the Mutual Information expresses a correlation between
the images, the photorealism is not a requisite: it is important
that the rendering contains a high amount of information
”in common” with (IA). Corsini et al. [17] proposed several
rendering types following this aim. In particular, they showed
that ambient occlusion correlates well since the occluded parts
of the geometry often correspond with the dark parts in the
real image due to the poor illumination arriving at these points,
and normal maps are strongly correlated with more directional
illumination.
In this context the registration can be formalized as an opti-
mization problem in a 7D space:

C∗ = arg max
C∈R7

MI(IA, IB(C)) (2)

C = (tx, ty, tz, θx, θy, θz, f)

where f is the focal length, (tx, ty, tz) and (θx, θy, θz) define
the position and orientation of the camera, IA is the image
to align and IB is the rendering of the 3D model. Obviously,
IB depends on the camera parameters (C). The Equation (2)
can be solved by a non-linear optimization algorithm such as
NEWUOA [28].



B. Extension to groups of images

The proposed method aims at extending the single image
registration problem to a group of images. Instead of using a
pure rendering of the 3D model, the goal is to take advantage
of the overlaps among the projections of the images on the
surface of the model. In this way, the best alignment will
be reached when all the images will project the same color
details on the same part of the surface.

Fig. 1. An example of the images used to calculate the value of an arc. Top,
the original image. Bottom: a rendering of another image projected on the top
image plane. The parts which are not covered by the image are shown using
a ”combined” (normal map + ambient occlusion) rendering.

1) Representing the images as a graph: In order to handle
the connections among all the elements of the registration
project, it’s necessary to encode them in a structure. Hence,
the registration project is represented as a graph. The nodes of
the graph are represented by each image of the dataset. The
nodes are connected through arcs, and each arc is associated
to a weight. The value of the weight between an image I1 and
another image I2, indicated with w(I1, I2), corresponds to

w(I1, I2) =MI(I1, proj(I2, I1))OV (I2, I1) (3)

where the first term is the MI calculated between the image
I1 and the projection of the image I2 on the image plane of
I1. The projection is generated by projecting I2 on the 3D
model, and then generating a rendering from the point of
view of I1. The parts of the 3D model which are not covered
by I2 are represented using the combined rendering (ambient
occlusion + normals map) proposed by Corsini et al. [17].
Figure 1 shows an example of a couple of images used for
the calculation of the arc weight.
The value of the arc is also weighted by OV , which represents
the amount of overlap between the images. This is the ratio

between the pixels on I1 image plane which is covered by
I2, and the total number of pixels covered by the 3D model.
This term aims at giving a more important role to the images
which share a bigger common projection surface. At the same
time, the arc between two nodes is created only if the value
of OV is bigger than 0.2: this simplifies the graph structure
and prevents artifacts coming from images which share very
small common projection surfaces.
According to this definition, the graph related to each dataset
analyzes each image, and creates an arc for each couple
of images where there is enough overlap. The result of the
building phase is a weighted directed graph, since (w(I1, I2)
is usually different from w(I2, I1)). It is interesting to note
that the 3D model is not directly represented in the graph, but
it plays the role of a “medium” due to the projections involved.

2) Graph-based registration refinement: The refinement of
the graph is obtained following a similar procedure to the one
used by Pulli [27] for the alignment of range maps. In that
method, the refinement is reached by considering one node at
a time, and using Haussdorf distance as the value to minimize.
In our case, we used Mutual Information as a value to be
maximized.
The refinement loop follows these steps:

• Node selection: among the nodes which were not
already refined, the one with more connections with
already refined nodes is chosen. When more than one
node has the same number of connections with refined
nodes, the one with the biggest largest number of
entering arcs is chosen.

• Node refinement: the refinement is obtained by max-
imizing the MI (Equation 2) between the image asso-
ciated to the node and a rendering of the 3D model
where all the images associated with connected nodes
are projected on the geometry. Figure 2 shows an
example of a rendering used for the refinement. Since
several images can project onto the same portion
of geometry, the color assigned to the pixels is a
combination of the contributions of all the images.
The contribution is weighted by the value of the arc
connecting the node image and each image which
projects on the model. This approach aims at having
the other images of the dataset as a guide for the
chosen node to converge to a common alignment. If
portions of the geometry are not covered by any other
image in the set, combined rendering is used.

• Node update: when the maximization procedure ends,
the node is labeled as refined, and the graph is updated
(all the weights of the arcs involving the node are re-
calculated). The procedure goes back to step 1, until
all the nodes are refined.

When all the nodes have been refined, it is possible to start
the refinement again to further improve the global alignment.
The procedure should be able to converge until all the camera
parameters associated to the images are not modified anymore.
See Figure 3 for two examples of the improvements of the
registration of images.
Comparing two cameras is not trivial: one of the most reliable
methods is to compare the projection on the image planes



Fig. 2. An example of the renderings used for the refinement of camera
parameters. Top: the image associated to the node to refine. Bottom: a
rendering obtained by projecting all the other images on the 3D model. The
small portions not covered by images are rendered using the ”combined”
rendering.

of several samples. For this reason, in order to measure the
variation in the camera system after a refinement step, a group
of N 3D sample points X = x1, x2, ..., xN is extracted from
the 3D model. The average variation of cameras is calculated
as:

V ar =

∑N
i=1

∑M
j=1 |pro(xi, C

After
j )− pro(xi, CBefore

j )|
MN

(4)
where pro(xi, C

After
j ) is the projection of the point xi on the

image plane of CAfter
j , the camera associated to image Ij . The

average of the variation in pixel of the projection of the sample
points on the image planes before and after the refinement
gives a reasonable estimation of the amount of perturbation
applied.
Hence, at the end of the refinement step, the Var value
is calculated. If it is below a pre-defined threshold, or the
maximum number of iteration has been reached, the refinement
stops. In the examples shown in the Results Section, the
number of samples used was 5000, the Var threshold was set
to 1.2 pixels, and the maximum number of iterations was set
at 5.

3) Selective refinement of nodes: One of the limitations
of the statistical approach is that the Mutual Information is a
pure number. Hence, it is not possible to compare its value
between couples of images. Hence, one of the limitations
of the proposed system is that an image which exhibits a
misalignment could ”guide” all the others to a sharp, but
uncorrect color projection (see Figure 4).

Fig. 3. Two examples of the refinement of single images after the application
of our method, showing an image with the 3D model in transparency. In the
first one (first and second row) small details are better aligned. In the second
one (third and fourth row) the silhouette is better matched.

In order to cope with this potential problem, the proposed
system gives the possibility to the user to indicate some
anchor nodes, which are associated to images which already
have an accurate registration. In this case, the nodes will
always be considered as refined, and their role will be to
”guide” the other images to a more accurate registration.
This modality gives the possibility to handle the datasets
where only a few images are misaligned: the time needed for
the refinement process will be much smaller, and the user
will have control on the registration procedure.



Fig. 4. An example of a possible limitation of the approach. Top: a portion
of the model before refinement. Bottom: the same portion after the refinement.
Although the color is sharper, the alignment w.r.t. the geometric features (e.g.
the circles) is less accurate. This is because a misaligned image ”guided” the
others to a misaligned common position.

IV. RESULTS

The proposed system was tested on a number of real
cases covering a wide range of possible objects, from small
artifacts to architectures, and a variety of datasets, from a few
to tens of images, with varying quality of both 2D and 3D
data. All the objects are examples of Cultural Heritage, and
they were acquired using 3D Scanners. Photographic datasets
were mostly acquired with the purpose of color projection.
The initial registration of the images was obtained using
a single image registration method, the one based on MI,
proposed by Corsini [17] and implemented in MeshLab [29].
In the case of Formella and Maryam Church datasets, the
registration was obtained using an evolution of Corsini et al,
Mutual Correspondences [30], which gives the possibility
to the user to guide the registration process with a simple
interaction. All the processing was performed on an Intel
Core i7 CPU, with 24 GB RAM and an NVidia GeForce
GTX 560 Ti.
The datasets are described in Table 5. The Table describes the
physical size of the object, the complexity of the 3D model,
the amount and resolution of the images, the processing time
needed for the convergence of global refinement. From a
general point of view, the method proved to be applicable
regardless of the physical size of the object and of the
complexity of the dataset. The time needed for the refinement
is partially dependent on the size of the 3D model, and
on the number and resolution of images, but the initial
misalignment and the amount of overlap among the images
play a critical role. Anyway, the processing time is reasonable

even in the case of very big datasets (hundreds of images),
also considering that the refinement step is an una tantum
operation, needed just before the color projection.

Figure 6 shows the results of the registration refinement.
The color was transferred from the images to the 3D Model
using the Masked Photo Blending approach [31], which is a
method which blends the contribution of all the images during
color projection. This method proved to be very robust, being
able to deal also with very complex datasets. Nevertheless,
one of the limitations is that small misalignments could
introduce aliasing (or ghosting) effects on the colored model.
This is due to the fact that color details are projected in
slightly different positions on the surface of the 3D model.
Figure 6 shows a rendering of the colored 3D models obtained
with a color projection applied before and after the global
refinement. We can observe that, in general, the quality of the
color information is clearly improved. In the case of small
and medium size objects (Gargoyle and Formella) the method
is able to recover the fine details of the decoration of the
objects.
In the case of bigger objects, the method recovers also
quite big starting misalignments, regardless of the number
of images taken into account. In the case of the Maryam
Church, given the low number of images and the simple
shape of the object, the color was encoded in a Texture
(all the other objects are represented using color-per-vertex).
Also in this case, there was an improvement of the fine
color details. In the case of the Cathedral, the method
proved to be able to handle a massive amount of images,
that usually produce blurry color, due to the accumulation
of misalignments. Also in this case, most of the color detail
was recovered, although part of the finer elements was lost.
This was due both to the quality of the images (average
resolution) and to the accuracy of the 3D model, which was not
high. Additional snapshots of the results are shown in Figure 7

The proposed method has some limitations. The main one
is shared with all the statistic-based registration approaches:
if the quality of the dataset is low, or the elements do not
share enough information, the method will not be able to
converge, and it could lead to the degeneration of the camera
parameters estimation. This limitation is generally shared also
with the other registration approaches, except some of the
ones needing a strong user intervention.
As already mentioned in Section III-B3, the other limit comes
from the fact that it is difficult to compare the quality of
the registration of the single images. This can bring to a
convergence of the refinement obtained by ”following” an
image which had a lower quality registration. This can be
partially solved by applying a selective refinement.
Nevertheless, the proposed method is simple and completely
automatic, and it does not need complex hardware and long
processing time. It reduces the time that the user needs to
spend in order to obtain very accurate image registration.
Finally, it helps overcoming the limitations of most of the
state-of-the-art color projection tools.



Object Size (cm) 3D Model (MTri) N. Images (Resolution) Processing Time (sec.)
Gargoyle 12 3 11 (3872x2592) 191
Formella 65 5 10 (3872x2592) 127
Neptune 580 10 44 (1728x1152) 740

MaryamChurch 930 3 (with texture) 8 (3872x2592) 112
Abside 3500 9 310 (1936x1296) 3250

Fig. 5. Table of data for the five test cases.

V. CONCLUSION

In this paper, we presented a method for the refinement
of image-to-geometry registration. The goal is to improve the
quality of an already registered set of images, in order to
solve eventual misalignments and improve color projection.
In order to achieve this, the set of images is treated as
a graph, and the estimation of the camera parameters is
calculated taking into account the projection of all the
other images on each image plane. In order to refine the
registration, a statistical method based on Mutual Information
was implemented. The graph representing the images is
refined node-by-node until convergence. The 3D model acts
as a simple medium for color projection, because the final
goal is to have a registration where all the images project
the same color details on the same part of the geometry,
regardless of its quality.
The method proved to be robust and reasonably fast. It was
tested on a number of Cultural Heritage objects, covering
different physical sizes and dataset complexities. All the tests
showed an improvement in the color quality. This method
proves to be extremely useful especially in the Cultural
Heritage field, where most of the times the only way to obtain
a basic color information of an object is to transfer it from a
set of uncalibrated images.
The future improvements of the method include: the study
of mechanisms to prevent the worsening of color quality, in
the case of low quality datasets, and the implementation of
simple interaction procedures to give the possibility to the
user to guide the refinement process.
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a b s t r a c t

We present a very fast and simple-to-implement algorithm for the automatic registration of a large
number of range maps. The proposed algorithm exploits a compact and GPU-friendly descriptor
specifically designed for the alignment of this type of data. This pairwise registration algorithm, which
also includes a simple mechanism to avoid to get false positives, is part of a system capable to align a
sequence of up to hundreds of range maps in few minutes. In order to reduce the number of pairs to
align in the case of unordered range maps we use a prioritization strategy based on the fast computation
of the correlation between range maps through FFT. The proposed system does not need any user input
and it was tested successfully on a large variety of datasets coming from real acquisition campaigns.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The first step of 3D object acquisition through 3D scanning is to
acquire, with some devices such as laser scanners, several range
maps from different viewpoints to obtain a complete coverage of
the object. After the data acquisition, the range maps have to be
aligned and merged, in order to obtain the final surface. In order to
perform the alignment, range maps must have at least a partial
overlap on the sampled area. Due to shape and material reflec-
tance characteristics, the same surface region is usually acquired
several times from multiple points of view, so to avoid leaving
portions of the surface unsampled. For these reasons, especially for
large objects, many range maps are required to fully cover the
object surface.

The goal of the alignment (or registration) process is to
estimate the rigid geometric transformations, i.e. roto-translations,
that bring all the range maps in a common coordinate system. The
range maps registration is usually split into three computational
steps. A coarse registration step, which produces an initial rough
positioning of the range maps by an approximated estimation of
the roto-translations. A fine local pairwise alignment, usually based
on the ICP approach introduced in [1] or its variants, to improve
the accuracy of the coarse registration. Finally, a global registration
step [2] to ensure the minimization of the global alignment error.
If the result of the coarse registration is accurate it is possible to
apply directly the global registration step. In these last years many
efforts have focused on performing these steps in an unattended

way. Current state of the art algorithms allows for robust automatic
coarse registration [3] and improves the results of the fine registra-
tion of pair or a set of range maps [4].

Here, we propose a new solution to obtain the coarse registra-
tion in short time even for large datasets. Our algorithm is based
on a GPU-friendly features descriptor that allows for automatic
alignment of a pair of range maps in 200–500 ms, outperforming
the current state of the art solutions. In order to avoid false
positives, a validation test is performed after each pair alignment.
Although in the common practice range maps that are next to each
other in the order of acquisition also overlap, we propose a simple
prioritization algorithm based on FFT computation for when this
assumption cannot be made. This prioritization permits to sche-
dule the pairs of range maps to try for alignment and greatly
reduces the total time. The result is an automatic system for the
alignment of a very high number of range maps, characterized by

� Speed: the proposed GPU-based algorithm permits to align two
range maps in about 200–500 ms on a low-end graphics board.

� Effectiveness: the system has been tested on several real dataset
composed by a large number of range maps obtaining very
good results.

� Robustness and accuracy: false positive results are very rare.
The output alignment of the system is ready for the fine
registration step.

2. Related work

Several methods to solve the problem of the automatic regis-
tration of range maps were presented in the literature. Here we
discuss the ones more closely related to our approach.
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The algorithms for coarse registration can be divided in two
main classes. The first one includes methods that use local feature
descriptors to find pairs of corresponding points on the range
maps. These methods generally show good convergence rate, but
have a high computational cost. One of the first methods of this
type was the Spin Images, proposed by Johnson and Hebert [5].
A spin image is generated using oriented points and it is a 2D
histogram of the surface around a point. Points that belong to
different views of the model and having similar spin image are
assumed to be matching points. In [6] Li and Guskov present a
method based on detecting a set of salient feature points using a
scale-space representation based on a combination of Discrete
Cosine Transform and local Discrete Fourier Transform. In Bonar-
rigo et al. [3] the corresponding pairs of points on the scans are
selected through a multi-scale analysis approach; once the fea-
tures are extracted, the most reliable correspondences are
matched. A recent evolution of this algorithm [7] is compared
with our proposed system in Section 7. Pingi et al. in [8] proposed
a method to manage complex scan sets acquired by following a
regular scanner pose pattern. The method exploits the scanning
sequence to define an initial adjacency graph. The points matching
is based on a new shape characterization kernel that focuses on
surface normals of adjacent points. Chen and Stamos [9] propose a
solution based on the detection and matching of circular features,
that has proved to be suitable on large-scale datasets of urban
structures. King et al. [10] proposed a method based on detecting
and matching keypoints in range images and in intensity images.
This approach employs spin images to describe holes in smooth
surfaces (range keypoints) and intensity gradient histogram to
detect intensity keypoints.

The second class of coarse registration methods includes those
that not use features descriptors. An algorithm of this class is the
DARCES [11], an approach based on RANSAC scheme [12]. Chua
and Jarvis [13] proposed a technique to register 21

2 D sensed data
points to a model surface represented by another 21

2 D model data
points. The algorithm selects three reliable points on the sensed
surface and find the corresponding three model points using the
principal curvatures and the Darboux frames to restrict the search
over the model space. Many possible triplets are tested and a
heuristic search is used to identify the optimal one. The global
technique presented in [14] is based on the correlation of two
Extended Gaussian Images (EGIs) in the Fourier domain. Finally,
Aiger et al. in [15] present a method for registration of noisy data
based on the extraction of all coplanar 4-points sets from a 3D
point set that are approximately congruent to a given set of
coplanar 4-points. The algorithm uses a RANSAC-like approach
to find the optimal solution.

3. Our approach

The proposed system is illustrated in Fig. 1. Given a set
R¼ fR1;R2;…;RNg of input range maps, each one is resampled
and the corresponding FFT is calculated. The resampling operation
is very important and it has two purposes. First, it is used to turn
the range maps in a power-of-two resolution, necessary to
compute the FFT efficiently. Second, in order to achieve scale
invariance of the descriptor, this resampling allows us to evaluate
the FFT on a region of the same physical size. In fact, the
resampling is done in such a way to normalize all the range maps
to the mean distance of the depth samples in the set (evaluated
excluding the borders of the range maps and the depth
discontinuities).

The FFT is used by the prioritization stage, which computes the
matching order, that is, the order the system follows in trying to
pairwise align the input range maps ðRi;RjÞ. Before to accept the

result of a pair alignment, the validation block checks, using some
heuristics and an ad hoc GPU-based technique, if the result of the
alignment is correct or it is a false positive. In the next we detail
the different processing stages of the system. All these stages are
implemented in GPU, except the computation of the FFT, for which
we employ the FFTW library [16], and minor parts of the pairwise
registration algorithm.

4. Matching order

In the general case, we do not known a-priori which range
maps overlap and can be aligned together. So, the set of N range
maps requires NðN�1Þ=2 alignment attempts to fully cover all the
possible pair alignments. Here, we considerably reduce the num-
ber of such attempts following a strategy based on a global
similarity criterion.

The idea behind this strategy is that, if a range map A is similar
to the range map B, there is a high probably this pair contains
overlapping parts. To explore the similarities among all the range
maps in a computationally efficient manner we apply, for each
possible pair, the so-called phase alignment algorithm originally
proposed in [17]. This algorithm permits to align two images,
where one is the translated copy of the other, by maximizing the
correlation over all the possible translations ðtx; tyÞ. By assuming
that two depth maps DA and DB are related by a simple translation,
we can write

DAðx; yÞ ¼DBðxþtx; yþtyÞ ð1Þ

According to the phase alignment algorithm, we can estimate
ðtx; tyÞ by computing

ðtx; tyÞ ¼ Fn

AFB
JFAFB J

ð2Þ

where FA and FB are the corresponding FFT of the range map, i.e.
FA ¼F ðDAÞ and FB ¼F ðDBÞ.

Obviously, if the viewpoint of the range map B is very different
from the other one this measure looses significance but we found
it a good compromise in terms of computationally efficiency and
robustness. We would like to point out that variants of the phase
alignment algorithm can be used to account for other geometric
transformation than translation, but, some preliminary tests we
conducted in this direction (using [18]) suggested us that these
variants are not robust in this context.

After identifying the candidate translation ðtx; tyÞ, we calculate
the measure of similarity sðDA;DBÞ as the Normalized Cross
Correlation (NCC) between DA and D0

B that is the translated version

Resampling

FFT

range maps

Matching
Order

Graph Visiting

Validation
Pairwise 

Registration

Fig. 1. Overview of the system.
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of DB:

sðDA;DBÞ ¼NCCðDA;D0
BÞ ¼

∑DAðx; yÞDBðx0; y0Þ
‖DA‖2‖DB‖2

ð3Þ

Note that the NCC is calculated on the entire range map and that
the translated coordinates ðx0; y0Þ are wrapped as what happens in
the repeat mode of standard texture wrapping. If the two range
maps are related by a simple translation this measure provides a
good estimation of the NCC between the overlapping parts. If the
two range maps are related by a rotation or by a more complex
perspective transformation, the phase alignment algorithm still
tends to provide a ðtx; tyÞ which maximizes the cross-correlation
between A and B, and then the calculation of the NCC in this way is
still a reasonable measure of similarity. For each possible pair
ðRi;RjÞ we evaluate this measure of similarity and we build a
similarity matrix S. An example of S for some of the dataset tested
in the results Section is shown in Fig. 2.

In general, we expect that the reliability of this measure of
similarity increases as the overlapping part between the two range
maps increases. Since our objective is to use S to find a good
alignment sequence for the subsequent processing stages this is an
advantage. The performance of this measure in the more general
context of partial matching should be evaluated against other meth-
ods, for example the ones employed in image stitching. Since such
techniques are, in general, not suitable for range maps we consider
this an interesting matter of future research. Here, as a preliminary
study, we report a performance evaluation of s in Section 7.1.2.

5. Graph visiting

After computing S, we associate a graph to it and we visit this
graph to align the whole dataset.

The graph representation of the similarity matrix consists of
one node for each row (or column, since S is symmetric) and a
weighted arc Eði; jÞ for each entry of Sði; jÞ. In this representation, to
align the dataset means to find a spanning tree, i.e., a set of arcs
E0 ¼ fði; jÞj i is aligned to jg such that the graph is connected. This is
done by visiting the arcs Eði; jÞ sequentially. For each visited arc, we
try the alignment procedure if and only if its two end nodes are
not already in the same connected component.

Listing 1 shows the visiting algorithm. Since we want to
minimize the attempts of pairwise registration, first, we sort the
arcs in descending order w.r.t. the similarity values. Every node
belongs to a connected component (initially consisting in the node
itself), that is returned by function Comp(node). If the two nodes
of the arcs belong to the same component we do not execute
the registration procedure because we have already a transforma-
tion that aligns them that is obtained as the composition of the
transformations in the path connecting the nodes. Otherwise
we launch the pairwise registration algorithm (described in
Section 6). If the alignment succeeds, the arc is added to the
output and the two components are merged. The algorithm ends
when either N�1 arcs have been added, which means E0 describes
a spanning tree, or when all the NðN�1Þ=2 arcs have been tested.
In the latter case we will have a partition of the graph in

Gargoyle2 Capital

Bas-relief 1 Bas-relief 5

Fig. 2. Examples of the similarity matrix S obtained on some of the datasets used to assess the system performance. (a) Gargoyle2, (b) Capital, (c) Bas-relief 1 and (d) Bas-
relief 5.
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components, each one corresponding to a registered group of
range maps.

6. Pairwise registration algorithm

Given two partially overlapping range maps P and Q, our
registration algorithm can be summarized as

All the main steps of the algorithm are calculated on the GPU.
In order to provide a clear description of the algorithm, we must
first define the descriptor D. The input range maps are sampled
regularly as a 2D height fields, this allows us to easily define, for a
point p, a regular area of adjacent samples composed by m�m
neighbors pixels. We use as descriptor a matrix in which each
element di;jAD is obtained by the dot product between the normal
of p and the normal of pi;j. In the implementation of the descriptor
we consider an area of 25�25 samples, which corresponds to a
physical area of fixed size thanks to the resampling operation
applied to each range map. To improve the efficiency in the
comparison between descriptors we compare the odd neighbor-
hood pixels only, decreasing the texture accesses to 168
(13 � 13�1). This does not compromise the discriminability power
of the descriptor since usually the normals vary smoothly on the
surface. The descriptor just defined is not invariant to rotations
around the view direction of the scanning device. This is not a
major limitation because the range maps are usually acquired with
small or no rotations of the device w.r.t its view axis. In general, as
we will see in the Section 7, despite its simplicity this descriptor is
fairly robust.

The region of interest I is calculated taking into account the
variance of the descriptor D for each pixel of the range map:

σ2ðDpÞ ¼
1
m2∑

i;j
ðdpi;j�E½Dp�Þ2 ð4Þ

where E is the average of each kernel:

E½Dp� ¼∑
i;j

dpi;j
m2 ð5Þ

We are interested in the regions with “medium” values of
variance. This is because regions with too low variance, i.e. flat
regions, have less discriminative power because the values of the
descriptor tends to be zero everywhere, and regions with very
high variance are likely to correspond to depth discontinuities or
to points in proximity of silhouette where, depending on the
scanner position, we can have self-occlusion of the surface.
According to these requirements we determine a confidence
interval of variance ½vmin; vmax�. Each point which belongs to that
interval belongs also to I (see Fig. 3 for an example).

After finding I on the range map P, n random points are
selected inside this region. In our tests n has been usually set to 30.
Since we want to cover a wide part of I with an uniform density of
samples, these points are generated according to a Poisson-disk
distribution. In particular, the following procedure is performed: a
point is selected randomly, if in a radius r there are other selected
points it is discarded. If, after 10,000 attempts, an insufficient
number of points are generated the distance constraint r between
the points is halved and the process is repeated. In case an
insufficient number of points is generated after two repetitions
the pair is discarded as not aligned.

For each selected point p on the region of interest I � P, we
have to find the best matching vertex qAQ . We compare the
descriptor Dp with Dq for every qAQ using the Euclidean distances
of its components:

dðDp;DqÞ ¼
1
m2∑

i;j
ðdpi;j�dqi;jÞ2 8qAQ ð6Þ

we choose as best matching the point having minimum distance
dðDp;DqÞ. This step produces a set H of points pairs ðpi; qjÞ with
piAP and qjAQ with 1r irn;1r jrn, which could include some
false matches. We estimate the final rigid roto-translation matrix
M fromH through an exhaustive search; for each combination of k
different points pairs in H we compute Mðpi ;qjÞ, in this way we
obtain ðnkÞ matrices. We opt to use an exhaustive approach because
the number of point pairs is usually low. So the computational
time to test all the possible solutions is negligible. This allows us to
avoid potential failures of other approaches (e.g. RANSAC). Then,
we find the matrix M that produces the maximum consensus
between the correspondences found. The consensus #C is given
by the number of correspondences that are under a geometric

Fig. 3. (Left) Input depth map. (Right) Regions of interests. Red color corresponds to lower variance than the reference interval, blue regions to higher variance. The region of
interest is colored in yellow. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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distance threshold (1.5 mm in our implementation) when M is
applied. Between the matrices with the maximum consensus, the
one with the minimum alignment error (eA) is chosen (Fig. 5
shown an example). The alignment error is calculated as

eAðMÞ ¼ 1
#C

∑
ðpi ;qjÞAC � H

ð‖pi�Mqj‖2Þ ð7Þ

where C contains the correspondences under the distance thresh-
old. If the final consensus is less than #Cthreshold (set to 6 in our
implementation) the alignment fails. We point out that the
minimum value of points to determine a roto-translation is k¼3.
Using higher values of k reduces the possibility to find false
positives and at the same times reduces the number of possible
combinations and thus the computation time. In our experiments
we found that k¼4 gives a good tradeoff between time and
robustness.

The algorithm just described is not applied at once on the
entire range maps, but iteratively on four different zones of P (see
Fig. 4). This strategy does not introduce significative additional
computation time but helps to maximize the number of points pi
found on the overlapping region between P and Q. We have a real
failure of the alignment when the algorithm fails to find a
corresponding quadruple on all the four selection zones.

From an implementation point of view, the only parts imple-
mented in CPU are the generation of the random points pi and the
exhaustive search to find M.

6.1. Validation

In order to avoid false positive, after computing the transfor-
mation matrix M for a pair, we use the test described in [19] to
check if the two range maps overlap in a meaningful way. This is
done exploiting the rasterization pipeline. The key idea is that if
two range maps are aligned, rendering them produces almost the
same result on screen (in the overlapping region).

Following this idea, the validation algorithm works assigning
two different constant colors to the two range maps and rendering
them two times: the first bringing one of them slightly towards
the point of view, the second positioning the same range map
slightly away from the point of view (see Fig. 6(b)) and counting
the number of pixels that changed color between the two render-
ings. If the alignment is good and the range maps are very close,
even a slight displacement along the viewing direction will
correspond to a large number of pixels changing color between
the two renderings. Fig. 6(c) shows (in black) a map of all the
pixels that have different colors in the two rendering. If the
number of pixels of the overlapping part is under the 60% of the
total the alignment is not accepted.

7. Results

The proposed system has been tested on several real range
maps datasets. All the dataset have been acquired through a

triangulation laser Konica Minolta 910 in several acquisition
campaigns. A brief description of each dataset follows:

Urn This dataset is composed by 17 range maps. It is
the dataset used to show the step-by-step pro-
cessing during the paper. It is “simple” since the
relative motion between range maps is mainly
translational.

Gargoyle1 This dataset regards a small test object, a gar-
goyle statuine, and it is composed by 27
range maps.

Gargoyle2 This is another version of the same gargoyle
statuine with much denser sampling, i.e. 78
range maps have been acquired instead of 27.

Column The Column dataset is coming from an acquisition
campaign of the remains of a late medieval
complex, the funerary monument of the emperor
Arrigo VII (did in the ambit of an EU project). This
dataset is composed by 115 range maps.

Capital This medieval capital (Museum of San Matthew
in Pisa) is sampled with 103 range maps.

San Leonardo
Church

This dataset is composed by 6 bas-reliefs
acquired in the San Leonardo Church in Arcetri.
The six different objects represent six corre-
sponding bas-reliefs of the pulpit of the Church.
Even if the bas-reliefs are planar object, the
acquisition has been done using a scaffolding
making the range maps of these objects char-
acterized by very different sampling densities
and different angles of viewing.

Toy Car Even if our system is designed to work with high
quality 3D scans, like the ones usually acquired in
3D scanning campaigns, we use this dataset to
test it on range maps with a moderate amount of
noise. In fact, since the car acquired is metallic, the
resulting scans present a sort of Moiré pattern.

7.1. Impact of the processing stages

In Table 1 we report the detailed results, in term of output and
timing, of each stage of the algorithm. These experiments have
been conducted on a consumer PC equipped with an Intel Core i7
CPU (3.4 GHz), 24 GB of RAM and a GeForce GTX 760 NVidia
graphics card.

If the system produces more than one group of range maps, the
number of the range maps in each group is listed, separated by a
comma. This is the case of the Gargoyle1 (four groups of 2 range
maps each).

7.1.1. Prioritization stage and visiting strategy
The fourth, fifth and sixth columns of the Table 1 allow us to

understand the impact and performance of the prioritization stage
and of the visiting strategy adopted. The fourth column of the

Fig. 4. Selection strategy. The four zones of interest inside which points are selected.
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Fig. 5. (Top to bottom) Initial correspondences; correspondences with maximum consensus; best quadruple.

Fig. 6. Validation test. (a) Two pairs of range maps: correctly aligned (Top) and erroneously aligned (Bottom). (b) Two rendering displacing the red range map towards and
away from the viewer. (c) Map of the pixels which changed color between the two renderings. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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table shows the number of arcs visited during the overall proces-
sing. The percentage is relative to the total number of potential
arcs to visit (that is NðN�1Þ=2). Obviously, if the system fails to
align all the given range maps in a single group, it means that the
100% of the arcs (all the pairs) were visited, regardless of the value
of similarity values computed in the prioritization stage.

The fifth column contains the number of times the pairwise
alignment algorithm has been actually performed. We recall that,
according to the visiting strategy of the graph described in Section 5,
an arc is tested for alignment only if the two corresponding range
maps belong to different groups of aligned range maps. This
approach, together with the order of the arcs provided by the
similarity matrix, is able to greatly reduce the number of pairwise
alignments required. For example, for the bas-relief1 we did about
the 7% of the potential alignments saving the 93% of the time
necessary if we had to test all the pairs.

We note that, in some cases, the similarity matrix S is not able
to provide an efficient matching order between the arcs. When
this happens, a great number of pairwise alignments need to be
tested. This is for example the case of the Column dataset, where
each range map is acquired through a rotation step of about 451
around the object, making the correlation between range maps an
unreliable measure of similarity. In fact, in this case more than the
70% of the total pairs have been tried.

The processing time to calculate the similarity matrix S,
reported in the sixth row, is in general low even in case of many
range maps. This underlines that the prioritization stage always
worthwhile to be computed for unordered set of range maps.

7.1.2. Evaluation of similarity measure
In the previous section we have discussed some results about

the performance of the matching order provided by the prioritiza-
tion stage together with the visiting strategy adopted. In order to
better assess the performance of the similarity measure employed
and, hence, the performance of the prioritization stage isolated
from the rest of the processing pipeline, we provide here a
preliminary analysis about how much the similarity measure
proposed is suitable for the task of finding a good matching order
between unordered range maps.

In the general case, it is not trivial to quantify the goodness of a
certain matching order w.r.t to another, because the final error of
different orders can depend also by the subsequent processing
steps. Therefore, we decide to evaluate how much the similarity
measure is able to identify overlapping range maps. Obviously,
higher is the probability to skip non-overlapping range maps,
higher is the probability to align the entire set in few runs of the
pairwise registration algorithm.

To do this evaluation, we calculate for each possible pair of
range maps of a dataset, the amount of overlap between the range

map A and the range map B. The amount of overlap is estimated as

OðA;BÞ ¼ 2AðA⋂BÞ
AðAÞþAðBÞ ð8Þ

where AðAÞ and AðBÞ is the area of the surface of A and B,
respectively and AðA⋂BÞ is the area of the surface of the over-
lapping region. This value is estimated with a variant of the
validation algorithm applied on the aligned dataset after the ICP
refinement (see Section 7.3). This provides us a ground truth on
data coming from real acquisition campaigns.

At this point, we rank each possible pair according to its
similarity, and we evaluate the number of range maps pair which
have a good amount of overlap (420%). This evaluation is
summarized in Fig. 8 for some of the test dataset. The X axis is
the rank number. The Y axis is the number of pairs correctly
identified as overlapping. The bluish line regards the results
obtained using the similarity measure. The orange line is a
reference and represents the number of pair correctly identified
as overlapping if the range maps would be uniformly distributed
and the pairs randomly selected. For example, considering the
Gargoyle2 dataset, at the position 100 of the rank 96 range maps
have been correctly identified by the similarity measure while
only 44 by the random selection. By examining the graphs
reported we can state that s works well in identifying overlapping
range maps pairs which are good candidates to be passed to the
pairwise registration algorithm.

Concerning the dependency between the amount of overlap
and the value of similarity, we can state that we do not have a
strong correlation between these two values. Anyway, according to
Eq. (3) we expect that low values of overlap (o20%) do not
exhibit high values of s. In fact, as it is possible to note in the 1st
and 2nd column of Table 2 the pairs with low overlap have often a
low value of s (o0:4). The percentage of pairs with low s and low
overlap w.r.t the total of pairs with low overlap is also reported.
Moreover, the average value of similarity of the overlapping pairs
(3rd column) is always lower than the ones of non-overlapping
pairs (4th column). So, thanks to the ranking we employed, at the
end only a small fraction of the non-overlapping pairs are tested
by the pairwise registration algorithm.

7.1.3. Pairwise registration
The pairwise registration algorithm proposed is very fast, as

expected. As reported in the seventh column of the table, the
pairwise registration time ranges from the 150 ms of the Gargoyle
to the 674 ms of the Bas-relief 5, with an average time on all the
datasets of about 480 ms. The validation stage is included in this
time, and it is usually a small fraction of the pairwise registration
time. According to the results obtained, the validation operation is
very robust and allow us to avoid to obtain false positives.

Table 1
Results obtained on real dataset.

Dataset Range maps Aligned Arcs visited # Pair alignment Prioritization stage (s) Average time (ms) Total proc. time (s) Total proc. time (s)a

Urn 17 17 45(33.1%) 27(19.8%) 1.5 451 13.7 6.0
Gargoyle1 27 2,2,2,2 351(100%) 351(100.0%) 2.3 150 57.4 55.6
Gargoyle2 78 78 1939(64.6%) 173 (5.8%) 16.9 314 1 m 33 34.7
Column 115 90 6555(100.0%) 4776(72.9%) 38.1 498 40 m 25 37 m 16
Capital 103 101 5253(100.0%) 1307(24.9%) 32.2 434 10 m 9 6 m 13
Bas-relief 1 106 106 1542(27.7%) 398(7.2%) 30.9 559 4 m 16 2 m 34
Bas-relief 2 71 71 1205 (48.0%) 505 (20.3%) 14.1 575 5 m 8 3 m 42
Bas-relief 3 75 73 2775(100.0%) 695(25.0%) 15.8 496 6 m 5 3 m 56
Bas-relief 4 68 67 2278(100.0%) 635(27.9%) 12.9 626 6 m 54 4 m 31
Bas-relief 5 72 72 1252(49.0%) 276(10.8%) 14.6 563 2 m 51 1 m 42
Bas-relief 6 83 83 1605(47.2%) 609(17.9%) 19.4 674 7 m 14 4 m 48
Toy Car 23 23 112(44.3%) 82(32.4%) 1.7 418 37.3 7.5

a Total processing time obtained by the system using the sequential assumption.

P. Pingi et al. / Computers & Graphics 47 (2015) 78–8884



7.1.4. The sequential assumption
As demonstrated by the experimental results reported, the

prioritization stage is able to save a considerable amount of work.
In order to further improve the performance of the system, we
implemented a version where the similarity matrix is adjusted,
assuming that, if two images have been acquired sequentially with
high probability they are overlapping ones. In other words,
sequential range maps are good candidate to be matched. We call
this sequential assumption. Following it, for each range map we test
the arc ði; i�1Þ and ði; iþ1Þ of S before the others. We found that
this simple variant permits to reduce the number of pair align-
ments performed by the system, and hence the total processing
time. The last column of Table 1 shows the total processing time
for this implementation. In some cases, the performance are
greatly improved. Instead, there was no significant performance
gain for certain dataset, for example for the Column one, since
almost all the pairs are required to be tested to produce the final
result.

7.1.5. Overall performance
The overall processing time reported demonstrates that the

system is able to work on big datasets in reasonable time, taking
into account that the system does not use prior knowledge about
the dataset, and that it works in a completely automatic and
unsupervised way.

The histograms of Fig. 7 provide more details about the
performance of the system. Such histograms report the total time
required to align a certain range map. Note that some range maps
are aligned very quickly, in less than 250–500 ms. Instead, espe-
cially when the prioritization stage does not provide a reliable
order, some range maps required many trials before to be aligned.

Another interesting issue to point out is that a dense acquisi-
tion, in terms of viewpoints, allows the prioritization stage to find
a very efficient order and, at the same time, the proposed normals-
based descriptor to work with high robustness, as demonstrated
by the results obtained with the gargoyle datasets. While the
system failed to align the Gargoyle1 dataset due to a poor coverage
of the surface of the statuine (these range maps contains poor
geometric information since they are acquired positioning the
device a bit far from the object), the dense version of this dataset
(Gargoyle2) not only is aligned perfectly but in a very short time as
demonstrated by the time reported in Fig. 10 and in the table.

Since our system is designed to work with high quality scans
(the ones usually coming out from a scanning campaign) we
expect that it fails to align noisy scans, like the ones obtained
with a Kinect device for example. Anyway, the results obtained on
the Toy Car dataset show that our simple descriptor is able to deal
also with a moderate amount of noise (see Fig. 9).

7.2. Comparison and discussion

To our knowledge, the most rapid method for the coarse
registration of range maps is the one of Bonarrigo et al. [3], which
has been improved and implemented in GPU during the develop-
ment of this work [7]. So, we compare our system with the latter
one (referred with BPS2013 in the following). BPS2013 is based on
the creation of a features database. The features adopted can be
thought as an extension of the Lowe's SIFT [20] to 3D range data.
This database is used to find the range maps to align together.
When a range map arrives in input, the most similar range maps
are retrieved from the database and then a multi-view (coarse)
registration algorithm is launched on these range maps. The multi-
view registration is based on matching descriptors associated to
the keypoints previously extracted. This rotation-invariant
descriptor is based on normal and saliency, encoded in a sector-
based grid. Rotation invariancy is achieved by aligning the max-
imum values of this grid. The comparison results are summarized
in Table 3.

From the results reported we can see that our system is able to
perform faster in some cases, while in another case, the computa-
tion time is considerably higher than BSP2013. This is because the
database of features is extremely efficient in finding the range
maps to match, while, in some cases, our prioritization stage is not
able to obtain similar performance. For example, for the Capital we

Table 2
Amount of overlap vs similarity measure.

Dataset Low O
(total)

Low O
and Low s

Avg. s
(w/ overlap)

Avg. s
(w/o overlap)

Urn 96 70(73%) 0.37 0.16
Gargoyle2 1667 1142(68%) 0.38 0.29
Bas-relief1 4210 3545(84%) 0.23 0.16

Fig. 7. Processing time details. On the abscissa is time intervals and on the y axis the number of range maps processed in that interval.
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did about 1300 alignments to align the dataset against the about
200 of the BSP2013. This result suggests that SIFT-related features
are very suitable for finding similar range maps, while correlation
suffers too much of viewpoints differences.

Although that the sequence finding performs better than our
approach, the proposed pairwise registration algorithm performs
with similar times, or better in some cases (183 ms is the average
alignment time for the Gargoyle dataset, 229 ms for the Toy Car,
while BSP2013 needs 250–300 ms on the average).

Concerning robustness, we obtain basically the same results.
This is an interesting result because the descriptors of BSP2013 is
very robust in terms of repeatability. Even if our descriptor is very

simple, using it for the matching with the validation stage ensure
very good results in terms of robustness (we do not report any
false positive). This suggests that a powerful validation stage plays
an important role in a registration system of this type, more than
to have a highly repeatable matching descriptor.

However, we can state that our system is very straightforward
to implement, since it is based on the computation of an FFT (a lot
of available libraries and code exists) and a shader code to
compute variance and match the simple normal-based descriptor.
The BSP2013 instead requires the management of the database,
the clusterization of the features extracted (this is necessary in
order to keep the retrieve time near-constant), the update of the
database of features, the calculation of the mesh saliency, and the
matching of the rotation invariant descriptors.

7.3. Quality

In order to evaluate the quality of the results obtained, we run
an Iterative-Closest-Point (ICP) algorithm [1] to the output of our
system. If the alignment computed is sufficiently close to a good
one, we expect that the range maps converge to the real surface. In
our cases this convergence is very fast (1–2 iterations on the

Fig. 8. Evaluation of the capability of the prioritization stage in finding overlapping range maps. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

Fig. 9. Toy car. (Left) Result. (Right) A single range maps is shown to highlight the noise pattern of the scans.

Fig. 10. Comparison between Gargoyle1 and Gargoyle2 datasets. (From-Right-To-Left) Output of our system. Alignment after ICP. Time statistics of the Gargoyle1 dataset.
Time statistics of the Gargoyle 2 (dense dataset).

Table 3
Comparison against the BPS2013 system.

Dataset Range
maps

Aligned
[BPS2013]

Total time (s)
[BPS2013]

Total time (s)
[PROPOSED]

Urn 17 17 6.9 6.0
Gargoyle2 78 78 32.4 34.7
Capital 103 101 1 m 13 6 m 13
Toy Car 23 23 11.6 7.5
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implementation used [21]). As shown in Fig. 11, the final aligned
range maps have a very good quality, as can be noted by inspecting
the details of the range maps which are perfectly aligned after the
ICP. The false color used help to distinguish the different range
maps, and so to better evaluate visually their respective alignment.
Note also that, thanks to the validation stage, the output of the
system does not present wrongly aligned range maps.

7.4. Limitations

The proposed system suffers from two limitations. The first one
concerns the pairwise registration algorithm; the acquisition
devices is assumed to have only a small rotation about the z axis
because the proposed descriptor is not invariant against this type
of rotation. The second limitation regards the prioritization stage
and it is related to the fact that, if the devices movement are so big
that the point of view differs a lot, the correlation could fail to
provide a good matching order. This does not influence the final
outcome of the alignment but may negatively influence the
processing time. Despite these two limitations we would like to
underline that, in a real scanning pipeline, these conditions are

quite rare. In fact, often the surface acquisition of small-medium
object is dense and the scanner is rotated around its z axis only to
acquire very specific undercuts.

8. Conclusion

In this work we have proposed a simple-to-implement GPU-
friendly system capable to align many range maps in short time.
We have demonstrated that even if simple and with some
limitations, the proposed system is capable to produce very high
quality results on real data coming from real acquisition cam-
paigns. Additionally, the proposed validation stage has been
demonstrated to be very robust avoiding to produce wrong
alignments. In the near future, this system will be made publicly
available as a Meshlab plugin [21]. A future challenge regards the
extension of the system with a fast rotation-invariant descriptor.
Designing and testing different metrics, for example other ones
used in image stitching, to improve the prioritization stage is also
another interesting direction of work.

Fig. 11. Some of the results obtained from real dataset.
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