
Publications for Task 3.2
Deliverable 3.21
Date: 10.07.2015

Grant Agreement number: EU 323567

Project acronym: HARVEST4D

Project title: Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds

 i

Document Information
Deliverable number D3.21

Deliverable name Publications for Task 3.2

Version 0.4

Date 2015-07-10

WP Number 3

Lead Beneficiary PARISTEC

Nature R

Dissemination level PU

Status Final

Author(s) PARISTEC

Revision History
Rev. Date Author Org. Description

0.1 2015-06-30 Tamy Boubekeur PARISTEC Initial Draft

0.2 2015-07-01 Tamy Boubekeur PARISTEC Beta Version

0.3 2015-07-08 Tamy Boubekeur PARISTEC Final Version

0.4 2015-07-10 Michael Wimmer VUT Typos

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

 ii

TABLE OF CONTENTS

1 Executive Summary ... 1

1.1 Introduction ... 1

2 Description of Publications ... 2

2.1 Overview .. 2

2.2 Point Morphology .. 3

2.3 Efficient Collision Detection While Rendering Dynamic Point Clouds 3

2.4 Other Results .. 4

3 Appendix ... 4

Deliverable D3.21 1/4

1 EXECUTIVE SUMMARY

1.1 INTRODUCTION

This deliverable describes the publications that resulted from Task 3.2, and how they fit into the

work plan of the project.

The objective of Task 3.2 is to develop high level shape processing and analysis algorithms, some

of them being based on the operators of Task 3.1 (see Delivrable D3.11). These algorithms are

designed to process the data acquired within the Harvest4D project. During the second period of

the Harvest4D project, we have developed a number of shape algorithms to alter the geometry

and topology of 3D point clouds and meshes. We have particularly focused on analysis algorithms

for point clouds, as the constraints of Harvest4D – processing large streams of 3D data frequently

updated – do not always allow for a full surface mesh reconstruction, while analysis may still be

mandatory for simplification, repairing, editing or recognition. In particular, this task has led to a

journal publication in the ACM Transactions on Graphics (Proceedings of the SIGGRAGH 2014

conference) regarding the expression of a powerful shape analysis framework, Mathematical

Morphology, in the context of point data. A second component of this deliverable addresses the

problem of data structures for efficient collision detection, which exploits a screen-space

formulation to contain both memory and computation cost. A couple of other publications are

primarily attached to other tasks or work packages but have nonetheless also contributed

advances in geometric algorithms. In the following, we give an overview of the main

contributions.

So far, there are 2 publications that are mainly associated to Task 3.2, and these can be found in

the appendix of this deliverable:

 Stéphane Calderon and Tamy Boubekeur

Point Morphology

ACM Transaction on Graphics (Proc. SIGGRAPH), 2014

 Mohamed Radwan, Stefan Ohrhallinger, and Michael Wimmer

Efficient collision detection while rendering dynamic point clouds

Proceedings of Graphics Interface 2014 (GI '14), 2014

Additionally, a number of other papers are primarily attached to other tasks but exhibit

contributions on geometric algorithms:

 Jean-Marc Thiery, Emilie Guy and Tamy Boubekeur

Sphere-Meshes: Shape Approximation Using Spherical Quadric Error Metrics

ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 2013

Deliverable D3.21 2/4

 Noura Faraj, Jean-Marc Thiery, Tamy Boubekeur

Progressive Medial Axis Filtration

ACM SIGGRAPH Asia 2013, Technical Brief Program

 Thiery Guillemot, Andrès Almansa, Tamy Boubekeur

Covariance Trees for 2D and 3D Processing

IEEE Conference on Computer Vision and Pattern Recognition (CVPR, Oral), 2014

 Emilie Guy, Jean-Marc Thiery, Tamy Boubekeur

SimSelect: similarity-based selection for 3D surfaces

Computer Graphics Forum (Proc. EUROGRAPHICS 2014), 33(2):165-173, 2014

 Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, Michael Wimmer

Continuous Projection for Fast L1 Reconstruction

ACM Transactions on Graphics (Proc. SIGGRAPH), 2014

 Simon Fuhrmann and Michael Goesele

Floating Scale Surface Reconstruction

ACM Transactions on Graphics (Proc. SIGGRAPH 2014), 2014

 Tim Tutenel, Christian Kehl and Elmar Eisemann

Interactive visual analysis of flood scenarios using large-scale LiDAR point clouds

Geospatial World Forum 2013

 Tamy Boubekeur

ShellCam: Interactive Geometry-Aware Virtual Camera Control

IEEE International Conference on Image Processing, to appear

 Emilie Guy, Jean-Marc Thiery, Tamy Boubekeur

SimSelect: similarity-based selection for 3D surfaces

Computer Graphics Forum (Proc. of EUROGRAPHICS 2014), 33(2), p.165-173, 2014

 Tamy Boubekeur

Mesh Reconstruction from a Point Cloud

Chapter in Digital Representations of the Real World: How to Capture, Model and Render

Visual Reality, 2015

2 DESCRIPTION OF PUBLICATIONS

2.1 OVERVIEW

The two main contributions to this deliverables are the point morphology framework (Section 2.2)

and a new screen-space approach to collision detection (Section 2.3). In the following, we give

more details about these two methods. However, one shall note that “geometric algorithms”

cover a wide range of applications and methods within the Harvest4D project, and appear in

many of the Harvest4D publications, work-packages and tasks. We listed earlier the main ones

and give a brief overview of their link to Task 3.2 (Section 2.4).

Deliverable D3.21 3/4

2.2 POINT MORPHOLOGY

Figure 1 Overview of our Point Morphology framework. Simple chains of morphological operators yield powerful
shape analysis, such as the tight bounding “closing” obtained on the top right, or the tight inset “opening” on the
bottom right. In both cases, a large part of the geometric features are preserved.

Shape analysis covers a diverse set of methods aiming at extracting parameters from raw 3D

shapes, to fuel automatic signal-inspired processing primitives, interactive shape editing tools or

advanced shape recognition engines. Large part of these methods are specialized and tuned for

one particular application, being defined using a mesh structure most of the time. In the context

of Harvest4D, we cannot always afford reconstructing a mesh before analyzing it. Clearly, pulling

the analysis stage earlier in the pipeline – right after geometry emerges from capture in the form

of an unstructured point cloud for instance – opens new way of interpreting the acquired content.

In particular, we aim at developing an analysis framework than can be used in multiple contexts,

while still relying on a small set of operators that act directly on point sets. Under these

constraints, Mathematical Morphology, which is a powerful image analysis framework, appears as

a good candidate. But expressing it for point clouds requires a complete reformulation of its basis.

To address this challenge, we introduce a complete morphological analysis framework for 3D

point clouds called Point Morphology [Calderon and Boubekeur 2014]. Starting from an

unorganized point set sampling a surface, we propose morphological operators in the form of

projections, allowing sampling erosions, dilations, closings and openings of an object without any

explicit mesh structure. Our framework supports structuring elements with arbitrary shape,

accounts robustly for geometric and morphological sharp features, remains efficient at large

scales and comes together with a specific adaptive sampler. Based on this meshless framework,

we propose applications which benefit from the non-linear nature of morphological analysis and

can be expressed as simple sequences of our operators, including medial axis sampling, hysteresis

shape filtering and geometry-preserving topological simplification.

2.3 EFFICIENT COLLISION DETECTION WHILE RENDERING DYNAMIC POINT CLOUDS

Data flowing in the Harvest4D pipelines often come as unstructured and temporally varying point

clouds, such as the one generated by affordable depth cameras or used in augmented-reality

simulations. Performing collision detection on such models has numerous applications in

interactive graphics applications. State-of-the-art methods for collision detection usually create a

spatial hierarchy in order to capture these dynamic point cloud surfaces, but they require

Deliverable D3.21 4/4

O(N logN) construction time for N points. We propose a novel

screen-space representation for point clouds that exploits the

property of the underlying surface being 2D [Radwan et al. 2014].

To perform dimensionality reduction, a 3D point cloud is

converted into a series of thickened layered depth images. This

data structure can be constructed in O(N) time and allows for fast

surface queries due to its increased compactness and memory

coherency. Moreover, parts of its construction come for free,

being already handled by the rendering pipeline. As an application,

we demonstrate online collision detection between dynamic point clouds. It shows superior

accuracy when compared to other methods and robustness to sensor noise since uncertainty is

hidden by the thickened boundary.

2.4 OTHER RESULTS

Beyond the two previous papers, a number of Harvest4D publications have contributed geometric

algorithms. In particular, as part of this deliverable, we have derived a full automatic shape-

rigging algorithm based on the sphere-mesh approximation [D3.11][Thiery et al. 2013] that allows

loading raw meshes and instantaneously equip them with a multi-resolution control structure

allowing to deform them easily. In the long run, Harvest4D partners also try to explore alternative

representations for geometric data and aim at fueling them with high-level processing primitives.

Among them, the medial axis, discussed in Point Morphology (Section 2.2), is a good candidate to

link surface-based and volume-based representations. In this context, our progressive medial axis

filtration (PMAT [Faraj et al. 2013]) method introduces a fast scheme to remove small

components from medial axis representations while preserving their main structures,

instantaneously. Statistical representations are another direction explored by Harvest4D, e.g.,

Gaussian mixtures exploited in Point Morphology and CLOP (D3.11). In this respect, the

Covariance Tree [Guillemot et al. 2014] proposes a new hierarchical representation to

collaboratively model and process data streams such as high-resolution point clouds. Beyond

geometric algorithms that mimic signal processing primitives, shape analysis is instrumental in

work package 8. In particular, geometric analysis for interactive navigation (D8.41) and similarity

modeling (D8.51/D8.52) make intensive use of both meshless geometric operators (e.g., moving

least squares [Boubekeur 2014]) and statistical geometric tools (e.g., our new approximate shape

context descriptor [Guy et al. 2014]). We refer the reader to the different papers listed earlier for

more technical details.

3 APPENDIX

The following pages contain all the publications that are directly associated with this deliverable.

Other publications referenced in this deliverable can be found in the public Harvest4D webpage

(for already published papers), or in the restricted section of the webpage (for papers under

submission, conditionally accepted papers, etc.).

Point Morphology

Stéphane Calderon Tamy Boubekeur
Telecom ParisTech - CNRS LTCI - Institut Mines-Telecom

Point cloud Projective Medial Axis Hysteresis Shape Filtering

Operators Applications

Topological Simplification

Dilation

Erosion Opening

Closing

Figure 1: Starting from an unstructured 3D point cloud, we define morphological operators based on a single projection procedure and
propose advanced shape analysis applications in the form of simple sequences of these operators.

Abstract

We introduce a complete morphological analysis framework for 3D
point clouds. Starting from an unorganized point set sampling a
surface, we propose morphological operators in the form of pro-
jections, allowing to sample erosions, dilations, closings and open-
ings of an object without any explicit mesh structure. Our frame-
work supports structuring elements with arbitrary shape, accounts
robustly for geometric and morphological sharp features, remains
efficient at large scales and comes together with a specific adap-
tive sampler. Based on this meshless framework, we propose appli-
cations which benefit from the non-linear nature of morphological
analysis and can be expressed as simple sequences of our opera-
tors, including medial axis sampling, hysteresis shape filtering and
geometry-preserving topological simplification.

CR Categories: Computer Methodologies [Computer Graphics]:
Shape Modeling—Point-based Models, Shape Analysis;

Keywords: point-based modeling, shape analysis, morphology

Links: DL PDF

1 Introduction

Point-based modeling aims at processing, analyzing and interact-
ing with digital shapes which are represented by unorganized point
samplings without any explicit connectivity. The related set of
meshless operators are particularly attractive in the context of 3D
and 4D capture but can also benefit any computer graphics appli-
cation as long as they can provide a point sampling of their surface
models. For instance multiple registered range maps coming from

laser scanners, dense point sets generated using multiview stereo-
vision or large polygon soups designed in CAD software can all be
expressed as a list of point samples with attributes and consequently
be processed within the same point-based pipeline.

Standard point-based methods take place at the earliest stages of
the processing pipeline, prior to mesh reconstruction and are often
based on operators which alter the point sampling and embedding.
The majority of these operators mimic the classical signal process-
ing primitives, namely filtering, sampling and reconstruction. They
commonly allow to remove noise, increase/decrease the point den-
sity or improve its distribution. Although these local geometric
computations significantly enhance data quality for the upcoming
processing steps, the global analysis of the shape is usually delayed
until post-meshing stages, where the mesh connectivity makes it
possible explore its components, medial structures and topology.

This typical pipeline has two major drawbacks: first, the shape anal-
ysis is performed too late to avoid dealing with topology changes
and large geometric alterations on a mesh structure, which is often
unstable and prone to artifacts, in particular when the manifold-
ness of the mesh is not guaranteed; second, the meshing process
itself would benefit from this analysis if performed at the earliest
stages. Actually, it would be preferable to define shape analysis
methods which can act directly on the point set and influence the
global geometry and (implicit) topology of the shape prior to the
reconstruction of a mesh, if ever required.

Among the various shape analysis frameworks that exist for struc-
tured 2D and 3D data, mathematical morphology appears as one
of the most powerful and versatile, with the advantage of provid-
ing a large number of high level shape transformations employing
a restricted set of operators. Image filtering, segmentation, skele-
tonization, recognition and many other processes have successfully
benefited from discrete mathematical morphology, in the context of
medical imaging, metrology and robotics.

In this paper, we propose point morphology (see Fig. 1), a complete
morphological framework for analyzing and processing 3D point
sets (Sec 3). Using a new model for the underlying structuring
element (Sec. 3.2), we reformulate the basic morphological oper-
ators, namely erosion and dilation, as projections (Sec 3.3). Used
with a new feature-aware point sampler (Sec 3.5), we define closing
and opening accounting robustly for the sharp morphological struc-
tures which appear even on simple shapes, keeping computations
tractable.

Our operators are simple to implement, scalable and robust: we
evaluate them on a wide range of inputs (see Sec. 4). Based on this
framework, we perform non-trivial shape transformations directly
on point-based models using simple sequences of point morpho-
logical operators. We illustrate this property by proposing several
applications (Sec. 5), including projective medial axis modeling,
hysteresis shape filtering and geometry-preserving topological sim-
plification.

2 Background

Our approach is based on two distinct fields: point set surfaces and
mathematical morphology. In the following, we recall their basic
principles before discussing recent related work. For both, we con-
sider a shape as a compact subset B of R3 and its variational repre-
sentation as a scalar field B : R3 Ñ R:

Bpxq �

$'&
'%
 0, if x P B̊

0, if x P BB

¡ 0, if x R B

(1)

2.1 Point Set Surfaces

A Point Set Surface [Alexa et al. 2001; Amenta and Kil 2004]
(PSS) models a smooth manifold from an unorganized 3D point
cloud based on a projection operator. This representation has been
successfully used for the complete point-based modeling chain, in-
cluding resampling, reconstruction, analysis, editing, compression
and visualization.

PSS Definition Let us consider Π � tπi � ppi,niqu a set of
surface samples, with pi P R3 (resp. ni P R3) the sample’s
position (resp. normal), and x P R3. The Moving Least Square
(MLS) projection [Levin 1998; Levin 2003; Alexa et al. 2004] is
defined as:

MLSΠ : R3 Ñ R3,x ÞÑ Ppxq (2)

The operator Ppxq embeds two fundamentals procedures:

1. fitting: optimizes a weighted least squares primitive B that
approximates Π around x.,

2. projection: projects x onto B.

A PSS is defined in its projective form as the stationary set of R3

under this MLS projection (see Fig. 2):

PSS � tx P R3|Ppxq � xu (3)

To reach the PSS from any x P R3 we simply iterate MLSΠ until
convergence (for any x P R3, P8pxq � P � .. � Ppxq P PSS).

Shape Fitting The fitted shape B is parameterized by a vector
field q� : R3 Ñ Rd,x Ñ q�pxq so that B :� Bq� . This vector
field defines a set of parameters modeling the fitted primitive (e.g.,
position and radius if B is a sphere, position and orientation if B is
a plane, etc.) at each point in space, approximating Π around x:

q�pxq � argmin
q

¸
i

ωσ p}x� pi}q d pq,πiq
2 (4)

where ωσ is a smoothly decaying weighting kernel ensuring par-
tition of unity in the sum. The scale at which B is fitted to Π is
typically controlled by a parameter σ which relates to the support
size (or influence radius) of ωσ . We consider d pq,πiq2 the dis-
tance between the primitive defined by q and an input sample.

Figure 2: PSS principle in 2D. The input point set is represented
with grey dots and black normals. In green a point x candidate
for a projection; in gradient color circles |Bq� | (here the signed
distance field’s absolute value) of the fitted primitive (a circle) at x
and its parameters q�; in red the projection Ppxq onto Bq� . The
point set “curve” (resp. the absolute value of its implicit form) are
represented in grey (resp. gradient color) in the background.

Shape Projection Given the locally fitted primitive Bq� we
project onto it through:

Ppxq � x�Bq�pxq
∇Bq�pxq��∇Bq�pxq

�� (5)

where Bq�pxq is the variational shape representation of Bq� . Be-
yond this projective form, the PSS has also an implicit form defined
as the zero set of a scalar field IΠpxq � Bq�pxqpxq, both being
related by:

Ppxq � x ô IΠpxq � 0.

PSS Models Popular instances of this general PSS definition in-
clude the Simple PSS (SPSS) model [Adamson and Alexa 2004]
which uses an implicit plane representation for B — q � pc,nq,
Bqpxq � px�cq�n, and d pq,πiq2 � }c� pi}

2�}n� ni}
2 with

c (resp. n) the center (resp. normal) of the plane — and the Alge-
braic PSS (APSS) model [Guennebaud and Gross 2007] which uses
an algebraic sphere representation forB — Bqpxq � r1,x,xTxs �

q and d pq,πiq
2 � β }∇Bqppiq � ni}

2 � }Bqppiq}
2 with β

weighting the derivative constraints.

A number of PSS variations have been proposed, including hermi-
tian interpolation [Alexa and Adamson 2009], scale-space repre-
sentation [Pauly et al. 2006; Mellado et al. 2012], point cell com-
plex definition [Adamson and Alexa 2006] and feature preserva-
tion [Fleishman et al. 2005; Reuter et al. 2005; Öztireli et al. 2009].
Essentially, PSS models allow to process and analyze point clouds
by varying the support of the kernel (e.g., large supports act as low-
pass filters), mimicking the Gaussian analysis of signals.

2.2 Mathematical Morphology

Every signal analysis theory uses a set of transformation opera-
tors revealing its structure. For instance, linear analysis is based
on convolutions since constraining the operators to be linear and
translation invariant naturally gives rise to a convolution [Babaud
et al. 1986]. Giving up the linear constraint widens the signal ex-
ploration.

Mathematical Morphology [Serra 1983] (or morphology) is a shape
analysis theory exploiting non-linear operators which intuitively al-
ter the object at every point with a particular shape B called in this

(a) (b)

Figure 3: Continuous Morphology. (a) A circular SE (light blue)
sweeping a binary input (orange) with resulting Dilation (light
blue), Erosion (blue), Closing (green) and an Opening (light green).
(b) The shape of the SE influences strongly morphological transfor-
mations (blue) for the same input (orange).

context the structuring element (or SE). Given the shape I of an
object, the two basic operators are the dilation DI,B � I ` B and
the erosion EI,B � I a B where ` and a are Minkowski sum
and subtraction i.e., I ` B �

�
yPI

By and I a B � sI `B: where

By � tb� y|b P Bu is the translated SE, � is the complementary
operator and B: is the symmetric of B w.r.t to 0. These opera-
tors are combined to define a Closing CI,B � ErDI,Bs,B and an
Opening OI,B � DrEI,Bs,B (see Fig. 3). As we shall see later, the
choice ofB strongly influences the resulting transformation as well
as the performed analysis of I . Unlike raster images, the case of 3D
surfaces is usually addressed using continuous morphology through
a binary function classifying the ambient space as either inside or
outside the object.

Mathematical morphology has a large spectrum of applications, in-
cluding scale-space analysis, skeletonization, segmentation, com-
pression and micro-structure modeling. We refer to the book of
Najam and Talbot [2010] for a recent survey.

2.3 Related Work

Mathematical morphology has been so far mostly used in its dis-
crete form, for 2D and 3D images. However, Minkowski sums have
been studied for polyhedral meshes and point sets in several works.

Meshes Barki et al. [2011] introduced a method to compute
Minkowski sums of fold-free polyhedron with a convex polyhedral
SE. They propose the notion of contributing vertices to build a tight
superset of geometric primitives. Then the exact Minkowski sum
is extracted from this superset. Another approach by Campen et
al. [2010] permits exact Minkowski sum computation with an arbi-
trary SE and an efficient computational framework. However, con-
trary to Barki et al., only the outer boundary of the sum is extracted,
leaving the inner boundary to a grid structure and a prior knowledge
of its location. In both cases, a clean mesh input is required, which
is typically not available at the early stage of the modeling pipeline.

Points Sets Observing that the signed distance function (SDF)
of a surface encompasses dilations by a spherical SE, Molchanov
et al. [2010] use directly the SDF of an algebraic point set sur-
face [Guennebaud and Gross 2007] to define a Minkowski sum.
This formulation provides a smooth output but is restricted to spher-
ical SEs and presents defects in the vicinity of singular points of the
SDF (medial axis). In practice, hard thresholding on the neighbor-
hood selection is used to decide which part of the point set surface
is taken into account in the SDF evaluation. Indeed a proper me-
dial axis model (i.e., smoothness) is not guaranteed, which becomes
problematic around the many sharp edges appearing when dilating.

Lien et al. [2007] define purely point-based Minkowski sums and
do not aim at representing the morphological transformation as a
continuous surface, modeling the SE itself as a point set. First, at

each point of the input point set, all SE points are added to the out-
put. Second, this superset is decimated to remove all the points
that do not belong to the dilation. The result is a point sampling
of the dilation. Although very simple, this approach has several
drawbacks. First, smooth reconstructions of the resulting point set
often gives rise to strong artifacts, in particular for non spherical
SEs. Second, the sharp features emerging from the sums and sub-
tractions, which are critical in morphological analysis, are not cap-
tured. Third, the computational cost, with an intermediate sampling
having the complexity of the model times the SE, is prohibitive for
dense input (millions of points) and/or complex SEs (thousands of
points).

Peternell et al. [2007] and Nelaturi et al. [2009] use a similar ap-
proach but then proceed with either a grid based decimation [Peter-
nell and Steiner 2007] or a flood filling [Nelaturi and Shapiro 2009]
of the resulting sum to extract the outer boundary of the dense re-
sult, producing similar caveats. Chen et al. [2005] compute off-
sets (dilation with a spherical SE) in a similar fashion as Lien et
al. [2007] and Peternell et al. [2007]. However, the SE’s sampling
for the sum is sensitive to the input surface’s curvature, reducing
the magnitude of the decimation stage.

Most of these methods rely on the construction of a superset of
points and extract the Minkowski sum by decimating it. Such solu-
tions are perfectly valid for the computation of a single sum. Un-
fortunately, morphological algorithms require sequences of sums
and subtraction, which has at least three consequences: (i) the in-
termediate shape produced at a given step of the sequence should
be properly resampled for the next step; (ii) the sharp features ap-
pearing during the sequence should be preserved, independently of
the input density, as they typically capture the structure revealed
by morphology; (iii) an end-to-end local computation avoiding the
generation of supersets is required in practice to process real data in
a reasonable amount of time. Our framework addresses these three
issues.

3 Method

3.1 Overview

Our goal is to compute erosions, dilations, openings and closings of
a surface point cloud Π. To do so, we adopt a projective approach
where these morphologies are seen through the projection of the
surrounding space. This allows us to compute them without explicit
connectivity in the input, using any structuring element, scaling to
large data by bypassing intermediate supersets and preserving the
rising sharp structures robustly.

In practice, our framework (summarized in Fig. 4) is composed
of three main components: (i) a point structuring element model
which can have any shape and size, (ii) a projection procedure sub-
stituting the explicit Minkowski sum and (iii) a feature-aware sam-
pler distributing points on the transformed shape.

In the following, we start by explaining how to project a single point
x P R3 onto the dilation (resp. erosion) of the point cloud. This
operation requires the optimization of the SE for x w.r.t. the point
cloud before projecting x onto it (see Sec. 3.3) to reach the dilated
(resp. eroded) shape (see Sec. 3.4). Then, we explain how to sam-
ple these morphologies properly to supply forthcoming alterations
(see Sec. 3.5). Last, we describe the computation of closings and
openings (see Sec. 3.6).

ErosionInput Point Cloud

DilationFitting

Shifting

Projection

PSE

PSE*

Sampling

Point
Morphology

Point
Morphology

Closing

Point
Morphology

Opening

Figure 4: Overview: our framework samples dilation, erosion, closing and opening of a point cloud.

Figure 5: Point structuring element: three PSEs with their dis-
tance field iso-contours in gradient color.

3.2 Point Structuring Element

Analyzing a point cloud is challenging as no explicit topological
space is available. However, we observe that, starting from x, fitting
a single SE to Π is sufficient to reach the dilation or erosion of Π as
long as we can express a signed distance from x to the SE boundary.
Therefore, we propose to model the SE itself as a signed scalar field
and use an MLS-inspired optimization procedure to locate it w.r.t.
x. More formally, given a shape B, its signed distance field B, a
scale s and a center c, we define a Point Structuring Element (or
PSE, see Fig. 5) Bc as:

Bcpxq � sBp
x� c

s
q (6)

Simple PSEs, from spherical to cubic-like shape, are modeled ana-
lytically using the Lp norm:

Bcpxq � }x� c}p � s (7)

For more complex PSEs, such simple analytical forms are usually
not available and we rely on the IMLS field [Kolluri 2008] of a
point sampling ΠB of B as it is close enough to a distance one:

Bcpxq � s IΠB p
x� c

s
q (8)

3.3 Morphological Projection

We recall from classical set morphology that DI,B �
�
cPI

Bc. With

our PSE model in hand, we can translate the set operator
�

into
a variational form. Using I the variational representation of the
shape I sampled by Π, we define a variational dilation DI ,B as:

DI ,B : R3 Ñ R
x ÞÑ minpBc�pxq,I pxqq

with c� the optimized center of the PSE:

c� � argmin
c P R3

I pcq�0

Bcpxq (9)

We use the optimized structuring element Bc� within a an MLS-
inspired projection procedure (see Appendix for a derivation from
set morphology) which is composed of two steps:

1. fitting: optimizes a primitive Bc� that approximates the mor-
phological alteration of Π around x,

2. projection: project x onto Bc� .

PSE Fitting Intuitively, fitting the PSE corresponds to moving
its center c on the surface of the shape sampled by Π so that the
distance between x and the PSE is minimized. This boils down
to the optimization of c through Eq. 9 in which we choose I
as the implicit form of a PSS of Π (see Sec. 2.1). We approx-
imate a solution to this problem by running a mean shift proce-
dure [Fukunaga and Hostetler 1975] on a point sampling Π of I
(i.e., @πi P Π,I ppiq � 0). Note that if Π is dense and we chose
an interpolating PSS model for I , we can safely set Π :� Π.
We initialize the mean shift with several meaningful (usually 2)
points of Π to find different local candidate minimizers of Eq. 9
i.e., tc0

ju :� {closest points in Π under PSE distance}:

ckj pxq �
¸
i

ωσp}c
k�1
j pxq � pi}q ωσpBpipxq � sqpi (10)

After convergence (ckj pxq Ñ c�j for k Ñ 8) we choose a global
minimizer as:

c�pxq � argmin
c�j

Bc�j
pxq (11)

Projection Once the PSE is fitted, we can compute the morpho-
logical projection of x (see Fig. 6, left):

PBpxq � x�Bc�pxq
∇Bc�pxq

}∇Bc�pxq}
(12)

At this stage, the stationary set of R3 under PB is made of two
crusts and we cannot distinguish dilation from erosion yet. How-
ever, we can already observe that Eq. 10 and 11 give the basis
of a continuous robust classification of our piecewise smooth mor-
phologies: as for each point x we consider a surface with (poten-
tially) several components (modes), the projection using Eq. 11 is
equivalent to a projection on the union of the PSE optimizers (see
Fig. 7).

Dilation

Ero
sion

Dilation

Figure 6: Morphological projection with x the green point, its morphological projection the red point and Π the grey dots with black
normals. Left: dilation projection with the mean shift objective function depicted in gradient color. Middle: erosion projection reached
through the shifting procedure (εEpxq). Right: two local minimizer configuration giving raises to sharp features.

With this formulation, two pronounced modes (or local optimiz-
ers) can continuously merge into a single one, leading to a continu-
ous transition from a sharp crease to a regular smooth surface (see
Sec. 4 for examples).

3.4 Dilation and Erosion

Our morphological projection PBpxq models both the dilation and
the erosion of Π. To enforce the projection to reach the dilation
(resp. erosion) only, we introduce a shifting procedures εD (resp.
εE) which sends x outside (resp. inside) the shape to find the dila-
tion (resp. erosion):

εDpxq � x� p1 �Ihq δpxq, εEpxq � x�Ih δpxq,

with δpxq � em
c�pxq�x
}c�pxq�x}

, em the maximal distance from x to
the bounding sphere ofB in the direction δpxq and Ih an indicator
function (i.e., 0 inside, 1 outside the shape of Π) evaluated using
the sign of I (see Fig. 6).

Based on this shifting procedure, we define a dilation (resp. ero-
sion) projection PD (resp. PE):

PDpxq � PB � εDpxq (13)
PEpxq � PB: � εEpxq (14)

with B:pxq � Bp�xq. See Alg. 1 for a pseudo-code.

Consequently, the dilation and the erosion of Π are modeled as the
stationary set of the following applications:

DΠ : R3 Ñ R3,x ÞÑ PDpxq (15)

EΠ : R3 Ñ R3,x ÞÑ PEpxq (16)

It follows that we can define two converged projection operators
P8
D � PD � ... � PD (resp. P8

E) that directly project onto the

Erosion
Erosion Erosion

Figure 7: Feature modeling. Eq. 11 is equivalent to a local union
of primitives and captures sharp features better than running a sin-
gle local optimizer (or mode).

dilation (resp. erosion). Last, we can derive implicit forms from
these projective ones, similarly to PSS (see Sec 2.1).

Algorithm 1 Dilation projection.

Input: x P R3, B : x ÞÑ Bpxq, Π
Output: PDpxq P R3

tc0
ju :� closest points P Π from x under Bcpxq distance

for all j do
c�j :�MeanShiftpx, c0

j ,Πq
end for
c� :� closest point P tc�j u from x under Bcpxq distance
if Ihpxq � 0 then

x :� x� δpxq
end if
PDpxq :� x projected ontoBc�

3.5 Morphological Point Sampler

So far, we have explained how to project any point in space on
the dilation or the erosion of a point cloud. Combined operators,
such as openings and closings – indeed most morphological algo-
rithms – are defined through sequences of these basic transforma-
tions. This translates to two specific constraints: the sampling of a
dilation (or an erosion) should carefully capture the geometric fea-
tures that emerged, as this is often the critical information raised by
morphological analysis; second, this sampling should have a dis-
tribution which is suitable for the computation of a new dilation or
erosion.

We tackle both issues by introducing a morphological sampler Σ.
Basically, we observe that a sampling of the input surface with the
blue noise property is the best condition to minimize the error be-
tween the solution of Eq. 9 and both Eq. 10 and Eq. 11. As this
error typically increases around sharp features and thin parts, we
adopt a two-stages sampling strategy. Starting from an initial dense
sampling Π2D (e.g., grid based or random based) of the dilation of
Π and given σp the target point spacing, our sampler operates as
follows:

1. we compute a feature sampling Π�
1D by detecting and blue

noise sampling the sharp edges of Π2D ,

2. we compute a morpho-adaptive blue noise sampling Π�
2D

from Π2D , preserving Π�
1D fixed.

The final sampling is the union of the two sets:

ΣpΠq � Π�
2D

¤
Π�

1D.

Di
lat

ion

(a) Blue noise sampling

Di
lat

ion

(b) With feature preservation

Di
lat

ion
or

(c) Morpho-adaptivity

Di
lat

ion
or

(d) Both

Figure 8: Morphological sampling influence of feature preservation and morpho-adaptivity on the blue noise distribution.

It preserves sharp features (Π�
1D is not altered by the construction

of Π�
2D) and is properly conditioned for any potential following

operation (blue noise distribution, with increased density on thin
components). See Fig. 8 for an illustration of our sampling strategy.

For a dilation/erosion by a PSE of minimum local feature size l
(e.g., radius for a spherical PSE), we choose a conservative point
spacing σp for both Π�

1D and Π�
2D as σp � minpσ, lq{2 where

σ is set as the PSS kernel support size of the initial input surface.
All subsequent transformations with Point Morphology inherit the
same σp constraint to avoid any low pass filtering along the suc-
cessive treatments. Using the same point spacing for the Π�

1D and
Π�

2D improves stability by avoiding abrupt sampling variations.

Feature detection and distribution For each sample of Π2D ,
we compute an optimal location pqem as the minimizer of the
quadric error metric [Garland and Heckbert 1997] in its vicinity
and an optimal direction dqem as the weakest singular vector of
the QEM matrix Aqem [Kobbelt et al. 2001; Ohtake and Belyaev
2002]. We estimate the presence of a feature line with the ratio
between the smallest singular value of Aqem and the two others:
if it is large enough (greater than 103 in our implementation), we
project the sample onto the line rpqem,dqems and add it to Π1D .
From this first set Π1D we obtain a blue noise distributed set Π�

1D

using the method from Öztireli et al. [2010].

Morpho-adaptive distribution Dilations and erosions often cre-
ate thin components (e.g., sheets, holes, branches) which require
more samples to be properly modeled. To do so, we take inspiration
from the sampler proposed by Öztireli et al. [2010]. This sampler
adapts a blue noise distribution to the surface curvature by mea-
suring distances between samples in 6D (positions and normals),
locating more samples in highly curved regions. We adopt a similar
strategy but use a 6D space which accounts for our morphological
transformation: instead of using normals, we use the PSE centroids
to distinguish samples that may be close in R3 but belong to differ-
ent surface regions (e.g., two sides of a thin sheet). More precisely,
we define the positional distance between two samples πi and πj
as:

dpπi,πjq
2 �

||pi � pj ||
2
2

σ2
p

(17)

and their the morphological distance as:

dmpπi,πjq
2 �

||c�ppiq � c�ppjq||
2
2

σ2
c

(18)

with σc a scaling parameter (typically set to s).

As in [Öztireli et al. 2010], the optimal blue noise sampling is
driven by a scalar value that measures the importance of a given

sample π:

mpπq � 1 �
¸
i,j

w̃ijpπqkpπ,πiqk
�1
i,j kpπj ,πq (19)

with kpu,vq � e�dpu,vq
2

, k�1
i,j the elements of the inverse matrix

formed by kpπi,πjq, wijpπq � e�pdmpπ,πiq
2�dmpπ,πjq

2q and
w̃ij its normalized version.

The morphological blue noise sampling Π�
2D is taken as the maxi-

mizer of
°
i mpπiq which is computed using a randomized linear

scan subsampling followed by local gradient ascents [Öztireli et al.
2010] accounting for both Π2D and Π�

1D .

3.6 Closing and Opening

Finally, we have all the ingredients to compute closings and open-
ings. As recalled in Sec. 2, to compute a closing CΠ (resp. an
opening OΠ) of Π, we simply erode (resp. dilate) a morphologi-
cal sampling of the dilation (resp. erosion) of Π. Thus we have :
CΠ � EΣ�DΠ , OΠ � DΣ�EΠ .

4 Results

Simple experiments Fig. 9 show five examples of PSEs dilating
the same model. Fig. 10 shows the complete set of our operators
applied on a model coming from a performance capture sequence.
More examples are provided as additional material.

Implementation We implemented a CPU (C++) and a GPU
(CUDA) version of our framework. In Tab. 1 we report timings,
measured on an Intel Core2Quad (single thread) at 2.7GHz with 8
Gb of memory and an nVidia GTX680 GPU, including measures
for our four operators, diverse PSEs and several input point sets.
We used a two-scale grid as the basic acceleration structure. Fol-
lowing Bowers et al. [2010], we only store a poisson disk subsam-

Input Dilations

Figure 9: Varying the PSE shape: a dilation performed with our
framework for five different PSEs. The last three do not have a
simple analytical form and are modeled using a PSS.

Input Dilations Erosion Opening Closing

Figure 10: Point morphology of a performance capture model (model courtesy Max Planck Institute).

Noisy input

APSS

Support size:

RiMLS APSS RiMLS

Support size:

Underlying PSS

Resulting projective closing

Figure 11: Sparse noisy input. Starting from a sparse noisy point
cloud, we compute closings by a spherical PSE, using different un-
derlying PSS with two different support size.

pling of the initial point set at the first scale, the radius of this sub-
sampling being set to 1{5 of the SE scale. The cell size of this
coarse grid structure is the scale of the SE. Once the first centroids
on this coarse structure are found, we run the mean shift procedure
at the second level of the grid which stores the full point set. As
reported in Tab. 1, about 800k morphological projections can be
computed every second for an input point cloud composed itself of
a million samples. It takes typically ten iterations of this projec-
tion to reach the dilation or the erosion which means that we can
sample about 100k points on them every second. This makes the
design of morphological algorithms chaining multiple instances of
these operators on real world data tractable (see Sec. 5). Overall,
the computation of dense erosions, dilations, openings or closings
never took more than a few minutes for all models presented in this
paper (sampling included).

Noisy data We evaluated the behavior of our framework with
noisy input. We start with a sparse noisy point set of the fandisk (see
Fig. 11) which shows the influence of the underlying PSS model I
on the resulting morphological analysis. For denser noisy input,
such as the blade model (see Fig. 12), the influence of the PSS
model is less critical. In both cases, we compute closings using ei-
ther APSS [Guennebaud and Gross 2007] or RiMLS [Öztireli et al.
2009] as the underlying PSS model. Note that Fig. 12 exhibits a lot
of fine scale Gaussian noise but also larger scale topological noise.

PSE projections/sec
Model Nb. Pts PSE CPU GPU
Hand 75k Sphere 104 1.5x106

Cube 1.5x103 0.8x106

Cross 103 0.5x106

Man 79k Sphere 8.5x103 1.5x106

79k Cube 0.8x103 0.8x106

79k Cross 0.6x103 0.5x106

Buddha 255k Sphere 8x103 1.2x106

Filgree 400k 6x103 1.0x106

Raptor 880k 6x103 1.0x106

Mammoth 1.1M 5x103 0.9x106

Neptune 1.2M 5x103 0.8x106

Table 1: Performance measures for our morphological projection
on different models illustrating this paper.

While most of the fine scale high frequency noise is removed by
both PSS models within our framework, the topological noise re-
mains, even at large scale. We address this issue in our topological
simplification application (Sec. 5.3).

Sampling Large sharp features play a major role in a shape anal-
ysis (see the sparse set of strong singular features in the closing
of Fig. 10). In our morphological context, they may appear either
after a single projection or progressively emerge from sequences
of transformations. We address this geometric preservation prob-
lem at two stages. First, our morphological projections operators
robustly model continuous transitions from smooth areas to sharp
edges (see the erosion on Fig. 10). Second, our morphological
sampler is instrumental here to preserve a good enough sampling
all along the sequence and captures these structures without oscil-
lations (see Fig. 13). Explicit discrete sums fail at distinguishing
them from artifacts after a single iteration (see Fig. 15).

Comparisons First, we compare our approach to discrete (set)
morphology on a manufactured solution: although the two kinds of
input are drastically different (e.g., an unorganized point set and a
voxel grid), this comparison is instructive. Given an implicit surface
of a hand model, we compute a high resolution binary voxel grid

Input Point Cloud Closing

APSS-based

RiMLS-based

Figure 12: Influence of the underlying PSS model. Although a
geometric variation can be percieved, the impact of the underlying
PSS model progressively vanishes with growing PSE and/or denser
input.

Blue Noise
Sampling

Dilation

Morphological
Sampling

Closing

Figure 13: Feature-aware morphological sampling. A blue noise
sampling of the dilation of the FanDisk model (top left) exhibits
oscilliations which are avoided using our 2-stage strategy (bottom
left). The improvement becomes even stronger for chained opera-
tors, such as closings (right), where a small oscilliation during the
first step (dilation) is amplified by the second one (erosion).

Figure 14: Comparison to discrete morphology. Result of a dila-
tion using discrete (set) morphology (left) and our new point (pro-
jective) morphology (right), using either a voxelization (left) or a
point sampling (right) of the same shape.

Input Our projective dilationPoint-based Minkowski sum Mesh-based Minkowski sum

Figure 15: Comparison to point-based and mesh-based
Minkowski sums: our projective approach properly captures fea-
tures and avoids surface oscilliations stemming from discrete
schemes, even for simple shapes.

Method #pts SE #pts Output #pts/d-cover time
Point-based 13k 13k 1.9M/0.002 300s
(Lien et al.) 13k 669 54k/0.02 8s
Mesh-based 13k 15k 121k/0.004 85s
(Campen et al.) 13k 1620 36k/0.01 26s
Ours 13k - 2.5M/0.002 2.5s

13k - 515k/0.004 1s
13k - 87k/0.01 470ms
13k - 35k/0.02 350ms

Table 2: Performance comparison. Timings for the FanDisk model
of Fig. 15.

(2563) representing its interior and a point sampling of its bound-
ary. Then, we perform two dilations: a discrete one on the grid and
our projective one on the point set. Results are shown in Fig. 14.
The Hausdorff distance between both dilations is smaller than the
size of a voxel, which gives a practical validation of our projective
scheme. See the Appendix for more formal elements. Note that
voxelizing an implicit representation of the input induces a number
of drawbacks: even using a high-resolution sparse data structure
to store a rasterized implicit surface, the ability to represent accu-
rately sharp features requires prohibitive computational costs and
memory overhead. This is problematic not only for the initial in-
side/outside discretization, but also when chaining morphological
transformations which typically give rise to key features that need
to be preserved along the sequence.

Then, we compare our projective dilation to an explicit (point-
based) Minkowski sum [Lien 2007]. In Fig. 15, we can observe
that, with the FanDisk model for instance, our approach prop-
erly captures sharp features without introducing oscillations on the
smooth regions, which allows sequencing the operators for higher
level analysis (see Sec. 5). We reports timings in Tab. 2.

An alternative to our point-based framework would be to compute
a (e.g., Poisson [Kazhdan et al. 2006]) mesh reconstruction of the
point cloud before using mesh-based Minkowski sums [Campen
and Kobbelt 2010] to perform morphological analysis. Although
mesh-based Minkowski sums clearly target different application
scenarios, it is interesting to see that our approach is almost 2 or-
ders of magnitude faster for better visual quality compared to the
method from Campen et al. [2010] (see Fig. 15 and Tab. 2).

5 Applications

Our framework allows to design a variety of shape analysis methods
directly on point sets. As shown below, in spite of their high-level
impact on the shape geometry or topology, these applications are
very simple to implement once our operators in hand.

5.1 Projective Medial Axis

The medial axis [Amenta et al. 2001], an important tool in geom-
etry modeling, is used to characterized both the geometry and the
topology of a shape. When this shape is modeled with a point set,
the computation of the medial axis usually relies, in one way or
another, on the meshing of the set followed by a medial-axis trans-
form. Our framework allows to sample it directly from the input
point cloud. Indeed, by definition, all the singularities emerging
from an erosion with a spherical PSE at scale t are located on the
medial axis. Our erosion operator reaches these singularities as the
local intersection of several PSEs. Consequently, when growing the
scale of the PSE, the locii of theses singularities sweep a piecewise
smooth surface which approximates the medial axis accurately.

Input Projective MA Input Projective MA Input Projective MA

Filtered

Figure 16: Projective medial axis sampling. For the Neptune model, we present both the full res. medial axis and a filtering based on a
preliminary hysteresis shape filtering (see Sec. 5.2).

PowerCrust Ours
Models Time Mem. Time Mem. RMS
Neptune 840s 21Gb 92s 1.5Gb 3.3x1e-4
Filigree 196 7.6Gb 69s 1.2Gb 2.5x1e-4
Oil Pump 162s 6.7Gb 66s 1.2Gb 1.2x1e-3

Table 3: Medial Axis : comparison with powercrust. The RMS
error is expressed w.r.t. to the input model bouding box diagonal.

Algorithm We sample the medial axis of Π using a set of points
M on IΠ and projecting each point πj P M in three steps. First,
we compute tj the local feature size as the radius of the minimal
sphere tangent to πj and touching a point of Π:

tj � min
πiPΠ

1

2

}pj � pi}
2

ppj � piq � nj
(20)

Secondly, we perform a rough medial axis projection by pushing πj
along its normal such that mj � pj�tj �nj . Third, we project mj

onto the singularities of PE with a spherical PSE of scale tj . To
do so, we analyze the mean shift’s modes distribution used to fit the
PSE (see Sec 3 and Eq. 10). If we detect a single mode, the sample
is discarded. Otherwise, we iteratively project it on the intersection
of the local PSE modes and output the resulting location.

This projective approach to the computation of the medial axis does
not require any intermediate mesh and allows to densely sample the
medial axis directly from the input cloud (see Fig. 16). However,
if a meshed medial axis is required in the application scenario, we
generate M as the vertex set of a polygonization of Π and keep the
so-defined connectivity during the projection. In practice, we use a
marching cube meshing a PSS defined from Π.

Comparison We compare our projective medial axis sampling to
the PowerCrust algorithm [Amenta et al. 2001], which is a popu-
lar method to compute a medial axis from a point set. It is based
on the 3D Voronoı̈ tessellation of the input set and outputs a mesh
representing the medial axis.

In terms of quality, the PowerCrust generates a noisier medial axis
compared to ours, even on nearly perfect input (see on Fig. 17, top)
and is less robust to incomplete point clouds with large missing re-
gions (see on Fig. 17, bottom). Concerning performance, we report
time and memory measures in Tab. 3: our projective approach is
about one order of magnitude faster, requiring up to one order of
magnitude less memory. The distance between both medial axes is

Input Projective MAPowercrust MA

Figure 17: Medial axis comparison to Powercrust, with a high
quality input point cloud (top) and an incomplete one coming from
a range scan (partial input, bottom).

also negligible (excluding the case of incomplete point clouds). We
observed a similarly good approximation (RMS error below 1e-4
of the bounding box diagonal) when comparing to a union-of-balls
medial axis such as used as input by Miklos et al. [2010].

5.2 Hysteresis Shape Filtering

Linear filters are efficient at removing small scale geometric fea-
tures from surfaces. However, for larger structures, they often
fail at doing so without severely damaging the rest of the object.
With point morphology, we can selectively remove structures of a
given size while preserving a rich signal everywhere else by simply
stringing together (i) a closing by a PSE of size sC and (ii) an open-
ing by a PSE of size sO: OΠ � CΠ. Intuitively, this corresponds to
an hysteresis process which “carves” convex parts smaller than sO
and “fills” concave ones smaller than sC .

Input APSS FilteringHysteresis Shape Filtrations

Figure 18: Hysteresis shape filtering. At small scale (middle left, sC � 0 and sO � 0.004) only the teeth are removed. Increasing sO to
0.006 (middle right), claws are removed. The APSS filtering (right) is performed with the smallest support removing the raptor’s teeth.

We show in Fig. 18, that this filtering method removes the teeth of
the Raptor when using a small value of sO while preserving the
rest of the shape. Increasing the hysteresis threshold (sO � 0.006),
the claws of its forelegs disappear. When applied prior to our pro-
jective medial axis sampling (see Sec. 5.1), such as with the Nep-
tune model (see Fig. 16 right, computed with sC � sO � 0.008),
this hysteresis process acts as a medial axis filtering [Miklos et al.
2010]. Another example is shown with the Mammoth model (see
Fig. 1) where we used a closing of size sC � 0.1 and an opening
size sO � 0.01. As a result, almost all its ribs are removed, pre-
serving all the rest of its bone structure (4 legs, a head, a tail and
horns).

5.3 Geometry Preserving Topological Simplification

Finally, beyond geometric structure removal, point clouds may im-
plicitly contain a number of topological defects, with numerous un-
wanted tunnels and handles revealed in the forthcoming stages of
the pipeline (e.g., meshing, rendering). Usually this issue is solved
by either strongly low-pass filtering the point set before reconstruc-
tion or by manually editing it. Our framework provides a direct
solution to this problem. Indeed, a closing by a small spherical
PSE naturally fills these tunnels and handles while preserving the
fine details in the other regions of the surface. We illustrate this ef-
fect on the Filigree model (see Fig. 19, top): this model has a high
genus and applying a PSS interpolation with large support to reach
a simpler topology loses most of the on-surface signal. On the con-
trary, closing it with our framework, even with a large PSE, retains
a significant part of this signal, all the way down to genus 0. In
Fig. 19 (bottom), we process a CT scan model of a skull with a high
genus. Using a small PSE (0.01), we reduce the genus from 520
to 47: this removes small tunnels but preserves larger topological
structures as well as the geometric texture of the input. In compar-
ison, an APSS interpolation – even with a much bigger support –
only simplifies to genus 68 and again over smooths the entire shape.
Lastly, a feature-preserving RiMLS interpolation is stuck to genus
78 at similar scale, and still loses much more information than our
morphological approach.

6 Discussion

Limitations and Future Work. There are several limitations with
our current pipeline which open potential research directions. First,
we use a PSS as the underlying surface model of our framework.
Although efficient to compute, PSS remain local solutions and are
sensitive to structured outliers and poor input sampling conditions.
An interesting direction for future work would be to use a better

Input APSS Interpolation Projective Closing

Genus 52

Input APSS Interpolation Projective ClosingRiMLS Interpolation

Genus 0 Genus 0

Genus 520 Genus 68 Genus 78 Genus 47

Support = 0.02 Support = 0.03 PSE scale = 0.01

Figure 19: Geometry-preserving topological simplification. Top:
an extreme simplification to sphere topology. For both APSS and
closing we used the miminal radius to reach genus 0. Bottom:
topology cleaning of a skull scan.

inside/outside classification technique [Jacobson et al. 2013] and
account robustly for outliers [Lipman et al. 2007]. Second, if a
connectivity is provided with the input point set, our projective ap-
proach is currently blind to it. Accounting for this information, even
partially, would be useful for some applications scenarios. Third,
although our framework supports a great variety of structuring el-
ements, the applications we proposed are focused on the spherical
case. Alternative PSEs, such as the cubic one for instance, could
be instrumental for tight bounding volume computation, polycube
generation or volume meshing. Interestingly, the form of our struc-
turing element allows for spatial variability (see Fig. 20 for such an
experiment), opening a potential direction toward spatially-varying
morphological analysis. Last, analyzing the optimal sampling con-
ditions at this stage is an interesting direction for future work and
defining these transformations without any intermediate sampling
step an even more exciting problem.

Conclusion. We have proposed a complete framework for the
morphological analysis on point clouds. By introducing a new
model for the structuring element and substituting the Minkowski
sum with a new projection procedure, we can robustly explore the
dilation and erosion of the input sampled shape in a completely
meshless context. Using our morpho-adaptive sampler then al-
lows to compute sequences of morphological alterations, in partic-
ular openings and closings, revealing the singular structures of the

Input Spatially Varying Dilations

Figure 20: Spatially Varying PSE. The variational nature of our
structuring element allows to continuously morph its shape and
open the way for spatially varying morphological analysis.

point set. Based on this framework, we have proposed three new
applications: a projective approach to the direct sampling of the
medial axis, a controllable mechanism for selective shape filtering
by hysteresis and a geometry-preserving topological simplification
method. Although clearly non trivial, these applications boil down
to simple sequences of our operators.

Acknowledgements We thank the anonymous reviewers for
their suggestions and Isabelle Bloch for her advices. This work
has been partially funded by the European Commission under con-
tracts FP7-323567 HARVEST4D and FP7-287723 REVERIE, and
by the ANR iSpace&Time project.

References

ADAMSON, A., AND ALEXA, M. 2004. Approximating bounded,
non-orientable surfaces from points. In Proceedings of the Shape
Modeling International 2004, IEEE Computer Society, Wash-
ington, DC, USA, SMI ’04, 243–252.

ADAMSON, A., AND ALEXA, M. 2006. Point-sampled cell com-
plexes. ACM Trans. Graph. 25, 3, 671–680.

ALEXA, M., AND ADAMSON, A. 2009. Interpolatory point set sur-
faces—convexity and hermite data. ACM Trans. Graph.
28, 2 (May), 20:1–20:10.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2001. Point set surfaces. In Proceedings
of the conference on Visualization ’01, IEEE Computer Society,
Washington, DC, USA, VIS ’01, 21–28.

ALEXA, M., RUSINKIEWICZ, S., ALEXA, M., AND ADAMSON,
A. 2004. On normals and projection operators for surfaces de-
fined by point sets. In In Eurographics Symp. on Point-Based
Graphics, 149–155.

AMENTA, N., AND KIL, Y. J. 2004. Defining point-set surfaces.
In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA,
SIGGRAPH ’04, 264–270.

AMENTA, N., CHOI, S., AND KOLLURI, K. 2001. The power
crust. In 6th ACM Symposium on Solid Modeling, 249–260.

BABAUD, J., WITKIN, A. P., BAUDIN, M., AND DUDA, R. O.
1986. Uniqueness of the gaussian kernel for scale-space filtering.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 1 (Jan.), 26–33.

BARKI, H., DENIS, F., AND DUPONT, F. 2011. Contributing
vertices-based minkowski sum of a nonconvex–convex pair of
polyhedra. ACM Trans. Graph. 30 (Feb.), 3:1–3:16.

BOWERS, J., WANG, R., WEI, L.-Y., AND MALETZ, D. 2010.
Parallel poisson disk sampling with spectrum analysis on sur-
faces. In ACM SIGGRAPH Asia 2010 papers, ACM, New York,
NY, USA, SIGGRAPH ASIA ’10, 166:1–166:10.

CAMPEN, M., AND KOBBELT, L. 2010. Polygonal boundary
evaluation of minkowski sums and swept volumes. Computer
Graphics Forum 29, 5, 1613–1622.

CHEN, Y., WANG, H., W. ROSEN, D., AND ROSSIGNAC, J. 2005.
A point-based offsetting method of polygonal meshes. Tech. rep.

CHENG, Y. 1995. Mean shift, mode seeking, and clustering. IEEE
Trans. Pattern Anal. Mach. Intell. 17, 8 (Aug.), 790–799.

FLEISHMAN, S., COHEN-OR, D., AND SILVA, C. T. 2005. Robust
moving least-squares fitting with sharp features. ACM Trans.
Graph. 24, 3, 544–552.

FUKUNAGA, K., AND HOSTETLER, L. D. 1975. The estimation
of the gradient of a density function, with applications in pattern
recognition. IEEE Transactions on Information Theory 21, 1,
32–40.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 209–216.

GUENNEBAUD, G., AND GROSS, M. 2007. Algebraic point set
surfaces. In ACM SIGGRAPH 2007 papers, ACM, New York,
NY, USA, SIGGRAPH ’07.

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013.
Robust inside-outside segmentation using generalized winding
numbers. ACM Trans. Graph. 32, 4, 33:1–33:12.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the fourth Eurograph-
ics symposium on Geometry processing, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, SGP ’06, 61–70.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL,
H.-P. 2001. Feature sensitive surface extraction from volume
data. In Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’01, 57–66.

KOLLURI, R. 2008. Provably good moving least squares. ACM
Trans. Algorithms 4, 2 (May), 18:1–18:25.

LEVIN, D. 1998. The approximation power of moving least-
squares. Mathematics of Computation 67, 1517–1531.

LEVIN, D. 2003. Mesh-independent surface interpolation. Geo-
metric Modeling for Scientific Visualization 3, 37–49.

LIEN, J.-M. 2007. Point-based minkowski sum boundary. In
Proceedings of the 15th Pacific Conference on Computer Graph-
ics and Applications, IEEE Computer Society, Washington, DC,
USA, 261–270.

LIPMAN, Y., COHEN-OR, D., LEVIN, D., AND TAL-EZER, H.
2007. Parameterization-free projection for geometry reconstruc-
tion. ACM Trans. Graph. 26, 3.

MELLADO, N., BARLA, P., GUENNEBAUD, G., REUTER, P.,
AND SCHLICK, C. 2012. Growing least squares for the contin-

uous analysis of manifolds in scale-space. Computer Graphics
Forum (July).

MIKLOS, B., GIESEN, J., AND PAULY, M. 2010. Discrete scale
axis representations for 3d geometry. In ACM SIGGRAPH 2010
Papers, ACM, New York, NY, USA, SIGGRAPH ’10, 101:1–
101:10.

MOLCHANOV, V., ROSENTHAL, P., AND LINSEN, L. 2010. Non-
iterative second-order approximation of signed distance func-
tions for any isosurface representation. Computer Graphics Fo-
rum 29, 3, 1211–1220.

NAJMAN, L., AND TALBOT, H., Eds. 2010. Mathematical Mor-
phology: From Theory to Applications. Wiley.

NELATURI, S., AND SHAPIRO, V. 2009. Configuration products
in geometric modeling. In 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, ACM, New York, NY, USA,
SPM ’09, 247–258.

OHTAKE, Y., AND BELYAEV, A. G. 2002. Dual/primal mesh opti-
mization for polygonized implicit surfaces. In Proceedings of the
Seventh ACM Symposium on Solid Modeling and Applications,
ACM, New York, NY, USA, SMA ’02, 171–178.

ÖZTIRELI, C., GUENNEBAUD, G., AND GROSS, M. 2009. Fea-
ture preserving point set surfaces based on non-linear kernel re-
gression. Computer Graphics Forum 28, 2, 493–501.

ÖZTIRELI, A. C., ALEXA, M., AND GROSS, M. 2010. Spectral
sampling of manifolds. In ACM SIGGRAPH Asia 2010 papers,
ACM, New York, NY, USA, SIGGRAPH ASIA ’10, 168:1–
168:8.

PAULY, M., KOBBELT, L. P., AND GROSS, M. 2006. Point-
based multiscale surface representation. ACM Trans. Graph. 25
(April), 177–193.

PETERNELL, M., AND STEINER, T. 2007. Minkowski sum bound-
ary surfaces of 3d-objects. Graph. Models 69, 3-4 (May), 180–
190.

REUTER, P., JOYOT, P., TRUNZLER, J., BOUBEKEUR, T., AND
SCHLICK, C. 2005. Surface reconstruction with enriched re-
producing kernel particle approximation. In IEEE/Eurographics
Symposium on Point-Based Graphics, Eurographics/IEEE Com-
puter Society, 79–87.

SERRA, J. 1983. Image Analysis and Mathematical Morphology.
Academic Press, Inc., Orlando, FL, USA.

A Appendix

We derive a variational formulation of Mathematical Morphology
and show that our projective approach (Sec 3) is an approxima-
tion of this variational formulation. Note that all the proofs in
Sec. A.2, A.4, A.6, A.7 are provided as additional materials. In
the following an input shape I is defined as a 3-manifold compact
subset of R3. First we recall the classical Mathematical Morphol-
ogy which is based on set theory.

A.1 Set Morphology

Set Structuring Element. A structuring element B is defined as
follows:

B � R3, 0 P B, B is compact and connected (21)

And B: is defined as the symmetric of B w.r.t 0. The translated SE
Bc with c P R3 is defined as:

Bc � tb� c|b P Bu (22)

Set Morphology. Given an input shape I and a SE B, the set Di-
lation is defined as:

DI,B �
¤
cPI

Bc (23)

The boundary associated with this set Dilation is defined from a
topological point of view as:

BDI,B � tx P R3, @r D ppu, quq P N r
x | pu P DI,B , qu R DI,Bu

(24)

A.2 Set Boundary Equivalence

Equivalence Theorem. Given an input shape I and a SE B we
have:

DI,B �
¤
cPI

Bc �
¤
cPBI

Bc Y I (25)

A.3 Variational Morphology

We define a variational formulation of the set morphology.

Variational Subset of R3. Given a compact subset B of R3, we
define its variational representation as a (at least) C0 scalar field
B : R3 Ñ R such as:

Bpxq �

$'&
'%
 0, if x P B̊

0, if x P BB

¡ 0, if x R B

(26)

Variational Structuring Element. Given a SE B we define its
variational SE representation as the variational representation B
of B. We define a translated variational SE Bc as:

Bc : R3 Ñ R,x Ñ Bpx� cq (27)

Variational Morphology. Given an input shape I andB a SE with
its variational SE representation B , we define a variational Dila-
tion as:

DI,Bpxq � min
cPI

Bcpxq (28)

The boundary associated with this variational Dilation is defined
as:

BDI,B � tx |DI,Bpxq � 0u (29)

A.4 Set and Variational Formulation Equivalence

Now, we link set and variational morphologies in the form of an
equality between the boundaries produced by both formulations.

Equivalence Theorem. Given an input shape I and B, a SE with
its variational SE representation B, we have:

BDI,B � BDI,B (30)

A.5 Variational Boundary Morphology

Variational Boundary Morphology. Given an input shape I with
its variational representation I and B a SE with its variational
representation B , we define (with ^ as the binary min) a varia-
tional boundary Dilation as:

DI ,Bpxq � min
c P R3

I pcq�0

Bcpxq ^ I pxq (31)

The boundary associated with this variational boundary Dilation is
defined as:

BDI ,B � tx |DI ,Bpxq � 0u (32)

A.6 Set and Variational Boundary Formulation Equiv-
alence

Now, we can show, similarly to variational morphology, but using
the set boundary formulation as a basis, the same equivalence:

Equivalence Theorem. Given an input shape I with its variational
representation I andB a SE with its variational representation B
we have:

BDI,B � BDI ,B (33)

A.7 Projective Morphology

Given an input shape I with its variational representation I and B
a SE with its variational representation B we define a projection
operator to reach BDI ,B:

PBpxq � x�Bc�pxq
∇Bc�pxq

}∇Bc�pxq}
(34)

c� � argmin
c P R3

I pcq�0

Bcpxq (35)

We can show that using the same definitions from Sec. 3.4 for P8
D ,

but using an optimized centroid c� defined as the exact solution of
Eq. 9 or Eq. 35, we can reach the actual Dilation BDI ,B:

Projection Theorem. For x P R3:

P8
D pxq P BDI ,B (36)

The same holds for the erosion.

A.8 Point Morphology as a Sampled Projective Mor-
phology

We can think of our morphological centroid as a sampled approx-
imation of the projective morphology. We aim at reformulating
Eq. 35 by a kernel density estimation of this global optimization
problem with non linear constraints. We tackle this global optimiza-
tion using the mean shift algorithm [Cheng 1995] on a sampling of
its objective function. Thus, we replace Eq. 35 by:

c� � argmin
c P R3

I ppiq�0

¸
i

pBpipxq � γqωσ
�
}c� pi}2

�
(37)

This equation is a simple reformulation of Eq. 35 where the objec-
tive function Bcpxq and the constraint I pcq � 0 are replaced by
a new objective function based on weighted kernel density estima-
tion. The constraint is replaced by kernel density samples, and the

objective function by weights on theses samples. The global off-
set γ � min

x P R3
Bpxq ensures the positiveness of the weights, and

as such makes the objective a proper density. We found that using
Gaussian kernels also for the weights improves stability. Addition-
ally this also transform the initial minimization equation into the
following maximization problem:

c� � argmax
c P R3

I ppiq�0

¸
i

ωσ pBpipxq � γqωσ
�
}c� pi}2

�
(38)

As a final step we instantiate the surface model I by the implicit
form of a PSS model The new objective function of Eq. 38 can
be maximized through the mean shift procedure [Fukunaga and
Hostetler 1975; Cheng 1995].

ckpxq �
¸
i

ωσp}c
k�1pxq � pi}q ωσpBpipxqqpi (39)

@πi P Π, I ppiq � 0 (40)

A.9 Normals of Point Morphology

The normals of the morphological surfaces are computed by taking
the gradient of their implicit forms:

npxq � ∇Bc�pxqpxq � ∇Bc�pxq∇c�pxq (41)

We compute ∇c�pxq recursively through Eq. 39:

∇ck �
¸
i

ωk�1
i pi∇θk�1

i � ck
¸
i

ωk�1
i ∇θk�1

i (42)

ωk�1
i � ωσp}c

k�1 � pi}q ωσpBpiq (43)

∇θk�1
i � �

2

σ2
ppck�1 � piq

T∇ck�1 �Bpi∇Bpiq(44)

Efficient Collision Detection While Rendering Dynamic Point Clouds
Mohamed Radwan∗ Stefan Ohrhallinger† Michael Wimmer‡

Vienna University of Technology, Austria

Figure 1: Left: Subsequent snapshots of an animated HORSE traversing continuously oscillating ground. Collisions between those two
dynamic point clouds are marked by circles and HORSE is shaded red. Right: TLDIs of two objects. Colliding extents are shaded red.

ABSTRACT

A recent trend in interactive environments is the use of unstruc-
tured and temporally varying point clouds. This is driven by both
affordable depth cameras and augmented reality simulations. One
research question is how to perform collision detection on such
point clouds. State-of-the-art methods for collision detection cre-
ate a spatial hierarchy in order to capture dynamic point cloud sur-
faces, but they require O(NlogN) time for N points. We propose
a novel screen-space representation for point clouds which exploits
the property of the underlying surface being 2D. In order for di-
mensionality reduction, a 3D point cloud is converted into a series
of thickened layered depth images. This data structure can be con-
structed in O(N) time and allows for fast surface queries due to
its increased compactness and memory coherency. On top of that,
parts of its construction come for free since they are already han-
dled by the rendering pipeline. As an application we demonstrate
online collision detection between dynamic point clouds. It shows
superior accuracy when compared to other methods and robustness
to sensor noise since uncertainty is hidden by the thickened bound-
ary.

Index Terms: Computer Graphics [I.3.5]: Computational Ge-
ometry and Object Modeling—Hierarchy and Geometric Trans-
formations Image Processing and Computer Vision [I.4.8]: Scene
Analysis—Surface Fitting

1 INTRODUCTION

This paper proposes a novel accelerated approach for construct-
ing and querying the underlying surface of dynamic point clouds.

∗e-mail: radwan@cg.tuwien.ac.at
†e-mail:ohrhallinger@cg.tuwien.ac.at
‡e-mail:wimmer@cg.tuwien.ac.at

When those point clouds are rendered, calculations from the point-
based rendering (PBR) pipeline are reused in the surface construc-
tion for the points inside the view frustum.

Collision detection requires determining the distance from the
shape boundary of the object. For point clouds, especially noisy
ones, reconstructing the surface as a triangulated mesh is a tedious
process which currently is not feasible to do online. Applications
where collision detection between dynamic point clouds is relevant
include moving and posing of objects, as well as touch and grip.
Such point clouds are dynamically changing environments, e.g., ac-
quired by sensors attached to drones in a disaster scenario as simul-
taneous location and mapping (SLAM), human avatars captured by
a Kinect, or deforming virtual objects for augmented-reality appli-
cations. Physically remote point clouds may be transposed into a
common coordinate system to allow for interaction. Finally, user
interaction can lead to non-rigid deformation or fragmentation.

We target medium-to-large and possibly noisy point clouds
which are dynamic in the sense of having little or no temporal co-
herence. Constructing a spatial hierarchy for geometry, e.g., bound-
ing volume hierarchies (BVH) [12], or tree structures [20], adds a
logarithmic time factor to collision processing with respect to the
number of handled points. This setup time is amortized only for
static point clouds. Using a BVH allows for deformations and lo-
cal rigid transformations, but not for entirely dynamic point sets.
With interactive applications, the interest is often concentrated in-
side the view frustum, since it determines what the viewer can see
and manipulate.

Our main goal is to enable online processing of medium-to-large
dynamic point clouds without temporal coherence, such as Kinect
input. We achieve this by avoiding construction of spatial hierar-
chies altogether and instead discretize the surface underlying the
points into a screen-space grid. This two-dimensional structure re-
duces the dimensionality of the grid and thus results in more com-
pact storage and faster intersection testing. The advantages of using
a grid remain, namely that construction and evaluation can be par-
allelized well on the GPU.

Our contributions are:

• Efficient reconstruction of connectivity for point clouds where
an estimation of local sampling density is available, even in
the presence of noise.

• Compact boundary discretization of point clouds by extend-
ing layered depth images with range, adapted to screen space.

• Reuse of parts of the rendering pipeline for constructing the
boundary data structure for the point cloud.

• Precise and online collision detection of dynamic point clouds
as an example application for surface distance queries.

2 RELATED WORK

Bounding volume hierarchies (BVHs). These are spatial object
representation structures that have been widely used in many appli-
cations. Different volume types are used to bound the geometric
primitives, such as AABBs [2], OBBs [8], DOPs [13], and convex
hulls [5]. BVHs are efficient in processing proximity queries, with
O(logN) time. Their construction of O(NlogN) is also considered
efficient, since for static objects the structure is constructed only
once at set up. However, updating a BVH of an entirely dynamic
data set is also of O(NlogN) time. Therefore, for data sets with
continuous temporal updates as we consider in this paper, BVHs
suffer from inefficiency, whether they are updated or constructed
from the start with every update.
Voxelization. Our work is related to scene voxelization approaches.
Eisemann and Decoret [6] utilized the capabilities of the GPU to
construct voxel-based representations which need not be aligned
in one (i.e., the view) axis but are restricted to a fixed number of
constant-size intervals, while Hinks et al. [11] use a similar repre-
sentation to construct solid models for computational modeling. An
older approach [4] also reconstructs a sampled surface implicitly at
grid cells using a signed distance function. We compute discrete
screen-space aligned layers instead, each layer represented by non-
aligned depth ranges.
Image-based techniques for collision detection. Such tech-
niques [14, 9, 10] do not require any pre-processing, and thus are
appropriate for dynamically deforming objects. In [10], layered
depth images (LDI) are computed for both objects, then volume
representations are constructed and compared to find intersection
regions. The algorithm, and almost all image-based collision detec-
tion (CD) algorithms as well, targets triangulated meshes. To our
knowledge, only one approach [1] uses image space to detect col-
lision between point clouds, but is restricted to movement in 2.5D
space. They divide the space into slices and compute a height map
for each. The approach assumes that obstacles are nearly parallel to
YZ plane and perpendicular to XY plane, and uses these assump-
tions to infer obstacle information and save them with each pixel.
Static point-cloud collision detection. The most important ap-
proach [12] is both robust to noise and fast (interactive if need be,
depending on the time budget). They construct a BVH and use
a collision probability measure between pairs of nodes, in order
to traverse the two objects’ hierarchies ordered by priority. In the
second stage, they sample the implicit surface at the leaf nodes to
measure separation distance. However, as mentioned before, con-
struction of a BVH is slow and can be memory-intensive, and the
entire data needs to reside in memory as well. Thus it is impractical
for large point sets and even detrimental to build such a structure
for points sets which change dynamically and are not queried often
enough to amortize its building cost. Our approach targets differ-
ent application scenarios, but it surpasses the accuracy achieved by
Klein’s algorithm [12], as is shown in Section 7. Pan et al. [16] ro-
bustly detect collisions between noisy point clouds by defining the

detection as a two-class classification problem and estimate colli-
sion probability with support vector machines, but runtime is com-
paratively slow. Our approach hides sensor noise by querying a
thickened boundary.
Dynamic point-cloud collision detection. A very recent pa-
per [17] uses BVHs and/or octrees to detect collisions and compute
distances between sensor-captured point clouds. They propose two
ideas, one is appropriate for static environments and the other for
dynamic ones. For dynamic environments, they propose to mu-
tually traverse an octree (environment point cloud) and an AABB
(robot), and do an unspecified, probably simple collision test at leaf
nodes. Although this approach for dynamic environments is simple,
we avoid building a spatial hierarchy at all and can keep the GPU
pipeline more occupied by streaming coherent data.

3 OVERVIEW

Our input data are unstructured points. We assume that the ren-
dering pipeline has already culled points against the view frustum
(or respective bounding box) and projected them into screen space.
Further we assume that the sampling density for the individual in-
put points is given, either globally uniform or, e.g., estimated from
sensor device properties.

In Section 4 we define a thickened boundary which envelops the
implicit surface of the point cloud, provided that the sampling is
sufficiently dense. We then transform it into projected space and fi-
nally discretize it in screen space, adapted to the view point. Based
on this representation, we show how the contained implicit surface
can be queried quickly. Then we explain in Section 5 how we effi-
ciently construct this boundary representation in parallel as a thick
layered depth image extended with depth range (TLDI). For this
we show reuse of several parts of a standard point-based render-
ing pipeline. We describe in Section 6 that detecting collisions by
querying the surface in this TLDI data structure is straightforward
to do. In Section 7 we compare our collision detection algorithm
with sampled meshes as ground truth and show that it is signifi-
cantly more precise than prior methods, robust in the presence of
noise and fast enough to handle dynamic point clouds at interactive
frame rates. We give concluding arguments in Section 8 along with
an outlook to the extensions we are currently working on.

4 SURFACE DEFINITION

Our goal is to determine the distance of a point p ∈ R3 to the man-
ifold, possibly bounded surface Σ that is implicitly defined by a set
of points S, sampled on or close to it. All distances are in the Eu-
clidean sense, unless otherwise noted. Since Σ is not known, we
first define a thickened boundary Ω that contains such a surface
near S, similar to an adaptive spherical cover as proposed in [15].
For precise evaluation of proximity queries to Σ we require that Ω

bounds it as closely as possible, but also want to avoid holes in Ω

that are not present in S. Evaluating the distance ‖p,Ω‖, which in
turn allows us to approximate ‖p,Σ‖, requires representation of Ω

by a discrete spatial structure. Our design requirements are that it
is compact and can be both constructed and evaluated quickly.

4.1 Spherical Cover Ω Containing the Surface Σ

First, we want to define a volume Ω which covers the surface Σ

underlying the samples so that we can perform distance queries to
Σ. Let Bi(si,ri) be the balls centered at samples si ∈ S in R3 with
radii ri chosen such that Σ is enclosed entirely in the union of balls
Ω (see Figure 2a):

Ω =
N⋃

i=0
Bi(si,ri)

If S is sampled non-uniformly densely, balls which are close but
from geodesically remote parts of the surface may merge in Ω, and
then Ω is not homeomorphic to Σ. This is not a problem for our

(a) Spherical cover (b) Cylinders (c) Blended and discretized

Layer 1

Layer 2

Layer 3

Layer 4

Viewing
Direction

(d) TLDI

Figure 2: Representations of the volume bounding the surface Σ: a) Union of balls Ω centered at samples. b) Projected onto the view plane
as cylinders in object space Ω′. c) Blended depth intervals Ω̂. d) TLDI shaded per layer.

use case, since determining the distance from a point p ∈ R3 to a
surface neither requires that surface to be manifold nor orientable.

If the radii ri associated with the samples are just sufficiently
large with respect to local sampling density, the Bi will overlap such
that Σ is entirely contained in Ω. We assume ri either to be a global
constant, estimated from range image properties or determined in
preprocessing, as for out-of-core huge point clouds [19]. Alterna-
tively, ri could be estimated locally by determining k-nearest neigh-
bors in screen space, as shown in [18]. Note that real holes in the
surface which are smaller than ri could disappear in the representa-
tion.

Since Ω consists of balls, its thickness perpendicular to Σ will be
large and oscillate considerably between samples. Determining the
connectivity between samples would allow us to blend their balls
and result in a more equally thickened boundary. As mentioned
above, inserting the balls into a spatial hierarchy in R3 to recover
the connectivity is slow because we have to sort in three dimen-
sions. Instead, we show how to achieve this more efficiently in
projected (2-dimensional) space, which has something in common
with splat rendering, as described next.

4.2 Blending Cylinders in Projected Space
We define samples in S as connected if their balls overlap. Now
we want to locate the connectivity between the samples so that we
can blend their associated balls for neighbors to equalize bound-
ary thickness. This is easier if we project them from R3 onto a
plane. Then we just need to locate overlapping disks in that plane
and check if they also overlap in depth with their radii, similar to
rendering view-plane aligned splats. In object space this represents
testing plane-parallel cylinders which contain the balls and are of
minimum size (see Figure 2b). We name the union of cylinders Ω′.

Each point x̂ in the projection plane (i.e., the view plane) rep-
resents a view ray in object space and may intersect Ω′ multiple
times. Therefore each x̂ maps to a set of depth ranges (entry-exit
point pairs of Ω′) which we call its layers, represented by the func-
tion Fi(x̂) for layer i:

Fi(x̂) = {di,near,di, f ar}
We want to equalize the boundary thickness of Ω′ since its asso-

ciated values of F(x̂) change discretely at cylinder boundaries. So
we blend its values (both near and far) for the N connected sam-
ples si whose cylinders overlap with the corresponding entry-exit

pair along the view ray of x̂ as follows:

F̂i(x̂) =
N

∑
i=1

dir(‖x− si‖)

where r(x) = ex2
. We call Ω̂ the volume defined by the depth

range layers of F̂ .
In regions where the surface is mostly parallel to the view plane,

the set of cylinders intersected by a view ray in one layer is such
that each cylinder overlaps with each other in that set. Where the
surface is oblique, this may not hold because the depth range of
a layer becomes large. We call such a set of cylinders containing
non-overlapping subsets as stacked. For such stacks, we blend the
frontmost cylinder only with its overlapping cylinders in the stack
to get di,near, and similar for the backmost cylinder to get di, f ar.
Figure 3 explains the two cases.

Σ is not known but implicitly assumed through its set of samples
S. Nevertheless, we would like Σ to be bound by Ω̂, so we attempt
to define it to lie centered in Ω̂. The way in which Σ approximates
S can then be thought of as similar as a blended surface of splats.
Our results in Section 7 confirm that Σ̂ is reasonably close to S.

We would like to define Σ̂ as the set of centers of maximum balls
contained in Ω̂ which touch both sides of its boundary. However,
boundary sides of Ω̂ are not clearly defined, but shooting view rays
through it results in entry/exit pairs. Based on that information we
can define Σ̂ as the set of centers of maximum balls contained in
Ω̂ which are centered along a view ray and growing monotonically
either from its entry or exit point. A view ray then contains for
each layer F̂i either one or two balls. Σ̂ is similar to a subset of the
medial axis [3] of Ω̂ as the maximizing of balls along the view ray
prunes spurious branches in that direction. However, it may contain
spurious branches in the other axes.

4.3 Discretization of Ω̂ in Screen Space

For efficient spatial sorting, we discretize Ω̂ into a 2D grid with
screen-space resolution. This data structure is well suited to parallel
processing as the point primitives are streamed onto the GPU and
connectivity has local extent in screen space so there is not much
interdependency.

The result is a kind of non-aligned voxelization, since each pixel
can reference multiple layers in F̂ , but their depth range does not

Projection Plane

C1C2

C3

C4

x1ˆ x0ˆ

Projection Plane

x1ˆ x0ˆ

Figure 3: Left: This figure shows blending at stacked (x̂1) and non-
stacked (x̂0) view rays. Frontmost (cyan) and backmost cylinders
(red) are drawn with continuous lines, other cylinders as dashed.
View ray x̂0 enters the layer at cylinder C1 and leaves at C2, in-
tersecting three cylinders in total which all overlap and thus are
blended together to a single di. View ray x̂1 on the other hand inter-
sects a stack of cylinders, C3 in the front and C4 at the back. di,near
is then the result of blending C3 with its overlapping (light cyan)
cylinders and di, f ar similar for C4. Right: the result of blending are
the cylinders drawn with thick stroke.

correspond between pixels (see Figure 2c). A closely related con-
cept are layered depth images (LDI), which are typically used to
peel off surface layers from a mesh as shown in [7]. In our case,
layers represent depth ranges instead of scalar values, so we extend
the depth of an LDI with a second value to represent the near (en-
try) and far (exit) intersection of the thickened boundary. We name
this a thickened LDI (TLDI).

5 CONSTRUCTION OF TLDI
Constructing the TLDI for a point cloud peels off layers similar
as does depth peeling for a mesh (see Figure 2d). Since opera-
tions such as visibility culling, blending and normalization are in-
volved, we can partially reuse work already done in the standard
PBR pipeline which processes the points sequentially:
The Standard Three-Pass PBR Pipeline. The common pipeline
of surface splatting employed by PBR algorithms is generally com-
posed of three shader passes:

• Visibility Pass: All splats are simply rendered, depth culled,
leaving only the front-most fragments in the output buffer.

• Blending Pass: Fragments of the splats that are within a cer-
tain threshold from the front depth values are rendered to ac-
cumulate the weighted colors and the weights themselves.

• Normalization Pass: The accumulated weighted colors value
is divided by the accumulated weights value to get the blended
depth.

For the blending and normalizing passes, we simply replace val-
ues of color with depth (front and back values respectively).
Modifications for TLDI layer computation:

For constructing a layer of the TLDI, we insert three passes be-
tween the visibility and blending pass:

• Stacking Pass: Since points are not processed in order, cylin-
ders in a stack may occur after each other such that they do
not overlap. We maintain a zero-initialized bit array for an
assumed optimal stack size of size 128 bits, 32 bits for each
one of the RGBA channels, quantized by the radius of the first
encountered point. Subsequent cylinders encountered at that
pixel and inside its range fill up the bits corresponding to their
depth (see Figure 4).

• Counter Pass: The number of contiguous filled bits is deter-
mined, starting from the first filled bit.

• Back Visibility Pass: The previous count determines the back-
most cylinder in that stack and also in the current layer.

The two pipelines are displayed in Figure 5. For each pixel in the
TLDI, a pair of depth values (dnear,d f ar) is output. In our imple-
mentation, we actually store their average davg along with half their
distance, because for non-stacked pixels, davg already represents Σ.

In our experiments, we managed to capture all layers entirely
within our assumed stack size of 128 bits. However it is important
to note that layers exceeding this size would simply be split up into
two, adding another layer to the data structure but not changing the
underlying representation. We expect this to minimally decrease
performance, but accuracy would not be affected.

We execute the above pipeline for each layer of the point cloud,
however the collision detection application that we present next of-
ten terminates already after a single layer has been constructed.

6 COLLISION DETECTION AS AN APPLICATION

We now present collision detection as one application of querying
the TLDI representation of the implicit surface of S. We show that it
can be implemented efficiently by merging TLDI construction and
collision testing into an existing PBR pipeline.

Simply put, collisions are detected by intersecting view rays
from the camera for each pixel with the TLDI for each point cloud
and testing if their depth ranges along that ray (since close to Σ̂)
intersect. For non-colliding point clouds, this also infers the sepa-
ration distance in view direction, which especially makes sense for
an object moving with the camera, such as an avatar. We describe
next how the two point clouds’ collision and distance queries are
processed.

6.1 TLDIs Comparison
Comparisons between layers are performed pixel wise. A collision
is detected if at a pixel the depth ranges for layers from two objects
overlap. Since the boundary is thickened, we expect a number of
false positives, i.e., Ω̂0,Ω̂1 of the point clouds intersect while the
actual surfaces Σ̂0, Σ̂1 do not. In our experiments we discovered
that we could compress the thickness of Ω̂ in view direction by a
significant factor in order to eliminate most false positives while
keeping the number of false negatives small. Since Ω̂ is projected
in view direction, thinning it in this axis does not affect the gen-
eral observations made in Section 4, in fact it approximates Σ more
closely.

Since a collision may already be detected in the first layer (which
terminates our method), we do not have to construct all layers of the
object and compare them against each layer of the other object. In-
stead, we compute them in depth order on demand as long as no
collision is detected, as outlined below. This limits the number of

projection plane

0

0

0

0

.

.

.

projection plane

0

0

0

.

.

.

projection plane

0

0

.

.

.

projection plane

0

.

.

.

projection plane

0

.

.

.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4: The figure demonstrates how the connectivity of a stack inside a layer is tracked by a bit array in the stacking pass. Depth is
quantized into segments, where each segment is of height equal to the diameter of the first encountered cylinder in the initial visibility pass,
and the first segment aligned to its lower disc. In the subsequent stacking pass, cylinders of encountered points are projected to gain occupancy
information, as shown in order. Each cylinder fills the segments in the buffer bit that intersects with its cylinder depth interval. The order in
which points are projected is assumed to be random, and cylinders in the figure are not all the same size.

Figure 5: For TLDI construction we insert three additional passes
into a standard PBR pipeline.

depth comparisons by the number of layers per object, correspond-
ing to its view-dependent depth complexity.

Let there be two point clouds O0,O1. For O0, the first and second
layers – l0,0 and l0,1 – are computed. Then we consider the subset
of O1 which is clipped by the depth range of – and between – Ω̂

of l0,0 and l0,1, construct its layers and compare it against those
of O0. The clipping is repeated similar between subsequent layer
pairs l0,i−1, l0,i, for i ≥ 2, until the backmost layer of O0 has been
reached or a collision is detected.

6.2 Early Rejection Test
Since entire TLDIs have to be constructed in case of non-collision,
we add a quick rejection test in the beginning, where we simply
compare the front layer of O0 to the back layer of O1, and vice
versa. Since the front layer is the closest to the camera, a non-
collision is reported if for all pixels dnear of the front layer of O0 is
greater than d f ar of the back layer of O1. If the depth intervals of
those layers intersect, a collision is detected early as well. This test
can be performed quickly inside the standard PBR pipeline, as only
one depth interval is required to be blended. If the test does not
deliver any result, we continue the normal procedure of comparing
the layers, in which the already computed layers can be reused.

6.3 Integration into Existing PBR Pipeline
The overlap between the standard PBR pipeline and TLDI construc-
tion suggests an integration between those two. The early rejection
test already uses the same standard pipeline of rendering to create
the two front layers. In fact, the only difference is what is being
blended, color or depth. However, in rendering the two objects
are processed and z-culled together, while TLDI construction pro-
cesses one object at a time. The preferred integration scenario is to
blend both colors and depth while creating the front TLDIs of O0
and O1. While the TLDIs are used for collision detection, the two
frames with the blended colors can be merged into one by perform-
ing z-culling at each pixel using the corresponding TLDIs to choose
which color value is copied to the merging frame pixel.

We note that TLDI construction profits from the reuse of PBR
pipeline calculations for point-cloud data located inside the view
frustum. For many application scenarios, only these data are of
interest anyway, e.g., an avatar moving with the camera.

Point clouds are almost always perspectively projected onto
the screen by rendering pipelines, whereas the cylinders in sec-
tions 4, 5, 6 are assumed to be orthogonally projected. The inte-
grated pipeline has to use the same projection for both rendering
and TLDI and so we use perspective projection in our experiments.
This results in perspective foreshortening of the cylinders and thus
turns them into truncated cones. However, since the resulting sur-
face is only an approximation, accuracy is not affected significantly
as the results in Section 7 confirm.

6.4 Distance Queries
In addition to collision queries, our method can also incidentally
answer distance queries in case of non-collision. Since we do not
consider Σ̂ as orientable, the distance function we calculate with
respect to it is unsigned. We can therefore not decide if the distance
between two objects is one of separation or of penetration. When
layers l0,i, l1, j are compared to determine a collision, their absolute
depth difference per pixel is calculated as follows:

d(x̂) = min(|F̂i(near)− F̂j(f ar)|, |F̂j(near)− F̂i(f ar)|)
We keep track of dmin(x̂) at each pixel and then report its over-

all minimum in case of non-collision, which yields the separation
distance in view direction.

7 RESULTS

The algorithm is implemented in C++, OpenGL and GLSL. Tests
were run on Core2 Quad processor, 2.4 GHz, with 4 GB RAM, and
GeForce GTX 680 graphics processor.

We used the benchmark proposed by [21] for testing, in which
two copies of the same model are tested for collision against each
other. Both objects are normalized to fit in a 23 cube. The center of
one object is positioned at the origin, and the center of the second
is positioned at a distance d0 from the origin along the +x direc-
tion. The second object is compositely rotated about the y-axis and
the z-axis, with a number of small steps. The composite rotations
are iteratively repeated, each iteration starting from a position at a
distance di = d0− i∆d from the origin. We initialized d0 with 3.0,
31 iteration/distance, and 30 steps per rotation, which makes 900
cases per iteration/distance, and 27900 total cases. The camera is
positioned at coordinates (0,0,+4), and facing the origin. Point
clouds are perspectively projected with view angle 90◦ at planes
z =+1 and z =+6 from the camera position.

Accuracy and runtime results are computed for each distance by
averaging the results of all steps in the corresponding rotation. Ac-
curacy tests are performed by comparing our outcomes with those
of an exact mesh collision procedure. We call this percentage the
accuracy error, but it should be noted that it is not actually an error.
The polygonal mesh of a point cloud is an approximation of the sur-
face, but not the surface itself. So, we consider the mesh collision
test results as an approximation of the ground truth.

Four models were used for testing: Stanford BUNNY, AR-
MADILLO, DRAGON, and HAPPY polygonal models. For each
model, the point set has been extracted from the mesh and the ri for
its points determined by kNN with k = 7 for testing purposes, where
ri is set to 0.65 of the computed distance. An efficient screen-space
method to determine a radius containing kNN has been demon-
strated in [18]. They project cylinders onto a rather large frame,
1024×1024, to achieve accurate results.

Besides synthetic models, we also tested collision detection be-
tween the huge data set of the houses of EPHESUS (> 5M points)
captured by a laser scanner (see Figure 6), and a single HAPPY
model. We tried to imitate an interactive navigation experience by
considering the HAPPY model a human discovering the big model.

Figure 6: The houses of EPHESUS. Left: View from above of the
point cloud. Right: Closer view with splat rendering.

Table 1: The percentages of false negatives and false positives
with various compression ratios ρ for: BUNNY, ARMADILLO,
DRAGON, HAPPY.

ρ false negatives (%) false positives (%)
B A D H B A D H

1.0 0 0 0 0 0.92 0.47 0.47 0.12
0.5 0 0 0 0 0.68 0.29 0.29 0.08
0.25 0 0 0 0 0.52 0.23 0.21 0.03
0.1 0 0.1 0.01 0 0.43 0.18 0.15 0.02
0.05 0 0.01 0.02 0.01 0.39 0.17 0.14 0.02
0.01 0.01 0.03 0.05 0.05 0.33 0.16 0.13 0.01
0.005 0.05 0.04 0.06 0.06 0.3 0.16 0.13 0.01

The same benchmark described above is used, where EPHESUS
keeps its size, HAPPY scaled to the size of a human – relative
to EPHESUS – and the view emanates from the eyes of HAPPY
and directed forward. HAPPY is initially positioned at coordinates
(0,0,+D), where D is the x-extent of the EPHESUS bounding box.
Number of iterations and number of steps per iteration are the same
as above. A polygonal mesh of EPHESUS is not available, so only
runtime is measured.

Figure 7: Accuracy error of collision detection compared with the
sampled mesh as approximate ground truth. Based on these results
we chose ρ = 0.05 for subsequent tests.

When querying the intersection between thickened bounding in-
tervals as an indicator of collision, we have encountered very few
cases of false negatives in our experiments (none for most object
pairs tested), but the ratio of false positives is rather high (see Ta-
ble 1). Compressing the intervals as mentioned in Section 6.1 with a
factor ρ decreases this number effectively while yielding only an in-
significant number of false negatives. The accuracy resulting from
different compression values is plotted in Figure 7, which shows
that accuracy peaks for ρ between 0.01 and 0.05. Smaller values of
ρ yield less false negatives, but more false positives, which results
in less overall accuracy. Based on that, we chose ρ = 0.05 for all

Table 2: Point clouds with total TLDI construction time (in mil-
lisec). CD runtime, time overlap with rendering, and error from
mesh ground truth are averaged following the benchmark of Sec-
tion 7.

Model Size TLDI CD Render Error
Bunny 36k 13.9 2.2 0.9 0.39 %
Armadillo 173k 43.7 8.1 3.1 0.18 %
Dragon 438k 122.5 15.8 6.7 0.16 %
Happy 544k 134.9 18.3 8.2 0.03 %

following tests, to maximize accuracy (= minimizing sum of false
negatives and false positives).

Figure 8: Accuracy error vs distance for all models.

Accuracy
Figure 8 shows a plot of accuracy error against distance di. For

all models, the error is zero when the two objects centers are either
far or close, and increases in between, where the object surfaces
collide. The accuracy error stays below 3% for all models for any
distance. Table 2 shows accuracy error averaged over distances, and
is always below 0.4%. Note that false negatives result from Ω̂ not
covering Σ̂ entirely. This can occur if either ρ is too small, overly
compressing Ω̂, or if radii are estimated too small.

Figure 9: Accuracy error for different resolutions of HAPPY.

We are particularly satisfied by the accuracy results of our
method. In Figure 10, [21] showed accuracy error of different reso-
lutions of HAPPY. We reproduce this plot based on the same bench-
mark in Figure 9, albeit with the different resolutions of HAPPY
which were available to us. Interestingly their accuracy do not
improve much when increasing sampling density (always < 7%).
Our results improve significantly with increasing sampling density
as we expect the TLDI to approximate the surface better, down to
< 0.3% for the original resolution.

Figure 10: Runtime vs distance.

Figure 11: Runtime for colliding large EPHESUS (5M points) with
HAPPY averaged over different distances (using benchmark). The
numbers on the x-axis are the distances normalized to [0,1].

Runtime
The result of the benchmark shows that runtime increases ap-

proximately linearly with point cloud size (see Table 2). The same
table also shows the large overlap of collision detection with the
rendering pipeline: about 40% of collision detection runtime is re-
moved if the point clouds are rendered as well. Colliding the large
EPHESUS model with HAPPY is still possible at interactive frame
rates (see Figure 11). Similar to accuracy, runtime also decreases
for near or far object centers and increases in between where sur-
faces collide, as Figure 10 demonstrates.

Figure 12 confirms that the early rejection test outlined in Sec-
tion 6.2 reduces runtime significantly as well.

The runtime of TLDI construction is directly proportional to
point cloud size, and number of captured layers, whereas the num-
ber of layers in turn depends on how tight the TLDI is. The more
the TLDI adheres to the actual surface, the more layers are captured
and the longer the construction time. TLDI tightness is controllable
via scaling the splats radius and the frame resolution. For colli-
sion detection, it is necessary to construct a tight TLDI to achieve
accurate results, but this is balanced by the fact that it is not nec-
essary to construct the whole TLDI as explained in Section 5. For
other applications where the TLDI functions as a bounding vol-
ume rather than a surface estimator, the construction time can be
traded off with the tightness level. Table 3 shows the runtime of
full TLDI construction for HAPPY and DRAGON models, against
different frame resolutions and splat scales. The table shows the
accuracy error values as well. The smallest error is achieved by a
radius scale of 1.0 and frame resolution of 1024×1024. There is no
specific rule how accuracy error changes with the two parameters,
but the trend is that it decreases as the radius scale increases.

Comparing the runtime of our method to others, e.g. [21], is of

Figure 12: Runtime for HAPPY (using benchmark), without (blue)
and with (red) the early rejection test. It clearly shows that it in-
creases efficiency significantly.

Table 3: The average TLDI construction time for HAPPY and
DRAGON models at different frame resolutions and splat scales.
Average number of captured layers are denoted inside brackets, and
accuracy error values are denoted below in italic. The values on top
of the columns indicate the scaling value of the splat radius. The
numbers show how the TLDI construction time decreases as the
frame resolution decreases and the splat radius scale increases.

Model Resolution 1.0 3.0 5.0

Happy

1024×1024 134.9(10.4) 88.2(6.9) 67.5(5.4)
0.16% 0.79% 1.9%

512×512 121.8(9.5) 85.3(6.8) 68.6(5.6)
0.18% 0.67% 1.7%

256×256 113.4(9.0) 75.9(6.2) 63.2(5.1)
0.71% 0.57% 1.4%

Dragon

1024×1024 122.5(11.5) 98.2(9.1) 93.4(6.4)
0% 0.20% 0.24%

512×512 116.2(11.1) 94.2(9.0) 64.6(6.2)
0.16% 0.19% 0.63%

256×256 108.3(10.1) 89.9(8.7) 62.5(6.2)
0.67% 0.25% 0.42%

limited usefulness. Their algorithm was designed for static objects,
as the underlying structure takes considerable time to construct.
For those pre-processed data structures it performs collision queries
faster than ours (being of O(logN) versus our O(N) complexity),
but for dynamically changing objects, hierarchy construction time
needs to be added to each query, and for that our algorithm is faster
by orders of magnitude, even considering that they were measured
on older hardware. The construction of their underlying BVH may
become faster if parallelized and performed on modern hardware.
The tested models contain about 1M points. For objects of that size,
a BVH-based algorithm of O(NlogN) complexity would require an
extra time factor O(logN) of 20, which is quite large.
Robustness to Noise

Since the boundary of Ω is thickened to the extent of sampling
density, we expect it to smooth noise up to a similar level. We
tested the robustness of our approach by adding Gaussian noise with
different σ to HAPPY, the most densely sampled synthetic model
used in our tests. We set σ = nravg, where ravg is the average over
ri, and random n = [0,1]. Runtime did not change significantly and
accuracy error was always below 3% (see Figure 13).
Real Data and Dynamic Simulation

Point clouds captured with the Kinect often exhibit noise and
holes, as ROOM (300k points, captured by Kinect) shown in Fig-
ure 14a. Figures 14b-d show snapshots of collision detection be-
tween BUNNY and ROOM. Collisions are robustly detected near

Figure 13: Accuracy error for different levels of uniform Gaussian
noise (σ = nravg) added to HAPPY.

flat surfaces and small holes. We also simulated a dynamic envi-
ronment of an animated model (HORSE) (10 frames, 8.5k points
each) traversing the EPHESUS model. Figure 15 shows snapshots
from the simulation. BUNNY and HORSE are rendered as meshes
in the figures for visual plausibility.

7.1 Complexity Analysis

Worst-case time complexity between pairs of objects occurs only
if there is no collision and the early rejection test does not detect
that. An example is an object that is partially obscured from the
view point by a concavity in the other object. This requires con-
struction of all TLDIs per point cloud and comparing all of those
for one point cloud against the subsets of TLDIs clipped between
them. TLDI construction is linear in the size of the point clouds,
with the added factor of depth complexity, as points are processed
in order for each layer and therefore O(LN).The collision test is
output-sensitive with O(LXY) for screen space resolution X×Y and
scales with the depth complexity of the point cloud being clipped.

For collision detection among a set of more than two point
clouds, using the proposed algorithm would make the overall run-
time (both construction and collision detection) quadratic, as the
construction of a cloud TLDI is dependent on the other cloud TLDI
and thus would be reconstructed for each comparison. However, if
the number of clouds is large and the size of each cloud is relatively
small, we could also construct the TLDI of each point cloud just
once and separately. The then linear TLDI construction time has
the trade-off that the previously linear time of collision detection
becomes O(L1L2XY).

If we compare a single large point cloud (environment) against
multiple small ones (avatars), we could also use another approach.
In that case, all avatars are treated as a single combined point cloud,
and the same complexity of a single pair comparison holds. Increas-
ing the number of avatars in that scenario increases N2 in the above
expression, and therefore construction time increases linearly. In
order to know which avatars collide with the environment, labels at
the points would have to be stored as well, which would result in a
small increase in memory storage.

8 CONCLUSION AND FUTURE WORK

We have proposed a novel data structure for representing the sur-
face of dynamic point clouds. We show that it can be constructed
efficiently and reuse computation from an existing PBR pipeline.
As an application we have demonstrated online collision detection
for large models. Our results show that our surface extraction is sig-
nificantly more precise than for a previous method [12], especially
where points are densely sampled, and that it is also robust to noise
since the surface underlying the points is thickened.

(a) (b) (c) (d)

Figure 14: Collision detection between BUNNY and the (a) Kinect captured ROOM. BUNNY is blue in cases of non collision, and turns red
in cases of detected collisions. (b) shows BUNNY near a flat surface, and crosses it in the next frame (c). Both cases are correctly detected.
BUNNY passes through a wide hole in (d) which is not recognized as part of the surface, and thus no collision is detected.

Figure 15: Animated HORSE inside EPHESUS, passing through a column.

We are currently working to improve our data structure in terms
of compactness and efficiency of construction and traversal. Im-
plementation of the more exact surface extraction for stacks would
even further increase accuracy, since we currently simply assume
the center of the depth range of a layer along a view ray to be the
surface intersection. We think that augmenting the TLDI with data
from sampling such as normals and uncertainty information could
permit even more precise surface extraction. TLDI could also be
used instead of a voxelization as a more compact representation,
for example to accelerate global illumination computations.

ACKNOWLEDGEMENTS

This research was supported by the EU FP7 project HARVEST4D
(no. 323567).

REFERENCES

[1] R. K. Anjos, J. M. Pereira, and J. F. Oliveira. Collision detection
on point clouds using a 2.5+d image-based approach. J. of WSCG,
20(2):145–154, 2012.

[2] G. V. D. Bergen. Efficient collision detection of complex deformable
models using AABB trees. J. of Graphics Tools, 4(2):1–14, 1997.

[3] H. Blum. A Transformation for Extracting New Descriptors of Shape.
In W. Wathen-Dunn, editor, Models for the Perception of Speech and
Visual Form, pages 362–380. MIT Press, Cambridge, 1967.

[4] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. Proc. SIGGRAPH, pages 303–312, 1996.

[5] S. A. Ehmann and M. C. Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. cgforum,
20:500–510, 2001.

[6] E. Eisemann and X. Dècoret. Fast scene voxelization and applications.
ACM SIGGRAPH Symp. on Interactive 3D Graphics & Games, pages
71–78, 2006.

[7] C. Everitt. Interactive order-independent transparency. Technical re-
port, NVIDIA, 2001.

[8] S. Gottschalk, M. Lin, and D. Manocha. OBB-tree: A hierarchical
structure for rapid interference detection. SIGGRAPH 96 Conf. Proc.,
pages 171–180, Aug 1996.

[9] N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and reliable col-
lision culling using graphics hardware. Vis. and Computer Graphics,
IEEE Trans. on, 12(2):143–154, Mar-Apr 2006.

[10] B. Heidelberger, M. Teschner, and M. H. Gross. Detection of colli-
sions and self-collisions using image-space techniques. In J. of WSCG,
volume 17, pages 145–152, 2004.

[11] T. Hinks, H. Carr, L. Truong-Hong, and D. Laefer. Point cloud data
conversion into solid models via point-based voxelization. Surveying
Engineering, 139(2):7283, 2013.

[12] J. Klein and G. Zachmann. Point cloud collision detection. In Euro-
graphics 2004, volume 23, pages 567–576, Sep 2004.

[13] J. T. Kloswski, M. Held, J. S. B. Mitchell, H. Sowrizal, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-
dops. IEEE Trans. on Vis. & Com. Graphics, 1(4):21–36, Jan 1998.

[14] D. Knott and D. K. Pai. Cinder: Collision and interference detection
in real-time using graphics hardware. In Graphics Interface, pages
73–80, May 2003.

[15] Y. Ohtake, A. Belyaev, and H.-P. Seidel. An integrating approach to
meshing scattered point data. In Proc. of 2005 ACM symp. on Solid &
physical modeling, pages 61–69. ACM, 2005.

[16] J. Pan, S. Chitta, and D. Manocha. Probabilistic collision detection
between noisy point clouds using robust classification. Int. Symp. on
Robotics Research, 2011.

[17] J. Pan, I. A. Sucan, S. Chitta, and D. Manocha. Real-time collision
detection and distance computation on point cloud sensor data. In
IEEE Int. Conf. on Robotics & Automation, pages 3593–3599, 2013.

[18] R. Preiner, S. Jeschke, and M. Wimmer. Auto splats: Dynamic point
cloud visualization on the gpu. In H. Childs and T. Kuhlen, editors,
Proc. of Eurographics Symp. on Parallel Graphics & Vis., pages 139–
148. Eurographics Association 2012, may 2012.

[19] C. Scheiblauer and M. Wimmer. Out-of-core selection and editing of
huge point clouds. Computers & Graphics, 35(2):342–351, Apr 2011.

[20] D. Steinemann, M. Otaduy, and M. Gross. Efficient bounds for point-
based animations. Symp. Point-Based Graphics, pages 57–64, 2007.

[21] G. Zachmann. Minimal hierarchical collision detection. In ACM
Symp. on Vir. Reality Software and Tec., pages 121–128, Nov 2002.

	Harvest4D-deliverable-D3.21_docx
	PointMorphology
	Radwan-2014-CDR-paper

