
Final integrated prototype
Deliverable 9.5
Date: 15.5.2016

Grant Agreement number: EU 323567

Project acronym: HARVEST4D

Project title: Harvesting Dynamic 3D Worlds from Commodity Sensor Clouds

 i

Document Information
Deliverable number D9.5

Deliverable name Final integrated prototype

Version 1.0

Date 2016-05-15

WP Number 9

Lead Beneficiary CNR

Nature P

Dissemination level PU

Status Final

Author(s) CNR

Revision History
Rev. Date Author Org. Description

0.1 10/04/2016 P.Cignoni, G.Palma CNR First draft

0.2 08/05/2016 All partners Second draft

0.3 15/05/2016 P.Cignoni, G.Palma CNR Final version

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

 ii

TABLE OF CONTENTS

1 Executive Summary ... 1

2 Data Processing Prototypes .. 1

2.1 Multi-View Environment .. 2

2.1.1 Description of Prototype .. 2

2.1.2 Impact for the Project .. 3

2.1.3 Usage .. 3

2.2 Flash Simplification... 3

2.2.1 Description of Prototype .. 3

2.2.2 Impact for the Project .. 4

2.2.3 Usage .. 4

2.3 FSSR (Floating Scale Surface Reconstruction) .. 4

2.3.1 Description of Prototype .. 4

2.3.2 Impact for the Project .. 5

2.3.3 Usage .. 6

2.4 Change Detection ... 6

2.4.1 Description of Prototype .. 6

2.4.2 Impact for the Project .. 7

2.4.3 Usage .. 7

2.5 Point Cloud Compression ... 9

2.5.1 Description of Prototype .. 9

2.5.2 Impact for the Project .. 9

2.5.3 Usage .. 9

2.6 Color DAG ... 10

2.6.1 Description of Prototype .. 10

2.6.2 Impact for the Project .. 10

2.6.3 Usage .. 10

2.7 SLF Reconstruction ... 11

2.7.1 Description of Prototype .. 11

2.7.2 Impact for the Project .. 11

2.7.3 Usage .. 11

3 Visualization Prototypes ..12

 iii

3.1 Multi-View Environment .. 13

3.1.1 Description of Prototype .. 13

3.1.2 Impact for the Project .. 13

3.1.3 Usage .. 13

3.2 3DHOP .. 14

3.2.1 Description of Prototype .. 14

3.2.2 Impact for the Project .. 15

3.2.3 Usage .. 15

3.3 Potree ... 16

3.3.1 Description of Prototype .. 16

3.3.2 Impact for the Project .. 16

3.3.3 Usage (Demo) ... 17

3.3.4 Usage (own models) ... 18

3.4 Chroma Viewer ... 19

3.4.1 Description of Prototype .. 19

3.4.2 Impact for the Project .. 20

3.4.3 Usage .. 20

4 References ...21

Deliverable 9.5 1/22

1 EXECUTIVE SUMMARY

This document presents the status of the work in the Work Package 9 (WP9) - Integration and

Evaluation - at the end of Month 34 of the project HARVEST4D.

The activities follow the original plan drafted in the project Description of Work (DoW).

The objective of this deliverable is to describe the final prototype defined in the deliverable 9.4.

The final prototype is composed by a set of selected WP prototypes that exchange intermediate

data using the common data interfaces and formats described in the deliverable 9.1. The used WP

prototypes are subdivided in two categories: the WP prototypes involved in the data processing;

the WP prototypes for the visualization of the intermediate and final data. The following Sections

introduce each WP prototypes with a general description, its impact on the projects and its basic

usage.

The binaries of all prototypes can be accessed of the Harvest4D webpage.

2 DATA PROCESSING PROTOTYPES

To make more easy the understanding of the interaction among the different WP prototypes

involved in the data processing and how the data flow among them, we report in Figure 1 the

integration scheme already presented in the deliverable 9.4. In the figure we use the following

visual rules:

 The green boxes represent the different type of data involved in project

 The blue boxes represent the WP prototypes used in the final prototype;

 The arrows show how the data flow in and out the different WP prototypes.

The type of data handled by the various prototypes are:

 images

 point clouds with a set of possible per-vertex attributes defined in the Deliverable D9.1

 triangular meshes with a set of possible per-vertex attributes defined in the Deliverable

D9.1

 camera parameters using the format described in the Deliverable D9.1

 compressed point clouds, using the format described in [Golla et al. 2015]

 reflectance data as Surface Light Field (SLF) using the format described in [Palma et al.

2013]

Deliverable 9.5 2/22

 compressed Sparse Voxel Octree (SVO) data structure using the format described in [Dado

et al 2016]

Figure 1. Integration scheme of the Work Package prototypes used by the final prototypes in the data processing.

2.1 MULTI-VIEW ENVIRONMENT

2.1.1 Description of Prototype

The software Multi-View Environment (MVE) from [Fuhrmann et al. 2014a] takes multiple photos

of a scene as input. It includes a Structure-from-Motion (SfM) implementation to estimate a

sparse point cloud of a captured scene as well as camera parameters of images during the

capturing process, such as their rotations and positions.

Moreover, MVE contains a Multi-View Stereo (MVS) implementation to calculate a dense depth

map for each registered camera and its respective image. The estimated dense depth maps can

then be converted and merged into a large and dense 3D sample point cloud including positions,

normals, scale values (sample sizes) and other optional attributes, such as colors and confidences.

See also Section 3.1 for data visualization by means of MVE.

Deliverable 9.5 3/22

2.1.2 Impact for the Project

MVE has a large impact for the project since it is one of the basic building blocks of the Harvest4D

data processing system. Importantly, it is designed to fit to the Harvest4D capture paradigm by

being robust and working well for uncontrolled image datasets with challenging properties, such

as strongly varying camera to object surface distances, changing lighting conditions and so on.

The output 3D point clouds produced by MVE are used by many other Harvest4D tools like FSSR,

Flash Simplification and Change Detection to name a few of them.

2.1.3 Usage

First of all, the command line tool makescene imports images from an input directory and

creates a scene directory with the given images and some meta data. For example:

makescene.exe -i -o StatueImages StatueScene

The usual next step is to use sfmrecon to compute SfM data for the created scene:

sfmrecon.exe StatueScene

Alternatively, MVE also supports import of SfM results from other tools, such as Noah Snavely’s

Bundler (http://www.cs.cornell.edu/~snavely/bundler/) or VisualSfM (http://ccwu.me/vsfm/).

Depth maps are computed via the command line tool dmrecon which accepts a scale parameter

to control image resolution for depth estimations, for example:

dmrecon.exe -s2 StatueScene

Finally, the tool scene2pset converts the results of dmrecon to represent the scene by means of

a 3D point cloud. It should be called with the same scale parameter as for dmrecon:

scene2pset.exe -F2 StatueScene StatueScene/scenePointCloudL2.ply

Each tool describes its required input when called without arguments. Additionally, a more

detailed user guide can be found at the following link:

https://github.com/simonfuhrmann/mve/wiki/MVE-Users-Guide.

2.2 FLASH SIMPLIFICATION

2.2.1 Description of Prototype

 This prototype is a high performance geometry simplification software that allows to reduce the

size of 3D models made of millions of polygons/points in a few milliseconds. It builds upon a new

approach to parallel error-driven adaptive clustering, Morton Integrals [Legrand et al. 2015], to

fully exploit fine grain parallelism on the GPU. An adaptive partition of the space is created on the

http://www.cs.cornell.edu/~snavely/bundler/
http://ccwu.me/vsfm/
https://github.com/simonfuhrmann/mve/wiki/MVE-Users-Guide

Deliverable 9.5 4/22

GPU, and a single representative point is kept for each cluster, preserving salient features and

detailed structures. With this method, it is also possible to account for per-sample attributes, such

as colors and normals. Real time simplification performance is achieved on today's hardware,

adapting 3D content to a target platform at the speed of content generation and demand.

2.2.2 Impact for the Project

With real time performances and a feature-preserving adaptive behavior, this prototype can be

easily used as a pre-processing step in the other tasks of the project, instantly making very large

datasets manageable for the different parts of the pipeline, without losing important features and

detailed structures.

Since both point clouds and meshes are handled, and points attributes are preserved, this

prototype allows the fast simplification of geometry data in many different scenarios: as fast as it

is captured for example, or as it is generated by another data-processing tool of the project.

2.2.3 Usage

This prototype is a command line tool, that requires Windows and a CUDA capable GPU. It takes

as input a 3D mesh or point cloud with normals, in PLY format. It can be executed as follow :

fsimp -i inputFile.ply [options]

Where the options can be :

 -i [--input] ARG : required, input file, .ply or .off

 -o [--output] ARG : output file, .ply

 --morton-precision ARG : Morton code precision (size of the implicit discretization

grid). default value : 256

 -e [--max-error] ARG : error threshold. default value : 0.000001

 -c [--keep-color] : preserve color information

 -n [--keep-normals]: preserve normals

 -p [--points-only]: point cloud simplification

 -m [--color-metric] ARG : use color metric with specified error threshold

 -h [--help]: displays usage information

2.3 FSSR (FLOATING SCALE SURFACE RECONSTRUCTION)

2.3.1 Description of Prototype

The tool Floating Scale Surface Reconstruction from [Fuhrmann et al. 2014b] computes a surface

mesh from a multi-scale input point cloud. The input point cloud must consist of surface samples

Deliverable 9.5 5/22

with positions, normals and scale values. Optionally, attached colors and confidences can be

additionally provided to improve reconstruction quality.

FSSR calculates a global implicit surface function from the input sample set to represent the

complete scene. This global function is obtained by intelligent merging of radial basis function for

the input samples in a multi-scale way. A Gaussian basis and a compactly supported polynomial

weighting function are used for each sample to locally represent them. The implicit scene

representation is then sampled by means of a sparse Octree with finer sampling at closely

captured areas and a coarser evaluation grid for scene parts which were captured at larger

distance. In this way FSSR provides multi-scale surface meshes with high detail at points of

interest which were captured closely and less triangles for unimportant scene side parts.

Figure 2. Multi-scale reconstruction of the Elisabeth memorial in color (left), with shading (middle) and false coloring
indicating scale (right).

2.3.2 Impact for the Project

FSSR has a large impact for the project since it nicely fits to the Harvest4D idea that the users and

devices define the capture process and not the algorithms. This is achieved by FSSR as it virtually

does not require user-defined parameters. Thus it is very easy to use. Users do not need to take

care about scale issues and can simply provide input data with strongly varying scale.

Furthermore, it supports surface reconstruction as long as the required positions, surface normals

and scale values are available. This is why it can be employed for various uses cases, such as scene

reconstruction from Multi-View Stereo input or aligned laser range scans. It can also handle large

scenes thanks to its compactly supported basis functions and avoidance of global operations.

Deliverable 9.5 6/22

2.3.3 Usage

The FSSR command line tool takes as arguments one or more PLY input point cloud names and

lastly the name of the output PLY file in which it stores the extracted surface mesh.

Here is a simple example:

fssrecon.exe inPointSet0.ply inPointSet1.ply outSurface.ply

Additionally, low-confidence vertices, small isolated clutter components and degenerated

triangles should be removed by the tool mesh clean. Tool input arguments are the names of the

input PLY file to be cleaned and the name of the file in which the cleaned result is saved, e.g.:

meshclean.exe outSurface.ply cleanOutSurface.ply

Both tools describe their expected input when called without any argument. Moreover, a more

detailed user guide can be found here:

https://github.com/simonfuhrmann/mve/wiki/FSSR-Users-Guide

2.4 CHANGE DETECTION

2.4.1 Description of Prototype

The prototype allows the detection of the geometric differences between two point clouds or two

meshes of the same environment acquired in different times [Palma et al. 2016]. In the specific, it

computes a change value that can be used to segment each model in two subsets (Figure 3): the

static part, composed by the shared geometry between the two times; the dynamic part,

composed by the geometry that is changed in the time due to the object movements, object that

disappears, and occlusions.

Starting from two 3D model, the prototype removes the outliers using a probabilistic operator.

Then, it detects the actual change using the implicit surface defined by model geometry under a

multi-scale implicit surface reconstruction that, compared to the classical proximity measure,

offers a more robust change/no-change characterization near the temporal intersection of the

scans and in the areas exhibiting different sampling density and direction. The resulting

classification is enhanced with a spatial reasoning step to solve critical geometric configurations

that are common in man-made environments, like occlusions and small rigid transformations with

coherent temporal overlapping, by checking the local coherency of the segmentation.

https://github.com/simonfuhrmann/mve/wiki/FSSR-Users-Guide

Deliverable 9.5 7/22

Figure 3: Change detection results on a two captures of an archeological excavation. The 3D models are generated
using images acquired by a drone. (Top) Rendering of the two 3D model with a vertex color. (Bottom) Color mapping

of change detection results (red = change, blue = no-change).

2.4.2 Impact for the Project

The prototype meets the objective of the Work Package 6.1 for the automatic detection of

temporal changes in the input geometry. The output of the prototype is very useful for the other

task of the project that can take advantage from an accurate segmentation between the static

and the dynamic part of the input clouds. For example, the dense 3D reconstruction can take

advantage of the segmentation in order to create a more complete model where to put together

all the static regions and the change areas from only one time. Another example is the efficient

visualization of change evolution of a scene where the segmentation can help in the design of a

tool with the purpose to maximize the perception of the most significant changing regions and to

minimize the effects of the negligible one on the user’s attention.

2.4.3 Usage

The prototype is a command line tool that takes in input two 3D models and returns the

processing at different steps of the algorithm. The format used to read and save the 3D models is

the PLY format described in the Deliverable D 9.1. The prototype assumes that the input clouds

have the a per-point normal and saves the output with two new per-vertex attributes: “quality”

and “radius”. The “quality” attribute stores a change probability in the range [0.0, 1.0]. The

Deliverable 9.5 8/22

“radius” attribute stores the point radius that depends on the density of the cloud around the

point.

In the specific, the tool takes four arguments:

detectChange.exe time0.ply time1.ply save0.ply save1.ply

where the first two arguments are the filenames of the input 3D models and the last two

arguments are the filenames where to save the final processing. The tool takes different

command line options:

 -p, to stops the algorithm after the preprocessing of the input point clouds. The preprocessing

involves the point radius computation and the outlier removal;

 -o, to set the outlier threshold (default 0.5);

 -g, to stop the algorithm after the local temporal comparison of multi scale reconstructed

implicit surface;

 -c, to stop the algorithm after the check of the consistency of the change quality value using

the coherency of the point normal;

 -a, to compute the multi scale implicit surface in an adaptive way using an octree instead of a

uniform grid. In this way the prototype can adapt the level of details of the multi scale analysis

to the local density of the input data.

An additional tool staticDynamicSep allows the storage of the output in different file

configurations. Given the point clouds A and B and the relative change regions, C(A) and C(B), and

no-change regions NC(A) and NC(B), there are three different options:

 staticDynamicSep output_t0.ply output_t1.ply nc_t0.ply nc_t1.ply

c_t0.ply c_t1.ply saves 4 independent 3D model with the no-change regions NC(A)

and NC(B) (nc_t0.ply and nc_t1.ply) and the change regions C(A) and C(B)

(c_t0.ply and c_t1.ply)

 staticDynamicSep output_t0.ply output_t1.ply nc.ply c_t0.ply

c_t1.ply saves a model with the union of the no-change regions NC(A)+NC(B) (nc.ply)

and two models with the change regions C(A) and C(B) (c_t0.ply and c_t1.ply)

 staticDynamicSep output_t0.ply output_t1.ply t0.ply t1.ply saves a

model for each time that is as complete as possible (NC(A)+NC(B)+C(A) = t0.ply and

NC(A)+NC(B)+C(B) = t1.ply)

Deliverable 9.5 9/22

2.5 POINT CLOUD COMPRESSION

2.5.1 Description of Prototype

This prototype allows the fast multi-modal compression of point clouds, i.e. both geometry and

color information are stored in a compressed form in the resulting compressed point cloud. As

already described in Deliverable 4.31, our method [Golla & Klein, 2015] is based on an initial

decomposition of the volumetric data into local regions that are used as compression chunks. This

is followed by a per-region data processing where the further compression of the point clouds

belonging to a voxel is based on a decomposition into point clusters that can be represented by

patches, parameterized over planar 2D domains. In order to represent finescale details, height

and occupancy maps on these domains are generated. The height maps account for offsets of the

original geometry from the domains, while the occupancy maps account for holes in the

geometry, like e.g. windows in a building façade.

The final compression is based on compressing height and color maps with the JPEG or the lossy

JPEG 2000 standard. JPEG is faster, while JPEG 2000 delivers smaller file sizes at comparable error

rates. Occupancy maps are compressed via the lossless JBIG2 algorithm. Furthermore, the patch

positions, orientations and sizes are compressed with the Lempel-Ziv-Markov chain algorithm

(LZMA).

2.5.2 Impact for the Project

The compression of the point clouds represents a key component to store the huge amounts of

acquired data in a compact format. Such a compact representation is not only relevant for storing

huge point clouds but it is also important for a rapid data exchange as less data has to be

transmitted and a decompression performed by the user allows to unpack the compressed data

into a point cloud. Our data-compression technique allows to obtain a compact representation of

a point cloud containing both geometry and reflectance information.

2.5.3 Usage

The prototype is a command line tool that can be used as follows:

1. compresscloud –input input.ply –output outputfolder

compresses input point cloud and outputs compressed format to outputfolder.

2. decompresscloud –input inputfolder –output reconstructed.ply

decompresses the data stored in the input folder and outputs to reconstructed point cloud.

Deliverable 9.5 10/22

2.6 COLOR DAG

2.6.1 Description of Prototype

This prototype showcases our voxel scene compression (see Figure 4), as described in [Dado et al.

2016].

The program is developed in C++ (using OpenGL and GLSL), with GPU support. It loads various file

formats (ply, obj, pvm).

Figure 4. The prototype is able to compress voxel scenes to a great extent, enabling very high-resolution results.

2.6.2 Impact for the Project

This prototype provides a tool for voxelizing triangle meshes as well as directly loading voxel

scenes and subsequently compressing them using an SVO-based compression scheme. To this

end, we decouple geometry and attributes and compress them separately, for which the

subsequent re-integration was a challenge. With this technique, we can decrease the memory

footprint by an order of magnitude compared to a standard SVO.

2.6.3 Usage

Execute Research/Research.exe. The scene to load can be specified in Research/properties.txt

under obj_to_dag, and the levels of the hierarchy in Research/shaders/shader_properties.txt

under shader_max_level. As it can take quite long to generate the compressed scene, we

provide two pre-processed examples; the arena and citadel scene, both at 17 levels. The current

settings load the arena scene, while for the citadel scene you need to change the following in

Research/properties.txt:

octree_type upclab2048

obj_to_dag ../Research/data/citadel.obj

dag_file ../Research/citadel

Navigation is possible via WASD. Hold SHIFT to move faster and CTRL to move slower There are

many further options and controls which are discussed in detail in Readme.txt.

Deliverable 9.5 11/22

2.7 SLF RECONSTRUCTION

2.7.1 Description of Prototype

The prototype allows the computation of the Surface Light Field starting from a set of photos and

a dense triangular mesh [Palma et al. 2013]. The input of the prototype is a set of photo aligned

with the Multi-View Environment prototype and a dense triangular mesh obtained with the FSSR

prototype (developed in the Task WP5). In the specific the prototype computes the Surface Light

Field as a combination of two components (Figure 5): the diffuse color, using statistical analysis on

the input color projected on the mesh; the residual component, that is the positive residual from

the diffuse color, computed as linear combination of Hemispherical Harmonics functions. The

coefficients of the Hemispherical Harmonics functions are obtained with a robust formulation of a

weighted least square problem that avoids the creation of artifacts in the final rendering.

Figure 5. Rendering of the Surface Light Field of a drinking fountain. (Left) Diffuse color. (Center) Residual appearance
effects modelled using 16 Hemispherical Harmonics. (Right) Final rendering by combing the diffuse color and the

residual appearance effects.

2.7.2 Impact for the Project

The prototype meets the objective of the Task 7.2 for the estimation of the reflectance of an

object in the case of acquisition in under constrained scenarios, for example a photographic

acquisition of an object inside an uncontrolled lighting environment (outdoor, inside a museum,

etc.).

The output of the prototype can be very useful to improve the real-time rendering of the model

as it allows a more photorealistic visualization.

2.7.3 Usage

The prototype is a GUI tool that takes in input a dense triangular mesh and a set of aligned photos

with the relative camera parameters and allows the computation of the Surface Light Filed for

each vertex of the model using the algorithm described in [Palma et al. 2013]. The GUI guides the

user in the different computation steps.

Deliverable 9.5 12/22

The format of the input data is the Multi-View Environment project format (for a complete

overview see https://github.com/simonfuhrmann/mve/wiki/MVE-File-Format) to load the input

photo with the relative camera and the Harvest4D PLY format (defined in the Deliverable 9.1) for

the input 3D mesh.

In the specific, after the loading of the input data, the user must save all the color data projected

on each vertex by each camera with the relative quality value using the command “Save Color

Data”. Then the user can compute two different approximations of the reflectance behavior of

the objects: the only diffuse color that is saved in the vertex color of a new 3D model (command

“Compute Diffuse Color”); the complete Surface Light Field that is saved in a binary file (command

“Compute SLF”). For the computation of the Surface Light Field, the user can select the maximum

order of Hemispherical Harmonics functions to use. The binary file of Surface Light Field contains

the diffuse color and the coefficients of the Hemispherical Harmonics of each vertex. The tool

allows the real-time visualization of the computed Surface Light Field.

3 VISUALIZATION PROTOTYPES

This section present the prototypes developed or partially developed in the Work Package 8 for

the visualization of the output data. Figure 6 shows the association with the data that these

visualization prototypes can take in input allowing the user interaction.

Figure 6. Association of the visualization components available in the projects with the type of input data that are
able to visualize.

https://github.com/simonfuhrmann/mve/wiki/MVE-File-Format

Deliverable 9.5 13/22

3.1 MULTI-VIEW ENVIRONMENT

3.1.1 Description of Prototype

MVE [Fuhrmann et al. 2014a] provides a graphical user interface called UMVE to inspect MVE

scene directories with their images, SfM data, dense scene point clouds or surface meshes. See

Section 2.1 for the data processing flow of MVE.

3.1.2 Impact for the Project

UMVE is often used during the project since it allows quick and easy management and especially

validation of produced reconstructions.

3.1.3 Usage

To use UMVE, simply start the executable umve.exe and open an existing or create a new scene

directory via the respective GUI elements. Alternatively, the tool can be called with a scene

directory or mesh as command line argument to directly open it, e.g.:

umve.exe StatueScene/scenePointCloudL2.ply

UMVE provides a list of all registered cameras visualized by their image icons on its left window

side. Using this list and the tab View inspect, all view dependent data can be selected and shown,

such as original and undistorted images or depth maps. The tab Scene inspect provides access to

the 3D visualization of the current scene where camera distributions, point clouds and meshes are

rendered. It also allows opening and addition of meshes or selection of individual cameras or

points to investigate their relationship with other scene parts. Furthermore, the right hand side

provides some basic GUI elements to control rendering or change the scene by, for example,

triangulation of a single depth map of a selected view.

For a more detailed user guide, please visit:

https://github.com/simonfuhrmann/mve/wiki/MVE-Users-Guide

https://github.com/simonfuhrmann/mve/wiki/MVE-Users-Guide

Deliverable 9.5 14/22

Figure 7. The Multi-View Environment (MVE) GUI shows a sparse point cloud of a city wall in Darmstadt as well as the
distribution of cameras which were registered for the scene.

3.2 3DHOP

3.2.1 Description of Prototype

3DHOP (3D Heritage Online Presenter) is a collection of tools and templates for the creation of

multimedia interactive Web presentations of digital 3D models. It allows easy visualization of 3D

models directly inside HTML pages and the streaming of multiresolution 3D meshes and point

clouds over HTTP, supporting the exploration of very large models on commodity computers and

standard internet connections. 3DHOP is a cross-browser application. It is supported and

successfully tested on the current stable version of Google Chrome, Mozilla Firefox, Internet

Explorer and Opera. It requires a preprocessing of the input model to create a multi-resolution

compressed data representation that is more suitable for the web streaming of very high-

resolution 3D model [Ponchio et al. 2015]. One of the proposed template allows the space-time

navigation of the temporal 3D data. It use the output of the Change Detection prototypes to allow

the user to see how the 3D scene evolves in the time.

Deliverable 9.5 15/22

3.2.2 Impact for the Project

The prototype meets the objective of the Work Package 8.3 for the Web rendering of huge 3D

model (triangular meshes and point cloud) with per-vertex color. The proposed GUI allow the free

and smooth navigation of 3D model immediately using a multiresolution compressed format to

load on the fly only the need data for the rendering. Furthermore, the proposed template for the

space-time navigation (Figure 8) meets the objective of the Work Package 8.2 for the space-time

data visualization allowing to the user to see in an effective way how the 3D scene evolves in the

time.

Figure 8. 3DHOP user interface for the space-time navigation of an archeological excavation.

3.2.3 Usage

The prototype is composed by a set of tool to create the multi-resolution model using the NEXUS

format (http://vcg.isti.cnr.it/nexus/) for the input model and by a JavaScript configurable library

to create the Web viewer. The NEXUS multiresolution format is computed with the following

command:

nxsbuild.exe inputModel.ply -o outputModel.nxs

where the first argument is the filename of the input 3D model and the option “-o” contains the

filename where to save the final processing. The compression of the NEXUS format is obtained

with the following command:

nxsedit.exe outputModel.nxs -z -o compressedOutput.nxs

Deliverable 9.5 16/22

For the space-time navigation template, we need to preprocess the models to store the per-

vertex change value computed with the Change Detection prototype in the alpha value of the per-

vertex color. The tool is the following:

changeToAlpha.exe input.ply output.ply

where the file output.ply can be used as input for the tool nxsbuild.exe. The web viewer

uses a Trackball navigation paradigm:

 Drag + press left mouse button, to rotate;

 wheel, to zoom;

 Ctrl+ drag + press left mouse button, to pan;

 Drag + press wheel, to pan;

 Alt+ press wheel, z-panning;

 Double click left mouse button, re-centering of the trackball.

For the temporal navigation there is a simple slider to go from one time to the next in a smooth

way.

The final NEXUS file can be load on the web server and used to create the Web page. For more

info about the configuration and the layout of the web page where to load the model see the

“How to do” page at the following link (http://3dhop.net/howto.php).

3.3 POTREE

3.3.1 Description of Prototype

Similar to 3DHop, Potree is a remote visualization tool that runs purely in a web browser. Unlike

3DHop, it focuses purely on point clouds (meshes are not supported). Potree uses WebGL and

runs on all recent browsers supporting WebGL. Potree is focused on rendering very large point

clouds. For this, it uses an internal hierarchical octree representation which is computed in a

preprocessing step. It also offers different visualization modes, including screen-aligned splats,

geometric splats, and Gaussian splats, to explore different quality/performance tradeoffs.

3.3.2 Impact for the Project

Potree contributes to Task 8.3, Mobile and Web Rendering. With the ever increasing sizes of data

sets, it becomes infeasible to distribute full data sets of a 3D scene to all users. Therefore,

technologies to distribute only the relevant parts of a data set on demand to users over the web

are becoming crucial.

http://3dhop.net/howto.php

Deliverable 9.5 17/22

3.3.3 Usage (Demo)

Potree can be tested on the Harvest4D homepage under the link “3D Scenes”:

https://harvest4d.org/?page_id=860

At the time of writing, it is recommended to use Google Chome as web browser for its faster

performance. Note that Potree runs perfectly well on Laptops due to its adaptive rendering

technology. However, for Laptops with NVIDIA Optimus technology, it is recommended to start

Chrome with the option “Run on high-performance NVIDIA processor” (available in the context

menu of the application icon) to ensure that rendering is done by a dedicated NVIDIA card instead

of slower, integrated GPUs.

The demo of Potree shows the Arene de Lutece data sets containing 45M points. See Figure 9 for

an example screenshot of this scene with the user interface elements.

Figure 9. Potree user interface rendering the demo data set.

Navigation:

By default, Potree follows a “walk” navigation paradigm, i.e., the a,s,d,w keys allows moving

forward, backward, and sideways, while dragging with the left mouse button rotates the camera.

A menu on the right-hand side shows a number of options:

 Points(m): number of points (in Million) to be displayed (allows adapting to rendering

speed of computer)

https://harvest4d.org/?page_id=860

Deliverable 9.5 18/22

 Pointsize: size of a “reference” splat in pixels. For fixed point size, this corresponds to the

actual splat size.

 blendDepth: rendering parameter to determine the depth range in which overlapping

splats are considered to belong to the same surface and are therefore blended

 SizeType: selection between a fixed point size (as given above) or a point size that is

related to the view distance, thus allowing rendering surfaces without holes

 Quality: different rendering modes: screen-aligned squares or circles just rasterize a

primitive. “splats” renders high-quality Gaussian splats that are blended in a given depth

range, as in [Botsch et al. 2005]. “Interpolation” renders screen-aligned paraboloids that

produces surfaces in a similar way as a Voronoi tessellation [Schuetz et al. 2015]

 Stats: enables display of rendering statistics like frame rate, visible nodes and visible

points

 BoundingBox: shows the bounding boxes of the octree data structure (see Figure 10).

On the lower right side, there are further icons to enable operations like measurement, clipping,

or switching to fly or trackball navigation modes.

3.3.4 Usage (own models)

In order to test Potree with other models, the current version of Potree can be downloaded from

http://www.potree.org/

The PotreeConverter is an offline tool to convert input point clouds into the Potree hierarchical

file format.

Potree itself is a client-side WebGL application but needs to be deployed on a web server, along

with the converted point cloud data, to be accessed inside web browsers.

Documentation for the two components can be found at the mentioned URL. Figure 11 shows a

point cloud of Barcelona with the Sagrada Familia in the background, rendered in Potree.

Figure 10. Visualization of the Potree octree data structure.

http://www.potree.org/

Deliverable 9.5 19/22

Figure 11. Barcelona point cloud with Sagrada Familia.

3.4 CHROMA VIEWER

3.4.1 Description of Prototype

This prototype showcases the effect of improved depth perception based on the

chromostereopsis phenomenon (see Figure 12), as described in [Schemali and Eisemann 2014].

The program is developed in C++ (using OpenGL, GLSL, and wxWidget), with GPU support. It loads

various file formats.

Please notice, to make the software usable right away, we provided a simple city model, but need

to point out that it is not part of the deliverable. Instead it was purchased by us and we cannot

warrant any rights regarding this model.

Deliverable 9.5 20/22

Figure 12. The prototype provides improved depth perception when wearing the ChromaDepth glasses.

3.4.2 Impact for the Project

This prototype provides a tool for viewing 3D data on a regular, trichromatic 2D screen with an

improved perception of the third dimension (the z-axis) compared to regular projection methods.

All this requires are the ChromoDepth glasses, which are easy to use and cheap to obtain. Using

our tool, the user achieves a better understanding of 3D data, which is crucial when visualizing

complex space-time data.

3.4.3 Usage

Execute bin/Win32/Research.exe, then proceed to the directory Content/jingtang/ and select and

load Chromo.xml.

Navigation is possible via the cursor keys and page up/down or WASDQE. To see the improved

depth perception effect, ChromaDepth glasses are required.

Deliverable 9.5 21/22

4 REFERENCES

 [Palma et al. 2013]

Gianpaolo Palma, Nicola Desogus, Paolo Cignoni and Roberto Scopigno

Surface Light Field from Video Acquired in Uncontrolled Settings

In: International Conference DigitalHeritage, 2013

 [Fuhrmann et al. 2014a]

Simon Fuhrmann, Fabian Langguth and Michael Goesele

MVE – A Multi-View Reconstruction Environment

In: Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, 2014.

 [Fuhrmann et al. 2014b]

Simon Fuhrmann and Michael Goesele

Floating Scale Surface Reconstruction

In: ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2014.

 [Schemali et al. 2014]

Leila Schemali and Elmar Eisemann

ChromoStereoscopic Rendering for Trichromatic Displays

In: International Symposium on Non-Photorealistic Animation and Rendering, 2014.

 [Legrand et al. 2015]

Hélène Legrand and Tamy Boubekeur

Morton Integrals for High Speed Geometry Simplification

In: High Performance Graphics, 2015

 [Golla et al. 2015]

Tim Golla and Reinhard Klein

Real-time Point Cloud Compression

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015

 [Ponchio et al. 2015]

Federico Ponchio and Matteo Dellepiane

Fast decompression for web-based view-dependent 3D rendering

In: International Conference on 3D Web Technology, 2015

 [Schuetz et al. 2015]

Markus Schuetz and Michael Wimmer

High-Quality Point Based Rendering Using Fast Single Pass Interpolation

In: International Conference DigitalHeritage, 2015

 [Palma et al. 2016]

Gianpaolo Palma, Paolo Cignoni, Tamy Boubekeur and Roberto Scopigno

Detection of Geometric Temporal Changes in Point Clouds

In: Computer Graphics Forum (In press), 2016

Deliverable 9.5 22/22

 [Dado et al. 2016]

Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery and Elmar Eisemann

Geometry and Material Compression in High-resolution Voxelized Scenes

In: Eurographics, 2016

